EGR1

Gene Summary

Gene:EGR1; early growth response 1
Aliases: TIS8, AT225, G0S30, NGFI-A, ZNF225, KROX-24, ZIF-268
Location:5q31.2
Summary:The protein encoded by this gene belongs to the EGR family of C2H2-type zinc-finger proteins. It is a nuclear protein and functions as a transcriptional regulator. The products of target genes it activates are required for differentitation and mitogenesis. Studies suggest this is a cancer suppressor gene. [provided by RefSeq, Dec 2014]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:early growth response protein 1
Source:NCBIAccessed: 01 September, 2019

Ontology:

What does this gene/protein do?
Show (32)
Pathways:What pathways are this gene/protein implicaed in?
Show (1)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 01 September 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Base Sequence
  • Western Blotting
  • Neoplasm Invasiveness
  • Repressor Proteins
  • Cell Survival
  • EGR1
  • Immunohistochemistry
  • Early Growth Response Protein 1
  • Uterine Cancer
  • Cell Movement
  • Breast Cancer
  • Cell Differentiation
  • Antineoplastic Agents
  • Apoptosis
  • Cancer Gene Expression Regulation
  • Prostate Cancer
  • Young Adult
  • Immediate-Early Proteins
  • Drug Resistance
  • Biomarkers, Tumor
  • DNA-Binding Proteins
  • Cell Proliferation
  • Molecular Sequence Data
  • RNA Interference
  • Promoter Regions
  • Gene Expression Profiling
  • Receptors, Colony-Stimulating Factor
  • Acute Myeloid Leukaemia
  • Neoplastic Cell Transformation
  • Chromosome 5
  • Cell Cycle
  • beta-Galactosidase
  • Lung Cancer
  • Binding Sites
  • Wilms Tumour
  • Down-Regulation
  • Virus Latency
  • Ultraviolet Rays
  • Transforming Growth Factor beta
  • Oligonucleotide Array Sequence Analysis
  • Messenger RNA
  • Cervical Cancer
  • Neoplasm Proteins
Tag cloud generated 01 September, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (7)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: EGR1 (cancer-related)

Wang X, Dai J, Wang X, et al.
MnO
Talanta. 2019; 202:591-599 [PubMed] Related Publications
Photodynamic therapy (PDT) was considered as an effective treatment. Whereas only PDT is not enough to achieve effective therapy on account of irradiation intensity decreases as depth increases as well as tumor hypoxia. Combination with gene therapy and photodynamic therapy have emerged as an effective strategy to improve therapeutic effectiveness. In the present study, a GSH responsive MnO

Bencheikh L, Diop MK, Rivière J, et al.
Dynamic gene regulation by nuclear colony-stimulating factor 1 receptor in human monocytes and macrophages.
Nat Commun. 2019; 10(1):1935 [PubMed] Free Access to Full Article Related Publications
Despite their location at the cell surface, several receptor tyrosine kinases (RTK) are also found in the nucleus, as either intracellular domains or full length proteins. However, their potential nuclear functions remain poorly understood. Here we find that a fraction of full length Colony Stimulating Factor-1 Receptor (CSF-1R), an RTK involved in monocyte/macrophage generation, migrates to the nucleus upon CSF-1 stimulation in human primary monocytes. Chromatin-immunoprecipitation identifies the preferential recruitment of CSF-1R to intergenic regions, where it co-localizes with H3K4me1 and interacts with the transcription factor EGR1. When monocytes are differentiated into macrophages with CSF-1, CSF-1R is redirected to transcription starting sites, colocalizes with H3K4me3, and interacts with ELK and YY1 transcription factors. CSF-1R expression and chromatin recruitment is modulated by small molecule CSF-1R inhibitors and altered in monocytes from chronic myelomonocytic leukemia patients. Unraveling this dynamic non-canonical CSF-1R function suggests new avenues to explore the poorly understood functions of this receptor and its ligands.

Chen L, Liu YC, Zheng YY, et al.
Furanodienone overcomes temozolomide resistance in glioblastoma through the downregulation of CSPG4-Akt-ERK signalling by inhibiting EGR1-dependent transcription.
Phytother Res. 2019; 33(6):1736-1747 [PubMed] Related Publications
Glioblastoma multiforme (GBM) is a highly aggressive type of brain tumour. Patients with GBM respond poorly to chemotherapy and have poor survival outcomes. Neuron-glial antigen 2 (NG2), also known as chondroitin sulphate proteoglycan 4 (CSPG4), has been shown to contribute to critical processes, such as cell survival, proliferation, and chemotherapy resistance, during glioma progression. In this study, we found that furanodienone (FUR), a diene-type sesquiterpene isolated from the rhizomes of Rhizoma curcumae, exhibited a potential cytotoxic effect on temozolomide (TMZ)-resistant GBM cells in vitro by inhibiting CSPG4 and related signalling pathways. Studies investigating the mechanism demonstrated that FUR suppressed CSPG4-Akt-ERK signalling, inflammatory responses, and cytokine levels but activated caspase-dependent pathways and mitochondrial dysfunction. Furthermore, an immunofluorescence assay and a dual-luciferase reporter assay revealed that inhibition of EGR1-mediated transcription might have contributed to the FUR-dependent blockade of CSPG4 signalling and glioma cell survival. These results established a link between FUR-induced CSPG4 inhibition and the suppression of EGR1-dependent transcription. Attenuation of ERK1/2 and cytokine signalling might have generated the EGR1-dependent negative feedback loop of the CSPG4 pathway during FUR-induced apoptosis. These findings suggested that FUR could be a therapeutic candidate for the treatment of malignant glioma via targeting CSPG4 signalling.

