CASP3

Gene Summary

Gene:CASP3; caspase 3
Aliases: CPP32, SCA-1, CPP32B
Location:4q35.1
Summary:The protein encoded by this gene is a cysteine-aspartic acid protease that plays a central role in the execution-phase of cell apoptosis. The encoded protein cleaves and inactivates poly(ADP-ribose) polymerase while it cleaves and activates sterol regulatory element binding proteins as well as caspases 6, 7, and 9. This protein itself is processed by caspases 8, 9, and 10. It is the predominant caspase involved in the cleavage of amyloid-beta 4A precursor protein, which is associated with neuronal death in Alzheimer's disease. [provided by RefSeq, Aug 2017]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:caspase-3
Source:NCBIAccessed: 01 September, 2019

Ontology:

What does this gene/protein do?
Show (43)
Pathways:What pathways are this gene/protein implicaed in?
Show (21)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 01 September 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 01 September, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (4)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: CASP3 (cancer-related)

Riyahi N, Safaroghli-Azar A, Sheikh-Zeineddini N, et al.
Synergistic Effects of PI3K and c-Myc Co-targeting in Acute Leukemia: Shedding New Light on Resistance to Selective PI3K-δ Inhibitor CAL-101.
Cancer Invest. 2019; 37(7):311-324 [PubMed] Related Publications
Enthusiasms into the application of PI3K-δ inhibitor CAL-101 has been muted due to the over-activation of compensatory molecules. Our results delineated that c-Myc suppression using 10058-F4 enhanced CAL-101 cytotoxicity in less sensitive cells through different mechanisms based on p53 status; while CAL-101-plus-10058-F4 induced G1 arrest in wild-type p53-expressing leukemic cells, no conspicuous increase in G1 was noted in U937 cells harboring mutant p53. Conclusively, this study shed lights on the role of c-Myc oncoprotein in acute leukemia cells sensitivity to PI3K inhibitor and outlined that the combination of c-Myc inhibitor and CAL-101 may be a promising therapeutic approach in leukemia.

Xu L, Wu Q, Zhou X, et al.
TRIM13 inhibited cell proliferation and induced cell apoptosis by regulating NF-κB pathway in non-small-cell lung carcinoma cells.
Gene. 2019; 715:144015 [PubMed] Related Publications
Tripartite Motif Containing 13 (TRIM13), a member of TRIM proteins, is deleted in multiple tumor types, especially in B-cell chronic lymphocytic leukemia and multiple myeloma. The present study explored the expression and potential role of TRIM13 in non-small-cell lung carcinoma (NSCLC). We found that TRIM13 mRNA and protein expression was reduced in NSCLC tissues and cell lines in comparison to paired non-cancerous tissues and a human normal bronchial epithelial cell line, respectively. Overexpression of TRIM13 in NCI-H1975 and SPC-A-1 cells hampered cell proliferation. Additionally, TRIM13 overexpression increased the levels of cleaved caspase-3. TRIM13-induced NSCLC cell apoptosis was attenuated by a caspase-3 inhibitor Ac-DEVD-CHO, suggesting that TRIM13 induced cell apoptosis partially through a caspase-3-dependent pathway. Moreover, it has been reported that TRIM13 can regulate nuclear factor kappaB (NF-κB) activity. Our data showed that TRIM13 overexpression inactivated NF-κB as indicated by the increased cytosolic NF-κB and decreased nuclear NF-κB. Exposure to an NF-κB inhibitor PDTC significantly blocked the impact of TRIM13 knockdown on cell proliferation and apoptosis, indicating the functions of TRIM13 in NSCLC cells were mediated by the NF-κB pathway. Finally, we demonstrated that TRIM13 overexpression suppressed tumor growth and induced cell apoptosis in vivo by using a xenograft mouse model. Collectively, our results indicate that TRIM13 behaves as a tumor suppressor in NSCLC through regulating NF-κB pathway. Our findings may offer a promising therapeutic target for NSCLC.

Bishayee K, Habib K, Sadra A, Huh SO
Targeting the Difficult-to-Drug CD71 and MYCN with Gambogic Acid and Vorinostat in a Class of Neuroblastomas.
Cell Physiol Biochem. 2019; 53(1):258-280 [PubMed] Related Publications
BACKGROUND/AIMS: Although neuroblastoma is a heterogeneous cancer, a substantial portion overexpresses CD71 (transferrin receptor 1) and MYCN. This study provides a mechanistically driven rationale for a combination therapy targeting neuroblastomas that doubly overexpress or have amplified CD71 and MYCN. For this subset, CD71 was targeted by its natural ligand, gambogic acid (GA), and MYCN was targeted with an HDAC inhibitor, vorinostat. A combination of GA and vorinostat was then tested for efficacy in cancer and non-cancer cells.
METHODS: Microarray analysis of cohorts of neuroblastoma patients indicated a subset of neuroblastomas overexpressing both CD71 and MYCN. The viability with proliferation changes were measured by MTT and colony formation assays in neuroblastoma cells. Transfection with CD71 or MYCN along with quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting were used to detect expression changes. For pathway analysis, gene ontology (GO) and Protein-protein interaction analyses were performed to evaluate the potential mechanisms of GA and vorinostat in treated cells.
RESULTS: For both GA and vorinostat, their pathways were explored for specificity and dependence on their targets for efficacy. For GA-treated cells, the viability/proliferation loss due to GA was dependent on the expression of CD71 and involved activation of caspase-3 and degradation of EGFR. It relied on the JNK-IRE1-mTORC1 pathway. The drug vorinostat also reduced cell viability/proliferation in the treated cells and this was dependent on the presence of MYCN as MYCN siRNA transfection led to a blunting of vorinostat efficacy and conversely, MYCN overexpression improved the vorinostat potency in those cells. Vorinostat inhibition of MYCN led to an increase of the pro-apoptotic miR183 levels and this, in turn, reduced the viability/proliferation of these cells. The combination treatment with GA and vorinostat synergistically reduced cell survival in the MYCN and CD71 overexpressing tumor cells. The same treatment had no effect or minimal effect on HEK293 and HEF cells used as models of non-cancer cells.
CONCLUSION: A combination therapy with GA and vorinostat may be suitable for MYCN and CD71 overexpressing neuroblastomas.

Wińska P, Widło Ł, Skierka K, et al.
Simultaneous Inhibition of Protein Kinase CK2 and Dihydrofolate Reductase Results in Synergistic Effect on Acute Lymphoblastic Leukemia Cells.
Anticancer Res. 2019; 39(7):3531-3542 [PubMed] Related Publications
BACKGROUND/AIM: Recently, we demonstrated the ability of inhibitors of protein kinase 2 (casein kinase II; CK2) to enhance the efficacy of 5-fluorouracil, a thymidylate synthase (TYMS)-directed drug for anticancer treatment. The present study aimed to investigate the antileukemic effect of simultaneous inhibition of dihydrofolate reductase (DHFR), another enzyme involved in the thymidylate biosynthesis cycle, and CK2 in CCRF-CEM acute lymphoblastic leukemia cells.
MATERIALS AND METHODS: The influence of combined treatment on apoptosis and cell-cycle progression, as well as the endocellular level of DHFR protein and inhibition of CK2 were determined using flow cytometry and western blot analysis, respectively. Real-time quantitative polymerase chain reaction was used to examine the influence of silmitasertib (CX-4945), a selective inhibitor of CK2 on the expression of DHFR and TYMS genes.
RESULTS: The synergistic effect was correlated with the increase of annexin V-binding cell fraction, caspase 3/7 activation and a significant reduce in the activity of CK2. An increase of DHFR protein level was observed in CCRF-CEM cells after CX-4945 treatment, with the mRNA level remaining relatively constant.
CONCLUSION: The obtained results demonstrate a possibility to improve methotrexate-based anti-leukemia therapy by simultaneous inhibition of CK2. The effect of CK2 inhibition on DHFR expression suggests the important regulatory role of CK2-mediated phosphorylation of DHFR inside cells.