Zhang X, Yang P, Luo X, et al.
High olive oil diets enhance cervical tumour growth in mice: transcriptome analysis for potential candidate genes and pathways.
Lipids Health Dis. 2019; 18(1):76 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Numerous epidemiologic studies have found a close association between obesity and cancer. Dietary fat is a fundamental contributor to obesity and is a risk factor for cancer. Thus far, the impact of dietary olive oil on cancer development remains inconclusive, and little is known about its underlying mechanisms.
METHODS: Nude mouse xenograft models were used to examine the effects of high olive oil diet feeding on cervical cancer (CC) development and progression. Cell proliferation, migration and invasion were observed by the methods of EdU incorporation, Wound healing and Transwell assay, separately. RNA-sequencing technology and comprehensive bioinformatics analyses were used to elucidate the molecular processes regulated by dietary fat. Differentially expressed genes (DEGs) were identified and were functionally analyzed by Gene Ontology (GO), Kyoto Enrichment of Genes and Genomes (KEGG). Then, protein-protein interaction (PPI) network and sub-PPI network analyses were conducted using the STRING database and Cytoscape software.
RESULTS: A high olive oil diet aggravated tumourigenesis in an experimental xenograft model of CC. Oleic acid, the main ingredient of olive oil, promoted cell growth and migration in vitro. Transcriptome sequencing analysis of xenograft tumour tissues was then performed to elucidate the regulation of molecular events regulated by dietary fat. Dietary olive oil induced 648 DEGs, comprising 155 up-regulated DEGs and 493 down-regulated DEGs. GO and pathway enrichment analysis revealed that some of the DEGs including EGR1 and FOXN2 were involved in the transcription regulation and others, including TGFB2 and COL4A3 in cell proliferation. The 15 most strongly associated DEGs were selected from the PPI network and hub genes including JUN, TIMP3, OAS1, OASL and EGR1 were confirmed by real-time quantitative PCR analysis.
CONCLUSIONS: Our study suggests that a high olive oil diet aggravates CC progression in vivo and in vitro. We provide clues to build a potential link between dietary fat and cancerogenesis and identify areas requiring further investigation.

Rigiracciolo DC, Santolla MF, Lappano R, et al.
Focal adhesion kinase (FAK) activation by estrogens involves GPER in triple-negative breast cancer cells.
J Exp Clin Cancer Res. 2019; 38(1):58 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Focal adhesion kinase (FAK) is a cytoplasmatic protein tyrosine kinase that associates with both integrins and growth factor receptors toward the adhesion, migration and invasion of cancer cells. The G-protein coupled estrogen receptor (GPER) has been involved in the stimulatory action of estrogens in breast tumor. In this study, we have investigated the engagement of FAK by GPER signaling in triple negative breast cancer (TNBC) cells.
METHODS: Publicly available large-scale database and patient data sets derived from "The Cancer Genome Atlas" (TCGA; www.cbioportal.org ) were used to assess FAK expression in TNBC, non-TNBC tumors and normal breast tissues. MDA-MB 231 and SUM159 TNBC cells were used as model system. The levels of phosphorylated FAK, other transduction mediators and target genes were detected by western blotting analysis. Focal adhesion assay was carried out in order to determine the focal adhesion points and the formation of focal adhesions (FAs). Luciferase assays were performed to evaluate the promoters activity of c-FOS, EGR1 and CTGF upon GPER activation. The mRNA expression of the aforementioned genes was measured by real time-PCR. Boyden chamber and wound healing assays were used in order to evaluate cell migration. The statistical analysis was performed by ANOVA.
RESULTS: We first determined by bioinformatic analysis that the mRNA expression levels of the gene encoding FAK, namely PTK2, is higher in TNBC respect to non-TNBC and normal breast tissues. Next, we found that estrogenic GPER signaling triggers Y397 FAK phosphorylation as well as the increase of focal adhesion points (FAs) in TNBC cells. Besides, we ascertained that GPER and FAK activation are involved in the STAT3 nuclear accumulation and gene expression changes. As biological counterpart, we show that FAK inhibition prevents the migration of TNBC cells upon GPER activation.
CONCLUSIONS: The present data provide novel insights regarding the action of FAK in TNBC. Moreover, on the basis of our findings estrogenic GPER signaling may be considered among the transduction mechanisms engaging FAK toward breast cancer progression.

Shi Q, Bhatia D
Resveratrol-Responsive CArG Elements from the Egr-1 Promoter for the Induction of GADD45α to Arrest the G2/M Transition.
Methods Mol Biol. 2019; 1895:111-122 [PubMed] Related Publications
Suicide gene therapy is based on the introduction of a foreign gene into tumor cells to sensitize cells to treatment, to convert a nontoxic compound into a lethal drug, or to produce a cytotoxic effect. We have constructed a suicide gene therapy vector that contains resveratrol-responsive CArG elements from the Egr-1 promoter and the GADD45α open reading frame. CArG elements are utilized as a "molecular switch" to drive the expression of GADD45α. When transfected into lung cancer cells, the vector is able to express GADD45α upon resveratrol treatment, and subsequently leads to cell cycle arrest at the G2/M transition. In this chapter, we describe a detailed protocol for vector construction, transfection, cell viability assay, and cell cycle analysis.

Lee JC, Koh SA, Lee KH, Kim JR
BAG3 contributes to HGF-mediated cell proliferation, migration, and invasion via the Egr1 pathway in gastric cancer.
Tumori. 2019; 105(1):63-75 [PubMed] Related Publications
INTRODUCTION:: Bcl2-associated athanogene 3 (BAG3) is elevated in several types of cancers. However, the role of BAG3 in progression of gastric cancer is unknown. Therefore, the present study aims to find out the role of BAG3 in hepatocyte growth factor (HGF)-mediated tumor progression and the molecular mechanisms by which HGF regulates BAG3 expression.
METHODS:: BAG3 mRNA and protein were measured using reverse transcription polymerase chain reaction and Western blot in the 2 human gastric cancer cell lines, NUGC3 and MKN28, treated with or without HGF. The effects of BAG3 knockdown on cell proliferation, cell invasion, and apoptosis were analyzed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, the in vitro 2-chamber invasion assay, and flow cytometry in BAG3 short hairpin RNA (shRNA)-transfected cells and control cells. The signaling pathways involved in BAG3 that are regulated by HGF were analyzed. The chromatin immunoprecipitation assay was used to determine binding of Egr1 to the BAG3 promoter.
RESULTS:: BAG3 mRNA and protein levels were increased following treatment with HGF. HGF-mediated BAG3 upregulation increased cell proliferation and cell invasion; however, it decreased apoptosis. HGF-mediated BAG3 upregulation is regulated by an ERK and Egr1-dependent pathway. BAG3 may have an important role in HGF-mediated cell proliferation and metastasis in gastric cancer through an ERK and Egr1-dependent pathway.
CONCLUSION:: This pathway may provide novel therapeutic targets and provide information for further identification of other targets of therapeutic significance in gastric cancer.