Xu F, Song Y, Guo A
Anti-Apoptotic Effects of Docosahexaenoic Acid in IL-1β-Induced Human Chondrosarcoma Cell Death through Involvement of the MAPK Signaling Pathway.
Cytogenet Genome Res. 2019; 158(1):17-24 [PubMed] Related Publications
Osteoarthritis (OA) is a degenerative disease characterized by progressive articular cartilage destruction and joint marginal osteophyte formation with different degrees of synovitis. Docosahexaenoic acid (DHA) is an unsaturated fatty acid with anti-inflammatory, antioxidant, and antiapoptotic functions. In this study, the human chondrosarcoma cell line SW1353 was cultured in vitro, and an OA cell model was constructed with inflammatory factor IL-1β stimulation. After cells were treated with DHA, cell apoptosis was measured. Western blot assay was used to detect protein expression of apoptosis-related factors (Bax, Bcl-2, and cleaved caspase-3) and mitogen-activated protein kinase (MAPK) signaling pathway family members, including extracellular signal-regulated kinase (ERK), c-JUN N-terminal kinase (JNK), and p38 MAPK. Our results show that IL-1β promotes the apoptosis of SW1353 cells, increases the expression of Bax and cleaved caspase-3, and activates the MAPK signaling pathway. In contrast, DHA inhibits the expression of IL-1β, inhibits IL-1β-induced cell apoptosis, and has a certain inhibitory effect on the activation of the MAPK signaling pathway. When the MAPK signaling pathway is inhibited by its inhibitors, the effects of DHA on SW1353 cells are weakened. Thus, DHA enhances the apoptosis of SW1353 cells through the MAPK signaling pathway.

Qian Z, Yang J, Liu H, et al.
The miR-1204 regulates apoptosis in NSCLC cells by targeting DEK.
Folia Histochem Cytobiol. 2019; 57(2):64-73 [PubMed] Related Publications
INTRODUCTION: This study endeavors to analyze the effects of miR-1204 on the expression of DEK oncogene in non-small cell lung cancer (NSCLC) cell lines and to study the molecular mechanisms of these effects.
MATERIAL AND METHODS: The miR-1204 mimics and inhibitors were transfected into the (A549 and SPC) NSCLC cells. Then the mRNA levels, cell viability, apoptosis rate, morphology and caspase activity were determined. The expression of apoptosis-related proteins Bcl-2 and Bax was also analyzed.
RESULTS: In NSCLC cell lines (A549 and SPC), DEK mRNA levels were down-regulated in miR-1204 overex-pression group. In miR-1204 inhibition group, the expression of DEK mRNA showed an opposite trend. The overexpression of miR-1204 increases the apoptosis rate in NSCLC cells. The Bcl-2 levels in the miR-1204 over-expression group were decreased, while the Bax level was increased. In the miR-1204 inhibition group, expression of Bcl-2 and Bax showed opposite trends. Cell staining revealed cell's morphological changes; the apoptosis in the miR-1204 overexpression group revealed significant morphological features, such as brighter nuclei and nu-clear condensation. Results indicated a typical characteristic of apoptosis in the miR-1204 overexpression group. Caspase-9 and Caspase-3 were involved in the apoptosis pathway, which was mediated by miR-1204 and DEK.
CONCLUSIONS: The miR-1204 induces apoptosis of NSCLC cells by inhibiting the expression of DEK. The mech-anism of apoptosis involves down-regulation of Bcl-2 and up-regulation of Bax expression. Moreover, the apoptosis was mediated by mitochondria-related caspase 9/3 pathway.