Kim J, Jung E, Choi J, et al.
Leptin is a direct transcriptional target of EGR1 in human breast cancer cells.
Mol Biol Rep. 2019; 46(1):317-324 [PubMed] Related Publications
Leptin is a cytokine that regulates energy metabolism. Leptin can promote breast cancer progression in obese women. However, the mechanism of regulation of leptin expression in breast cancer cells is unclear. Tumor necrosis factor-alpha (TNF-α) stimulated the transcription of the leptin gene. Using mutant promoter constructs, we demonstrated that the EGR1-binding motif in the proximal region of the leptin gene is required for leptin transcription by TNF-α. Forced expression of EGR1 stimulated leptin promoter activity, whereas silencing of EGR1 by RNA interference reduced TNF-α-induced leptin protein accumulation. The ERK1/2 pathway contributed to the expression of EGR1 and leptin by TNF-α. Our results suggest that EGR1 targets the leptin gene in response to TNF-α stimulation in breast cancer cells.

Nag JK, Bar-Shavit R
Transcriptional Landscape of PARs in Epithelial Malignancies.
Int J Mol Sci. 2018; 19(11) [PubMed] Free Access to Full Article Related Publications
G protein-coupled receptors (GPCRs), the largest family of cell receptors, act as important regulators of diverse signaling pathways. Our understanding of the impact of GPCRs in tumors is emerging, yet there is no therapeutic platform based on GPCR driver genes. As cancer progresses, it disrupts normal epithelial organization and maintains the cells outside their normal niche. The dynamic and flexible microenvironment of a tumor contains both soluble and matrix-immobilized proteases that contribute to the process of cancer advancement. An example is the activation of cell surface protease-activated receptors (PARs). Mammalian PARs are a subgroup of GPCRs that form a family of four members, PAR

Kim J, Kang SM, Oh SY, et al.
Early Growth Response 1-Dependent Downregulation of Matrix Metalloproteinase 9 and Mouse Double Minute 2 Attenuates Head and Neck Squamous Cell Carcinoma Metastasis.
Cell Physiol Biochem. 2018; 50(5):1869-1881 [PubMed] Related Publications
BACKGROUND/AIMS: The functional relevance of early growth response-1 (EGR1) on cancer invasion remains controversial. The effect of EGR1 on the expression of MMP9, which is important for HNSCC invasion, is still disputed. There is no previous data showing the effect of EGR1 on mouse double minute 2 (MDM2), an enhancer of matrix metalloproteinase 9 (MMP9) expression. Our aim is to clarify the negative correlation between EGR1 expression and head and neck squamous cell carcinoma (HNSCC) metastasis.
METHODS: EGR1 mRNA and protein expressions were compared in normal and HNSCC tissues using The Cancer Genome Atlas (TCGA) dataset analysis or immunohistochemistry (IHC), respectively. In vitro cell invasion was evaluated Matrigel invasion assay. EGR1-dependent inhibition of MDM2 transcription was assessed by promoter-luciferase assay and chromatin immunoprecipitation (ChIP).
RESULTS: TCGA data showed that EGR1 mRNA levels are significantly higher in normal oral tissues as compared with HNSCC tumor tissues (adjusted P = 1.64x10-16). In addition, nonmetastatic HNSCC tissues showed significantly higher EGR1 mRNA levels as compared with metastatic tissues (adjusted P = 0.023). IHC analysis showed that primary tumor tissues expressed significantly higher levels of nuclear EGR1 compared with paired metastatic lymph node tissues (P < 0.05). EGR1 overexpression downregulated MMP9 and MDM2 protein expression. Consistent with these observations, TCGA data analysis found significantly fewer metastatic patients among a subgroup of population presenting higher EGR1 expressions with lower MMP9 and/or MDM2.
CONCLUSION: Our data suggests that EGR1 prevents HNSCC metastasis through downregulation of MMP9 and MDM2. EGR1 might be a potential candidate to attenuate HNSCC metastasis.

Ma L, Yu Y, Qu X
Suppressing serum response factor inhibits invasion in cervical cancer cell lines via regulating Egr‑1 and epithelial-mesenchymal transition.
Int J Mol Med. 2019; 43(1):614-620 [PubMed] Related Publications
Serum response factor (SRF) is a transcription factor that has important roles in tumor progression. However, its role in cervical cancer cell proliferation and invasion remains unclear. The present study revealed that SRF silencing constrained cervical cancer cell proliferation and invasion via controlling early growth response‑1 (Egr‑1). The results demonstrated that SRF was significantly increased in cervical cancer tissues and cell lines, compared with normal. Suppressing SRF, by using a loss‑of‑function experiment, constrained cervical cancer cell proliferation, invasion, and epithelial‑mesenchymal transition. Furthermore, SRF knockdown significantly downregulated Egr‑1 expression in cervical cancer cell lines, and overexpression of Egr‑1 reversed the effect of SRF on cell proliferation, invasion, and epithelial‑mesenchymal transition. Therefore, SRF may control cell proliferation and invasion by regulating Egr‑1 in cervical cancer.

Shao G, Liu Y, Ma T, et al.
GCN5 inhibition prevents IL-6-induced prostate cancer metastases through PI3K/PTEN/Akt signaling by inactivating Egr-1.
Biosci Rep. 2018; 38(6) [PubMed] Free Access to Full Article Related Publications
General control non-derepressible 5 (GCN5) is ectopically expressed in different types of human cancer and association with the carcinogenesis, development, and poor prognosis of cancers. The present study was aimed to investigate the potential role and related mechanisms of GCN5 in IL-6-treated prostate cancer (PCa) cell. The results showed that an elevated GCN5 expression was stimulated by IL-6. Knockdown of GCN5 significantly inhibited IL-6-driven proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT). Moreover, early growth response-1 (Egr-1) expression was elevated by IL-6 treatment and GCN5 siRNA down-regulated the expression of Egr-1. Furthermore, overexpression of Egr-1 attenuated the effects of GCN5 silence on cell proliferation, migration, invasion, and EMT in PCa. Besides, knockdown of GCN5 resulted in the down-regulation of p-Akt and up-regulation of PTEN, which was partly impeded by Egr-1 overexpression. The effects of GCN5 overexpression on cell proliferation and invasion were suppressed by LY294002, In conclusion, these data demonstrated the negative effect of up-regulated GCN5 in IL-6-induced metastasis and EMT in PCa cells through PI3K/PTEN/Akt signaling pathway down-regulating Egr-1 expression.

Wu K, Na K, Chen D, et al.
Effects of non-steroidal anti-inflammatory drug-activated gene-1 on Ganoderma lucidum polysaccharides-induced apoptosis of human prostate cancer PC-3 cells.
Int J Oncol. 2018; 53(6):2356-2368 [PubMed] Free Access to Full Article Related Publications
Ganoderma lucidum polysaccharides (GLP) has been demonstrated to elicit antitumorigenic and proapoptotic activities in cancer; however, the molecular mechanisms underlying the anticancer effects of GLP have yet to be elucidated. Non-steroidal anti-inflammatory drug-activated gene-1 (NAG-1) has been reported to exert proapoptotic effects and therefore, may serve an important role in cancer prevention. The present study aimed to elucidate the molecular mechanism by which GLP stimulates anticancer activity in human prostate cancer (PCa) PC-3 cells. In addition, the role of NAG-1 in GLP-induced cancer inhibition was examined. The results of the present study demonstrated that GLP significantly inhibited cell viability in a time- and dose-dependent manner in PC-3 cells. Flow cytometry indicated that GLP induced late apoptosis, which was accompanied by poly (ADP-ribose) polymerase 1 (PARP) cleavage, and inhibition of pro-caspase-3, -6 and -9 protein expression. Furthermore, it was observed that the expression levels of NAG-1, and its transcriptional factor early growth response-1, were upregulated in a time- and dose-dependent manner upon GLP treatment. The results of a luciferase assay demonstrated that GLP induced the promoter activity of NAG-1, thus indicating that NAG-1 may be transcriptionally regulated by GLP. The secretion of NAG-1 proteins into the cell culture medium was also upregulated upon GLP treatment. Furthermore, inhibition of NAG-1 expression by small interfering RNA significantly, but not completely, prevented GLP-induced apoptosis, and reversed the effects of GLP on PARP and pro-caspase expression. It was further demonstrated that GLP inhibited the phosphorylation of protein kinase B and mitogen-activated protein kinase/extracellular signal-regulated kinase signaling in PC-3 cells. The present study is the first, to the best of our knowledge, to report that GLP may induce apoptosis of PCa cells, which is partially mediated through NAG-1 induction. The present findings may be helpful in elucidating the anticancer mechanisms of GLP through NAG-1 induction for its chemopreventive potential in PCa.

Zeng Y, Shen Z, Gu W, Wu M
Bioinformatics analysis to identify action targets in NCI-N87 gastric cancer cells exposed to quercetin.
Pharm Biol. 2018; 56(1):393-398 [PubMed] Free Access to Full Article Related Publications
CONTEXT: Quercetin exerts antiproliferative effects on gastric cancer. However, its mechanisms of action on gastric cancer have not been comprehensively revealed.
OBJECTIVE: We investigated the mechanisms of action of quercetin against gastric cancer cells.
MATERIALS AND METHODS: Human NCI-N87 gastric cancer cells were treated with 15 μM quercetin or dimethyl sulfoxide (as a control) for 48 h. DNA isolated from cells was sequenced on a HiSeq 2500, and the data were used to identify differentially expressed genes (DEGs) between groups. Then, enrichment analyses were performed for DEGs and a protein-protein interaction (PPI) network was constructed. Finally, the transcription factors (TFs)-DEGs regulatory network was visualized by Cytoscape software.
RESULTS: A total of 121 DEGs were identified in the quercetin group. In the PPI network, Fos proto-oncogene (FOS, degree = 12), aryl hydrocarbon receptor (AHR, degree = 12), Jun proto-oncogene (JUN, degree = 11), and cytochrome P450 family 1 subfamily A member 1 (CYP1A1, degree = 11) with higher degrees highly interconnected with other proteins. Of the 5 TF-DEGs, early growth response 1 (EGR1), FOS like 1 (FOSL1), FOS, and JUN were upregulated, while AHR was downregulated. Moreover, FOSL1, JUN, and Wnt family member 7B (WNT7B) were enriched in the Wnt signaling pathway.
DISCUSSION AND CONCLUSIONS: CYP1A1 highly interconnected with AHR in the PPI network. Therefore, FOS, AHR, JUN, CYP1A1, EGR1, FOSL1, and WNT7B might be targets of quercetin in gastric cancer.

Liu S, Yao X, Zhang D, et al.
Analysis of Transcription Factor-Related Regulatory Networks Based on Bioinformatics Analysis and Validation in Hepatocellular Carcinoma.
Biomed Res Int. 2018; 2018:1431396 [PubMed] Free Access to Full Article Related Publications
Hepatocellular carcinoma (HCC) accounts for a significant proportion of liver cancer, which has become the second most common cause of cancer-related mortality worldwide. To investigate the potential mechanisms of invasion and progression of HCC, bioinformatics analysis and validation by qRT-PCR were performed. We found 237 differentially expressed genes (DEGs) including EGR1, FOS, and FOSB, which were three cancer-related transcription factors. Subsequently, we constructed TF-gene network and miRNA-TF-mRNA network based on data obtained from mRNA and miRNA expression profiles for analysis of HCC. We found that 42 key genes from the TF-gene network including EGR1, FOS, and FOSB were most enriched in the p53 signaling pathway. The qRT-PCR data confirmed that mRNA levels of EGR1, FOS, and FOSB all were decreased in HCC tissues. In addition, we confirmed that the mRNA levels of CCNB1, CCNB2, and CHEK1, three key markers of the p53 signaling pathway, were all increased in HCC tissues by bioinformatics analysis and qRT-PCR validation. Therefore, we speculated that miR-181a-5p, which was upregulated in HCC tissues, could regulate FOS and EGR1 to promote the invasion and progression of HCC by p53 signaling pathway. Overall, the study provides support for the possible mechanisms of progression in HCC.