Liu R, Pei Q, Shou T, et al.
Apoptotic effect of green synthesized gold nanoparticles from
Int J Nanomedicine. 2019; 14:4091-4103 [PubMed] Free Access to Full Article Related Publications

El-Shorbagy HM, Eissa SM, Sabet S, El-Ghor AA
Apoptosis and oxidative stress as relevant mechanisms of antitumor activity and genotoxicity of ZnO-NPs alone and in combination with N-acetyl cysteine in tumor-bearing mice.
Int J Nanomedicine. 2019; 14:3911-3928 [PubMed] Free Access to Full Article Related Publications

Wang X, Wang Z, Zhang Y, et al.
Golgi phosphoprotein 3 sensitizes the tumour suppression effect of gefitinib on gliomas.
Cell Prolif. 2019; 52(4):e12636 [PubMed] Related Publications
OBJECTIVES: We previously reported that Golgi phosphoprotein 3 (GOLPH3) promotes glioma progression by inhibiting EGFR endocytosis and degradation, leading to EGFR accumulation and PI3K-AKT pathway over-activation. In the current study, we examine whether GOLPH3 affects the response of glioma cells to gefitinib, an EGFR selective inhibitor.
MATERIALS AND METHODS: The expression of GOLPH3 and EGFR in glioma cells was detected by immunofluorescence and immunoblotting. The cell viability or growth in vitro was determined by CCK-8, EdU incorporation and clonogenic assays. The primary glioma cells were cultured by trypsin and mechanical digestion. The transwell invasion assay was used to examine the primary glioma cell motility. Intracranial glioma model in nude mice were established to explore the sensitivity of gefitinib to GOLPH3 high cancer cells in vivo.
RESULTS: Both the immortalized and primary glioma cells with GOLPH3 over-expression hold higher EGFR protein levels on the cell membrane and exhibited higher sensitivity to gefitinib. In addition, primary glioma cells with higher GOLPH3 level exhibited stronger proliferation behaviour. Importantly, GOLPH3 enhanced the anti-tumour effect of gefitinib in vivo. Consistently, after gefitinib treatment, tumours derived from GOLPH3 over-expression cells exhibited lower Ki67-positive and higher cleaved caspase-3-positive cells than control tumours.
CONCLUSIONS: Our results demonstrate that GOLPH3 increases the sensitivity of glioma cells to gefitinib. Our study provides foundation for further exploring whether GOLPH3 high gliomas will be more sensitive to anti-EGFR therapy in clinic and give ideas for developing new possible treatments for individual glioma patients.

Pires LV, Yi Y, Cheng JC, et al.
Lapatinib Inhibits Amphiregulin-induced BeWo Choriocarcinoma Cell Proliferation by Reducing ERK1/2 and AKT Signaling Pathways.
Anticancer Res. 2019; 39(5):2377-2383 [PubMed] Related Publications
BACKGROUND: Human choriocarcinoma is the most aggressive type of gestational trophoblastic neoplasia. The expression of epidermal growth factor receptor (EGFR) in choriocarcinomas is significantly higher than those of trophoblastic cells in healthy placentas. Lapatinib is a potent EGFR and human epidermal growth factor receptor 2 (HER2) inhibitor that inhibits cell proliferation and induces apoptosis in various human cancer cells. Amphiregulin (AREG) is the most abundant EGFR ligand in amniotic fluid during human pregnancy.
AIM: To explore the role of AREG in human choriocarcinoma cell proliferation.
MATERIALS AND METHODS: The effect of lapatinib and AREG on cell proliferation was examined by the MTT assay. Western blots were used to investigate EGFR and HER2 expression, and the activation of caspase-3, extracellular signal-regulated kinases 1/2 (ERK1/2) and phosphatidylinositol 3-kinase /protein kinase B (PI3K/AKT) signaling pathways.
RESULTS: Treatment with lapatinib reduced BeWo cell proliferation by inducing apoptosis. Moreover, AREG treatment stimulated BeWo cell proliferation by activating ERK1/2 and PI3K/AKT signaling pathways, which was blocked by lapatinib.
CONCLUSION: Targeting EGFR/HER2 might be a useful therapeutic strategy for human choriocarcinoma.

Mantso T, Vasileiadis S, Lampri E, et al.
Hyperthermia Suppresses Post -
Anticancer Res. 2019; 39(5):2307-2315 [PubMed] Related Publications
BACKGROUND: Several studies have highlighted hyperthermia's ability to enhance the effectiveness of radiation and chemotherapy in various in vitro and in vivo cancer models.
MATERIALS AND METHODS: In vivo murine models of malignant melanoma and colon carcinoma were utilized for demonstrating hyperthermia's therapeutic effectiveness by examining levels of caspase 3, COX-2 and phospho-H2A.X (Ser139) as endpoints of apoptosis, proliferation and DNA damage respectively.
RESULTS: Hyperthermia induced in vitro cytotoxicity in malignant melanoma (B16-F10) and colon carcinoma (CT26) cell lines. In addition, it reduced post-in vitro proliferation and suppression of tumor growth by inducing the expression of caspase-3 and phospho-H2A.X (Ser139) while reducing the expression of COX-2 in both murine cancer models.
CONCLUSION: Hyperthermia can exert therapeutic effectiveness against melanoma and colon carcinoma by inhibiting a number of critical cellular cascades including apoptosis, proliferation and DNA damage.

Zhang P, Yang X, Wang L, et al.
Overexpressing miR‑335 inhibits DU145 cell proliferation by targeting early growth response 3 in prostate cancer.
Int J Oncol. 2019; 54(6):1981-1994 [PubMed] Free Access to Full Article Related Publications
MicroRNA‑335 (miR‑335) was reported to suppress cell proliferation in prostate cancer (PC), a common malignancy in males. The expression of early growth response 3 (EGR3) was determined to be elevated in human PC tissues; however, the possible effects and underlying mechanism of miR‑335 on PC remains unknown. In the present study, miR‑335 mimics and miR‑335 inhibitors were respectively transfected into DU145 cells. Stable silencing of EGR3 was observed in DU145 cells following transfection with small interfering RNA. We also used Cell Counting Kit‑8 and in vitro angiogenesis assays to determine the viability and revascularization potential of DU145 cells. The expression levels of EGR and caspase‑3 activity were analyzed by immunohistochemistry and immunocytochemistry, respectively. We predicted the target of miR‑335 by bioinformatics analysis and a dual‑luciferase reporter gene assay. Western blot and quantitative real‑time polymerase chain reaction analyses were performed to determine the protein and mRNA expression of molecules. miR‑335 expression was downregulated in PC tissues and cell lines. Overexpression of miR‑335 significantly reduced the viability and the formation of regenerative tubes of DU145 cells, and inhibited the expression of inflammatory factors. EGR3 was proposed as a possible target of miR‑335, and was negatively regulated by miR‑335. Silencing EGR3 suppressed the viability and angiogenesis of DU145 cells, and reduced the activity of caspase‑3 and inflammatory factor expression. miR‑335 inhibition along with EGR3 silencing EGR3 inhibited the cell proliferation. Furthermore, miR‑335 inhibited the formation of a PC solid tumor xenograft in vivo. Thus, miR‑335 may exert an antitumor effect on DU145 cells by regulating the expression of EGR3. The findings of the present study may provide insight into a novel therapeutic strategy for the treatment of prostatic carcinoma.

Cirmi S, Ferlazzo N, Gugliandolo A, et al.
Moringin from
Int J Mol Sci. 2019; 20(8) [PubMed] Free Access to Full Article Related Publications
In the last decades, glucosinolates (GLs), precursors of isothiocyanates (ITCs), have been studied mostly for their chemopreventive and chemotherapeutic properties. The aim of our research was to study the antiproliferative effect of 4-(α-L-rhamnopyranosyloxy) benzyl glucosinolate (glucomoringin; GMG) bioactivated by myrosinase enzyme to form the corresponding isothiocyanate 4-(α-L-rhamnopyranosyloxy) benzyl C (moringin) in SH-SY5Y human neuroblastoma cells. We found that moringin significantly reduced SH-SY5Y cell growth in a time and concentration-dependent (