Dhabal S, Das P, Biswas P, et al.
Regulation of monoamine oxidase A (MAO-A) expression, activity, and function in IL-13-stimulated monocytes and A549 lung carcinoma cells.
J Biol Chem. 2018; 293(36):14040-14064 [PubMed] Article available free on PMC after 07/09/2019 Related Publications
Monoamine oxidase A (MAO-A) is a mitochondrial flavoenzyme implicated in the pathogenesis of atherosclerosis and inflammation and also in many neurological disorders. MAO-A also has been reported as a potential therapeutic target in prostate cancer. However, the regulatory mechanisms controlling cytokine-induced MAO-A expression in immune or cancer cells remain to be identified. Here, we show that MAO-A expression is co-induced with 15-lipoxygenase (15-LO) in interleukin 13 (IL-13)-activated primary human monocytes and A549 non-small cell lung carcinoma cells. We present evidence that

You Y, Peng B, Ben S, et al.
Lead Neurotoxicity on Human Neuroblastoma Cell Line SH-SY5Y is Mediated via Transcription Factor EGR1/Zif268 Induced Disrupted in Scherophernia-1 Activation.
Neurochem Res. 2018; 43(7):1308-1316 [PubMed] Related Publications
Lead (Pb

Hu WQ, Wang W, Fang DL, Yin XF
Identification of Biological Targets of Therapeutic Intervention for Hepatocellular Carcinoma by Integrated Bioinformatical Analysis.
Med Sci Monit. 2018; 24:3450-3461 [PubMed] Article available free on PMC after 07/09/2019 Related Publications
BACKGROUND We screened the potential molecular targets and investigated the molecular mechanisms of hepatocellular carcinoma (HCC). MATERIAL AND METHODS Microarray data of GSE47786, including the 40 μM berberine-treated HepG2 human hepatoma cell line and 0.08% DMSO-treated as control cells samples, was downloaded from the GEO database. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) enrichment analyses were performed; the protein-protein interaction (PPI) networks were constructed using STRING database and Cytoscape; the genetic alteration, neighboring genes networks, and survival analysis of hub genes were explored by cBio portal; and the expression of mRNA level of hub genes was obtained from the Oncomine databases. RESULTS A total of 56 upregulated and 8 downregulated DEGs were identified. The GO analysis results were significantly enriched in cell-cycle arrest, regulation of transcription, DNA-dependent, protein amino acid phosphorylation, cell cycle, and apoptosis. The KEGG pathway analysis showed that DEGs were enriched in MAPK signaling pathway, ErbB signaling pathway, and p53 signaling pathway. JUN, EGR1, MYC, and CDKN1A were identified as hub genes in PPI networks. The genetic alteration of hub genes was mainly concentrated in amplification. TP53, NDRG1, and MAPK15 were found in neighboring genes networks. Altered genes had worse overall survival and disease-free survival than unaltered genes. The expressions of EGR1, MYC, and CDKN1A were significantly increased, but expression of JUN was not, in the Roessler Liver datasets. CONCLUSIONS We found that JUN, EGR1, MYC, and CDKN1A might be used as diagnostic and therapeutic molecular biomarkers and broaden our understanding of the molecular mechanisms of HCC.

Liu X, Zhang D, Hao Y, et al.
Cyanidin Curtails Renal Cell Carcinoma Tumorigenesis.
Cell Physiol Biochem. 2018; 46(6):2517-2531 [PubMed] Related Publications
BACKGROUND/AIMS: Cyanidin is an anthocyanin found in many foods. Although its variable antioxidant levels are well-documented, little is known about its effects on renal cell carcinoma (RCC) tumorigenesis. This study, therefore, investigated the effects of cyanidin on the proliferation, migration, and invasion of renal cell carcinoma lines and demonstrated, for the first time, significant inhibitory effects of cyanidin on RCC tumorigenesis.
METHODS: RCC cells were treated with different doses of cyanidin and the effects were tested by Cell Counting Kit-8 reagent, clone formation assay, transwell assay, and flow cytometry. Moreover, the cyanidin-mediated mechanism that curtailed tumorigenesis was analyzed by RNA sequencing (RNA-seq). Sequencing data from The Cancer Genome Atlas (TCGA) were used to compare the expression of both early growth response protein 1 (EGR1) and selenoprotein W (SEPW1) in RCC and tumor-free adjacent normal tissue samples. Real-time PCR (RT-PCR) and/or western blot were used to assess the expression of E-cadherin, cleaved-caspase3, Bcl2, p62, and ATG4.
RESULTS: We found significantly greater induction of cell-cycle arrest, apoptosis, and suppression of RCC cell invasion and migration at concentrations of 25 µM and 100 µM than at a concentration of 50 µM. It was also discovered, first through RNA-seq then confirmed by RT-PCR, that cyanidin (100 µM) inhibited RCC carcinogenesis through EGR1 and SEPW1. TCGA data indicated that the expression level of EGR1 was lower and that of SEPW1 was higher in RCC tumor tissue than in normal tissues. Moreover, western blot and/or RT-PCR indicated that cleaved-caspase3 was enhanced and E-cadherin was inhibited by cyanidin treatment. Furthermore, western blot and RT-PCR also showed regulation of p62 and ATG4, which are associated with autophagy. Cyanidin in vivo significantly inhibited the growth of xenografts in nude mice.
CONCLUSIONS: The results of this study showed the therapeutic potential of cyanidin for the treatment of RCC and the prevention of recurrence and metastasis.

Meister MT, Boedicker C, Klingebiel T, Fulda S
Hedgehog signaling negatively co-regulates BH3-only protein Noxa and TAp73 in TP53-mutated cells.
Cancer Lett. 2018; 429:19-28 [PubMed] Related Publications
In the present study, we show that pharmacological repression by the Hedgehog (Hh) pathway inhibitor (HPI) GANT61 induces expression of the proapoptotic protein Noxa in TP53-mutated embryonal pediatric tumor cells driven by Hh signaling (i.e. rhabdomyosarcoma (RMS) and medulloblastoma (MB)). Similarly, genetic silencing of Gli1 by siRNA causes increased Noxa mRNA and protein levels, while overexpression of Gli1 results in decreased Noxa expression. Furthermore, TAp73 mRNA and protein levels are increased upon Gli1 knockdown, while Gli1 overexpression reduces TAp73 mRNA and protein levels. However, knockdown of TAp73 fails to block Noxa induction in GANT61-treated cells, suggesting that Noxa is not primarily regulated by TAp73. Interestingly, mRNA levels of the transcription factor EGR1 correlate with those of Noxa and TAp73. Silencing of EGR1 results in decreased Noxa and TAp73 mRNA levels, indicating that EGR1 is involved in regulating transcriptional activity of Noxa and TAp73. These findings suggest that Gli1 represses Noxa and TAp73, possibly via EGR1. These findings could be exploited for the treatment of Hh-driven tumors, e.g. for their sensitization to chemotherapeutic agents.