Lee J, Kim DH, Kim JH
Combined administration of naringenin and hesperetin with optimal ratio maximizes the anti-cancer effect in human pancreatic cancer via down regulation of FAK and p38 signaling pathway.
Phytomedicine. 2019; 58:152762 [PubMed] Related Publications
BACKGROUND: We have previously reported the functional anti-cancer effects of the products of enzymatic hydrolysis of Citrus unshiu peel (εCUP) and fermented extraction of Citrus unshiu peel (ƒCUP) in human pancreatic cancer. Despite their different characteristics and effects, the underlying mechanism remains elusive.
PURPOSE: In this study, we further demonstrate the impact of ingredient contents of Citrus unshiu peel on the cancer's natural features.
METHODS: Anti-pancreatic cancer activities following combined treatment of naringenin and hesperetin were demonstrated in vitro and in vivo experiments.
RESULTS: Combined treatment with naringenin and hesperetin inhibited the growth of human pancreatic cancer cells (εCUP mimic condition, p < 0.001 for Miapaca-2 cells) through induction of caspase-3 cleavage compared to separate treatment with naringenin or hesperetin. Combined treatment with naringenin and hesperetin also inhibited the migration (εCUP mimic condition, p < 0.001 for Panc-1 cells) of human pancreatic cancer cells. The εCUP mimic condition had the most effective anti-cancer features; in contrast, which had no inhibitory effect on growth and migration of normal cells (HUVECs and Detroit551 cells). In addition, εCUP mimic condition inhibited the phosphorylation of focal adhesion kinase (FAK) and p38 signaling compared with separate treatment with naringenin or hesperetin. Of note, εCUP mimic condition showed a prominent anti-growth effect (p < 0.001) compared with control or ƒCUP mimic condition in vivo xenograft models.
CONCLUSION: These results suggest that combined treatment with naringenin and hesperetin might be a promising anti-cancer strategy for pancreatic cancers without eliciting toxicity on normal cells.

Bureta C, Saitoh Y, Tokumoto H, et al.
Synergistic effect of arsenic trioxide, vismodegib and temozolomide on glioblastoma.
Oncol Rep. 2019; 41(6):3404-3412 [PubMed] Related Publications
The treatment of glioblastoma is a critical health issue, owing to its resistance to chemotherapy. The current standard of treatment is surgical resection, followed by adjuvant radiotherapy and temozolomide treatment. Long‑term local treatment of glioblastoma is rarely achieved and the majority of the patients undergo relapse. Resistance to temozolomide emerges from numerous signalling pathways that are altered in glioblastoma, including the Hedgehog signalling pathway. Hence, further research is required to identify effective treatment modalities. We investigated the effect of vismodegib, arsenic trioxide and temozolomide on glioblastoma in vitro and in vivo to apply our findings to the clinical setting. WST‑1 assay revealed that glioblastoma proliferation was inhibited following treatment with these drugs either in single or in combination; this synergistic effect was confirmed by CalcuSyn software. Western blot analysis revealed an increase in the expression of cleaved caspase‑3 and γH2AX. Furthermore, there was marked inhibition and decreased tumour growth in mice that received combination therapy, unlike those that received single agent or vehicle treatment. Our results revealed that the combination of arsenic trioxide/vismodegib and temozolomide may be an attractive therapeutic method for the treatment of glioblastoma.

Li Y, Pan J, Gou M
The Anti-Proliferation, Cycle Arrest and Apoptotic Inducing Activity of Peperomin E on Prostate Cancer PC-3 Cell Line.
Molecules. 2019; 24(8) [PubMed] Free Access to Full Article Related Publications
Peperomin E is a natural secolignan existing distributed in the plants of the genus

Rogers C, Erkes DA, Nardone A, et al.
Gasdermin pores permeabilize mitochondria to augment caspase-3 activation during apoptosis and inflammasome activation.
Nat Commun. 2019; 10(1):1689 [PubMed] Free Access to Full Article Related Publications
Gasdermin E (GSDME/DFNA5) cleavage by caspase-3 liberates the GSDME-N domain, which mediates pyroptosis by forming pores in the plasma membrane. Here we show that GSDME-N also permeabilizes the mitochondrial membrane, releasing cytochrome c and activating the apoptosome. Cytochrome c release and caspase-3 activation in response to intrinsic and extrinsic apoptotic stimuli are significantly reduced in GSDME-deficient cells comparing with wild type cells. GSDME deficiency also accelerates cell growth in culture and in a mouse model of melanoma. Phosphomimetic mutation of the highly conserved phosphorylatable Thr6 residue of GSDME, inhibits its pore-forming activity, thus uncovering a potential mechanism by which GSDME might be regulated. Like GSDME-N, inflammasome-generated gasdermin D-N (GSDMD-N), can also permeabilize the mitochondria linking inflammasome activation to downstream activation of the apoptosome. Collectively, our results point to a role of gasdermin proteins in targeting the mitochondria to promote cytochrome c release to augment the mitochondrial apoptotic pathway.

Shen DW, Li YL, Hou YJ, et al.
MicroRNA-543 promotes cell invasion and impedes apoptosis in pituitary adenoma via activating the Wnt/β-catenin pathway by negative regulation of Smad7.
Biosci Biotechnol Biochem. 2019; 83(6):1035-1044 [PubMed] Related Publications
Pituitary adenomas (PA) are commonly occurring benign neoplasms. Identification of molecular pathway resulting in pituitary tumorigenesis remains challenges in endocrine oncology. The present study was conducted with aim of investigating the role of microRNA-543 (miR-543) in PA development. Up-regulated miR-543 and downregulated Smad7 were observed in PA tissues. Afterwards, the specific mechanism of miR-543 and Smad7 in PA were determined with the use of ectopic expression, depletion and reporter assay experiments. Smad7 was confirmed as a target gene of miR-543. HP75 cells treated with overexpressed miR-543 exhibited increased cell proliferation, migration and invasion, while decreased cell apoptosis as well as expression of Cleaved caspase-3 and Cleaved caspase-8 were observed. Suppression of miR-543 contributed to an opposite trend to the above findings. Based on the findings, the inhibition of miR-543 was found to play a tumor suppressive role in PA through the down-regulation of Wnt/β-catenin pathway by negatively regulating Smad7.

Kubatka P, Uramova S, Kello M, et al.
Anticancer Activities of
Int J Mol Sci. 2019; 20(7) [PubMed] Free Access to Full Article Related Publications
Naturally-occurring mixtures of phytochemicals present in plant foods are proposed to possess tumor-suppressive activities. In this work, we aimed to evaluate the antitumor effects of

Zhang Q, Di C, Yan J, et al.
Inhibition of SF3b1 by pladienolide B evokes cycle arrest, apoptosis induction and p73 splicing in human cervical carcinoma cells.
Artif Cells Nanomed Biotechnol. 2019; 47(1):1273-1280 [PubMed] Related Publications
Pladienolide B is a potent cancer cell growth inhibitor that targets the SF3b1 subunit of the spliceosome. There is considerable interest in the compound as a tool to study SF3b1 function in cancer. However, so far little information is available on the molecular mechanism of SF3b1 eliciting apoptosis in cancer cells. Here, we investigated the molecular mechanism of SF3b1 eliciting apoptosis in human cervical carcinoma cells. We demonstrated that inhibition of SF3b1 by pladienolide B inhibited proliferation of HeLa cells at low nanomolar concentrations in a dose- and time-dependent manner. It also induced G2/M phase arrest and significant rise of apoptotic cells. Moreover, it is indicated that inhibition of SF3b1 by pladienolide B induced Tap73/ΔNp73 expression and consequently down-regulated Bax/Bcl-2 ratio, cytochrome c release and caspase-3 expression. Thus, our results showed that SF3b1 plays a pivotal role in cycle arrest, apoptosis induction, and p73 splicing in human cervical carcinoma cells, suggesting that SF3b1 could be used as a potential candidate for cervical cancer therapy.