Horibata S, Rice EJ, Zheng H, et al.
A bi-stable feedback loop between GDNF, EGR1, and ERα contribute to endocrine resistant breast cancer.
PLoS One. 2018; 13(4):e0194522 [PubMed] Article available free on PMC after 07/09/2019 Related Publications
Discovering regulatory interactions between genes that specify the behavioral properties of cells remains an important challenge. We used the dynamics of transcriptional changes resolved by PRO-seq to identify a regulatory network responsible for endocrine resistance in breast cancer. We show that GDNF leads to endocrine resistance by switching the active state in a bi-stable feedback loop between GDNF, EGR1, and the master transcription factor ERα. GDNF stimulates MAP kinase, activating the transcription factors SRF and AP-1. SRF initiates an immediate transcriptional response, activating EGR1 and suppressing ERα. Newly translated EGR1 protein activates endogenous GDNF, leading to constitutive GDNF and EGR1 up-regulation, and the sustained down-regulation of ERα. Endocrine resistant MCF-7 cells are constitutively in the GDNF-high/ ERα-low state, suggesting that the state in the bi-stable feedback loop may provide a 'memory' of endocrine resistance. Thus, we identified a regulatory network switch that contributes to drug resistance in breast cancer.

Zhao J, Shi L, Zeng S, et al.
Importin-11 overexpression promotes the migration, invasion, and progression of bladder cancer associated with the deregulation of CDKN1A and THBS1.
Urol Oncol. 2018; 36(6):311.e1-311.e13 [PubMed] Related Publications
OBJECTIVES: We recently determined that a novel oncogene, IPO11 from 5q12, participates in bladder cancer (BCa) progression. However, the biological function of IPO11 and the molecular mechanisms through which it contributes to BCa progression remain unclear. The aim of this study was to investigate the role of IPO11 in BCa aggressiveness and elucidate the molecular mechanisms underlying its effects in BCa.
MATERIALS AND METHODS: The mRNA expression levels of IPO11 in BIU-87, RT4, UMUC3, EJ, 5637, T24, J82, and HT-1376 cell lines were determined using quantitative real-time polymerase chain reaction. Expression of importin-11 was detected in 134 formalin-fixed and paraffin-embedded (FFPE) BCa tissues and 10 paired nonneoplastic bladder tissue specimens by immunohistochemistry. The copy number of IPO11 was examined in 25 FFPE BCa specimens using fluorescent in situ hybridization. The effects of IPO11 on migration, invasion, and cell proliferation were investigated in EJ and 5637 cell lines using RNA interference. Potential molecular mechanisms were investigated using whole transcriptome sequencing and bioinformatic approaches in EJ cells and IPO11-silenced EJ cells and verified using quantitative real-time polymerase chain reaction.
RESULTS: Endogenous IPO11 mRNA was highly expressed in 6 invasive BCa cell lines (EJ, HT-1376, UMUC3, 5637, J82, and T24) but had a low expression in the noninvasive BCa cell line BIU-87 and the papillary BCa cell line RT4. Immunohistochemical staining revealed that 87 (64.9%) of 134 FFPE BCa tissues displayed importin-11 overexpression. Moreover, importin-11 overexpression was positively associated with increased tumor stages and tumor grades, lymphatic invasion, and lymph node metastasis. Furthermore, importin-11 overexpression was detected in 100% (14/14) of BCa tissues with IPO11 amplification, and IPO11 amplification was not observed in 2 additional BCa tissues with importin-11 overexpression. Small interfering RNA-mediated knockdown of IPO11 is sufficient to inhibit the motility and invasiveness of EJ and 5637 cells. IPO11 knockdown also inhibited cell proliferation in EJ cells, whereas this was not observed in 5637 cells or the in vivo experiments. Using whole transcriptome sequencing, we found that 22 genes (including IPO11) were differentially expressed in IPO11-silenced EJ cells compared with wild-type EJ cells, 4 of which were upregulated, and 18 of which were downregulated. KEGG pathway enrichment analysis of the significantly differentially expressed genes showed that the proteoglycans in cancer pathway (pathway Id: hsa05205) was most significantly enriched among 10 genetically altered pathways and referred to 6 significantly altered genes (CDKN1A, HBEGF, PTK2, THBS1, CCNG2, and EGR1). The next 3 most significantly enriched pathways in order were the p53, ErbB, and BCa pathways. CDKN1A and THBS1 were the most 2 frequently covered genes and were involved in 9 and 6 pathways, respectively. They were also 2 key proteins in the BCa pathway (pathway Id: hsa05219) that were downregulated in IPO11-knockdown EJ cells compared with wild-type EJ cells.
CONCLUSIONS: Importin-11 overexpression can promote BCa cell invasiveness, probably associated with the deregulation of CDKN1A and THBS1 primarily through the activation of the proteoglycans in cancer pathway and the classical BCa pathway. Importin-11 may be a useful target through which the progression of noninvasive BCa to invasive BCa can be blocked.

Wu TH, Shi L, Adrian J, et al.
NF90/ILF3 is a transcription factor that promotes proliferation over differentiation by hierarchical regulation in K562 erythroleukemia cells.
PLoS One. 2018; 13(3):e0193126 [PubMed] Article available free on PMC after 07/09/2019 Related Publications
NF90 and splice variant NF110 are DNA- and RNA-binding proteins encoded by the Interleukin enhancer-binding factor 3 (ILF3) gene that have been established to regulate RNA splicing, stabilization and export. The roles of NF90 and NF110 in regulating transcription as chromatin-interacting proteins have not been comprehensively characterized. Here, chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) identified 9,081 genomic sites specifically occupied by NF90/NF110 in K562 cells. One third of NF90/NF110 peaks occurred at promoters of annotated genes. NF90/NF110 occupancy colocalized with chromatin marks associated with active promoters and strong enhancers. Comparison with 150 ENCODE ChIP-seq experiments revealed that NF90/NF110 clustered with transcription factors exhibiting preference for promoters over enhancers (POLR2A, MYC, YY1). Differential gene expression analysis following shRNA knockdown of NF90/NF110 in K562 cells revealed that NF90/NF110 activates transcription factors that drive growth and proliferation (EGR1, MYC), while attenuating differentiation along the erythroid lineage (KLF1). NF90/NF110 associates with chromatin to hierarchically regulate transcription factors that promote proliferation and suppress differentiation.

Jiao W, Chen Y, Song H, et al.
HPSE enhancer RNA promotes cancer progression through driving chromatin looping and regulating hnRNPU/p300/EGR1/HPSE axis.
Oncogene. 2018; 37(20):2728-2745 [PubMed] Related Publications
Recent studies reveal the emerging functions of enhancer RNAs (eRNAs) in gene expression. However, the roles of eRNAs in regulating the expression of heparanase (HPSE), an established endo-β-D-glucuronidase essential for cancer invasion and metastasis, still remain elusive. Herein, through comprehensive analysis of publically available FANTOM5 expression atlas and chromatin interaction dataset, we identified a super enhancer and its derived eRNA facilitating the HPSE expression (HPSE eRNA) in cancers. Gain-of-function and loss-of-function experiments indicated that HPSE eRNA facilitated the in vitro and in vivo tumorigenesis and aggressiveness of cancer cells. Mechanistically, as a p300-regulated nuclear noncoding RNA, HPSE eRNA bond to heterogeneous nuclear ribonucleoprotein U (hnRNPU) to facilitate its interaction with p300 and their enrichment on super enhancer, resulting in chromatin looping between super enhancer and HPSE promoter, p300-mediated transactivation of transcription factor early growth response 1 (EGR1), and subsequent elevation of HPSE expression. In addition, rescue studies in HPSE overexpressing or silencing cancer cells indicated that HPSE eRNA exerted oncogenic properties via driving HPSE expression. In clinical cancer tissues, HPSE eRNA was highly expressed and positively correlated with HPSE levels, and served as an independent prognostic factor for poor outcome of cancer patients. Therefore, these findings indicate that as a novel noncoding RNA, HPSE eRNA promotes cancer progression through driving chromatin looping and regulating hnRNPU/p300/EGR1/HPSE axis.

Pellicano F, Park L, Hopcroft LEM, et al.
Blood. 2018; 131(14):1532-1544 [PubMed] Article available free on PMC after 07/09/2019 Related Publications
Chronic myeloid leukemia (CML) stem/progenitor cells (SPCs) express a transcriptional program characteristic of proliferation, yet can achieve and maintain quiescence. Understanding the mechanisms by which leukemic SPCs maintain quiescence will help to clarify how they persist during long-term targeted treatment. We have identified a novel BCR-ABL1 protein kinase-dependent pathway mediated by the upregulation of

Hoesel B, Mussbacher M, Dikorman B, et al.
Androgen receptor dampens tissue factor expression via nuclear factor-κB and early growth response protein 1.
J Thromb Haemost. 2018; 16(4):749-758 [PubMed] Article available free on PMC after 07/09/2019 Related Publications
Essentials Androgen deprivation increases the rate of venous thromboembolism in prostate cancer patients. We characterized androgen receptor-mediated tissue factor regulation in prostate epithelial cells. Androgen receptor is dampening tissue factor expression in prostate epithelial cells. Androgen deprivation could enhance tissue factor expression and raise venous thromboembolism rates.
SUMMARY: Background Prostate cancer is one of the leading causes of cancer death in men. Advanced prostate cancer is usually treated by androgen deprivation therapy (ADT), which is aimed at reducing circulating testosterone levels to reduce cancer growth. There is growing evidence that ADT can increase the rate of venous thromboembolism (VTE) in prostate cancer patients. The tissue factor (TF) gene is one of the most important mediators of coagulation and VTE, but, so far, there are limited data on androgen receptor (AR)-mediated TF gene expression. Objectives To characterize AR-mediated TF regulation in vitro and in vivo. Methods We used the androgen-dependent prostate cancer cell lines LNCaP and MyC-CaP to test whether TF expression is regulated by AR. Furthermore, we cloned the TF gene promoter into a luciferase reporter vector to identify the transcription factor-binding sites that mediate TF regulation downstream of AR. Finally, we used castration experiments in mice to characterize AR-mediated TF regulation in vivo. Results TF is directly regulated by AR. In LNCaP cells, nuclear factor-κB signaling and EGR1 mediate TF expression. By using castration experiments in mice, we could detect upregulation of TF and early growth response protein 1 mRNA and protein expression in prostate epithelial cells. Conclusion AR is crucial for dampening TF expression, which could be important for increased TF expression and TF-positive microvesicle release in androgen-deprived prostate cancer patients.

Zhao J, Geng L, Duan G, et al.
REC8 inhibits EMT by downregulating EGR1 in gastric cancer cells.
Oncol Rep. 2018; 39(4):1583-1590 [PubMed] Article available free on PMC after 07/09/2019 Related Publications
REC8 is a component of the meiotic cohesion complex that plays a critical role in chromosome dynamics during meiosis. However, the functional role of REC8 in gastric cancer has not been elucidated. In the present study, REC8 suppressed the growth and metastasis of gastric cancer cells in vitro. Whole Human Genome Oligo Microarray results revealed that a wide range of genes with broad function were targeted by REC8. Among them early growth response-1 (EGR1), a transcription factor and an epithelial-mesenchymal transition (EMT)-associated protein in the AGR-RAGE pathway was significantly downregulated when REC8 was overexpressed in gastric cancer cells. We hypothesized that REC8 inhibits EMT by downregulating EGR1 in gastric cancer cells. Consistent with our prediction, REC8 overexpression decreased EMT in gastric cancer cells, whereas the REC8 ablation reversed these effects. In addition, the phenotypes of EGR1 overexpressed cells were similar to the phenotypes of REC8 ablated cells. Furthermore, we determined that REC8 interacted with EGR1, and inhibited EMT in gastric cancer cells. We thus propose further studies of the pathways associated with REC8 and EGR1 to potentially find novel targets in the treatment for gastric cancer.

Zhang Q, Song G, Yao L, et al.
miR-3928v is induced by HBx via NF-κB/EGR1 and contributes to hepatocellular carcinoma malignancy by down-regulating VDAC3.
J Exp Clin Cancer Res. 2018; 37(1):14 [PubMed] Article available free on PMC after 07/09/2019 Related Publications
BACKGROUND: Hepatitis B virus (HBV) plays a critical role in the tumorigenic behavior of human hepatocellular carcinoma (HCC). MicroRNAs (miRNAs) have been reported to participate in HCC development via the regulation of their target genes. However, HBV-modulated miRNAs involved in tumorigenesis remain to be identified. Here, we found that a novel highly expressed miRNA, TLRC-m0008_3p (miR-3928v), may be an important factor that promotes the malignancy of HBV-related HCC.
METHODS: Solexa sequencing was applied to profile miRNAs, and RT-qPCR was used to identify and quantitate miRNAs. We studied miR-3928v function in HCC cell lines by MTT, colony formation, migration/invasion, and vascular mimicry (VM) assays in vitro and by a xenograft tumor model in vivo. Finally, we predicted and verified the target gene of miR-3928v by a reporter assay, studied the function of this target gene, and cloned the promoter of miR-3928v and the transcription factor for use in dual-luciferase reporter assays and EMSAs.
RESULTS: A variant of miR-3928 (miR-3928v) was identified and found to be highly expressed in HBV (+) HCC tissues. Voltage-dependent anion channel 3 (VDAC3) was validated as a target of miR-3928v and found to mediate the effects of miR-3928v in promoting HCC growth and migration/invasion. Furthermore, HBx protein increased early growth response 1 (EGR1) expression and facilitated its translocation into the nucleus to enhance miR-3928v promoter activity in an NF-κB signaling-dependent manner.
CONCLUSIONS: miR-3928v is induced by HBx through the NF-κB/EGR1 signaling pathway and down-regulates the tumor suppressor gene VDAC3 to accelerate the progression of HCC.

Pang Y, Zhao J, Fowdur M, et al.
To Explore the Mechanism of the GRM4 Gene in Osteosarcoma by RNA Sequencing and Bioinformatics Approach.
Med Sci Monit Basic Res. 2018; 24:16-25 [PubMed] Article available free on PMC after 07/09/2019 Related Publications
BACKGROUND Glutamate metabotropic receptor 4 (GRM4) has been correlated with the pathogenesis of osteosarcoma. The objective of this study was to explore the underlying molecular mechanism of GRM4 in osteosarcoma. MATERIAL AND METHODS The expression levels of GRM4 in four human osteosarcoma cell lines and hFOB1.19 cells were examined by real-time quantitative PCR (RT-qPCR). The U2OS cells of the highest GRM4 expression were transfected with lentivirus-mediated small interfering RNA (siRNA). The differentially expressed genes (DEGs) after GRM4 gene silencing were screened through RNA sequencing, and analyzed by bioinformatics. Additionally, the transcription factors (TFs) targeting GRM4 were predicted and the downstream protein-protein interaction (PPI) network was constructed using the bioinformatics approach. RESULTS A total of 51 significant DEGs were obtained, including 14 upregulated and 37 downregulated DEGs. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of the DEGs indicated that four significant enrichment pathways were obtained. A total of six TFs that could be involved in the transcriptional regulation of GRM4 were detected. The results showed that 182 genes in the PPI network were significantly enriched in 14 pathways. The chemokines and chemokine receptors were found to be significantly enriched in three pathways. CONCLUSIONS The DEGs in the four significant enrichment pathways might participate in the development and progression of osteosarcoma through GRM4. The results revealed that EGR1 and CTCF are probably involved in the transcriptional regulation of GRM4, which participates in the progress of osteosarcoma by interacting with chemokines and their receptors.

Wang YW, Zhang W, Ma R
Bioinformatic identification of chemoresistance-associated microRNAs in breast cancer based on microarray data.
Oncol Rep. 2018; 39(3):1003-1010 [PubMed] Article available free on PMC after 07/09/2019 Related Publications
Breast cancer is the most commonly diagnosed cancer among females, and chemoresistance constitutes a major clinical obstacle to the treatment of this disease. MicroRNAs (miRNAs) are related to human cancer development, progression and drug resistance. To identify breast cancer chemoresistance-associated miRNAs, miRNA microarray dataset GSE71142, including five chemoresistant breast cancer tissues and five chemosensitive tissues, was downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed miRNAs (DE-miRNAs) were obtained by t-test and the potential target genes were predicted by miRWalk2.0. Functional and pathway enrichment analysis by WebGestalt was performed for the potential target genes of DE-miRNAs. Protein-protein interaction (PPI) network was established by STRING database and visualized by Cytoscape software. Enriched transcription factors by the target genes were obtained from FunRich. Breast cancer-associated miRNA‑gene pairs were identified from miRWalk2.0. A total of 22 DE-miRNAs were screened out, including 10 upregulated miRNAs (e.g., miR-196a-5p) and 12 downregulated miRNAs (e.g., miR-4472) in the chemoresistant breast cancer tissues, compared with chemosensitive tissues. In total 1,278 target genes were screened out, and they were involved in breast cancer-related pathways such as pathways in cancer, signaling pathways regulating pluripotency of stem cells, endocrine resistance, breast cancer, mTOR signaling and Hippo signaling pathway. NOTCH1 and MAPK14 were identified as hub genes in the PPI network. EGR1 and SP1 were the most enriched transcription factors by the target genes. Several breast cancer-associated miRNA-gene pairs including miR-214-TP53 and miR-16-PPM1D were identified. The current bioinformatics study of miRNAs based on microarray may offer a new understanding into the mechanisms of breast cancer chemoresistance, and may identify novel miRNA therapeutic targets.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. EGR1, Cancer Genetics Web: http://www.cancer-genetics.org/EGR1.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 01 September, 2019     Cancer Genetics Web, Established 1999