Zhou M, Li W
Ent-Dihydrotucumanoic acid promotes apoptosis in PC-3 human prostate cancer cells.
Cell Mol Biol (Noisy-le-grand). 2019; 65(3):114-118 [PubMed] Related Publications
Prostate cancer (PC) has become a disease that pose a serious threat to men's health and life. In recent years, due to the changes of environment, lifestyle and other factors, the incidence of PC has been increasing rapidly in recent years, which is a serious threat to men's health. Ent-Dihydrotucumanoic Acid (DTA) is a compound isolated from Asteraceae of gymnosperms, which has many pharmacological effects. The effect of DTA on the growth of tumor cell line was studied by CCK-8 method, mitochondrial membrane potential and apoptosis were detected by flow cytometry, apoptosis-related genes were detected by Western blot assay, and the absorptivity of Caspase-3 and Caspase-9 was measured by spectrophotometer. It was found that DTA induces apoptosis of human prostate cancer cell line PC3 through mitochondrial pathway, thus preventing the development of prostate cancer. It lays the experimental foundation for the further development of DTA.

Jeong Y, Lim JW, Kim H
Lycopene Inhibits Reactive Oxygen Species-Mediated NF-κB Signaling and Induces Apoptosis in Pancreatic Cancer Cells.
Nutrients. 2019; 11(4) [PubMed] Free Access to Full Article Related Publications
Generation of excess quantities of reactive oxygen species (ROS) caused by mitochondrial dysfunction facilitates rapid growth of pancreatic cancer cells. Elevated ROS levels in cancer cells cause an anti-apoptotic effect by activating survival signaling pathways, such as NF-κB and its target gene expression. Lycopene, a carotenoid found in tomatoes and a potent antioxidant, displays a protective effect against pancreatic cancer. The present study was designed to determine if lycopene induces apoptosis of pancreatic cancer PANC-1 cells by decreasing intracellular and mitochondrial ROS levels, and consequently suppressing NF-κB activation and expression of NF-κB target genes including cIAP1, cIAP2, and survivin. The results show that the lycopene decreased intracellular and mitochondrial ROS levels, mitochondrial function (determined by the mitochondrial membrane potential and oxygen consumption rate), NF-κB activity, and expression of NF-κB-dependent survival genes in PANC-1 cells. Lycopene reduced cell viability with increases in active caspase-3 and the Bax to Bcl-2 ratio in PANC-1 cells. These findings suggest that supplementation of lycopene could potentially reduce the incidence of pancreatic cancer.

Son Y, An Y, Jung J, et al.
Protopine isolated from Nandina domestica induces apoptosis and autophagy in colon cancer cells by stabilizing p53.
Phytother Res. 2019; 33(6):1689-1696 [PubMed] Related Publications
The tumor suppressor p53 plays essential roles in cellular protection mechanisms against a variety of stress stimuli and its activation induces apoptosis or autophagy in certain cancer cells. Here, we identified protopine, an isoquinoline alkaloid isolated from Nandina domestica, as an activator of the p53 pathway from cell-based natural compound screening based on p53-responsive transcription. Protopine increased the p53-mediated transcriptional activity and promoted p53 phosphorylation at the Ser15 residue, resulting in stabilization of p53 protein. Moreover, protopine up-regulated the expression of p21

Allaoui A, Gascón S, Benomar S, et al.
Protein Hydrolysates from Fenugreek (
Nutrients. 2019; 11(4) [PubMed] Free Access to Full Article Related Publications
The application of plant extracts for therapeutic purposes has been used in traditional medicine since the plants are a source of a great variety of chemical compounds that possess biological activity. Actually, the effect of these extracts on diseases such as cancer is being widely studied. Colorectal adenocarcinoma is one of the main causes of cancer related to death and the second most prevalent carcinoma in Western countries. The aim of this work is to study the possible effect of two fenugreek (Trigonella foenum graecum) protein hydrolysates on treatment and progression of colorectal cancer. Fenugreek proteins from seeds were hydrolysed by using two enzymes separately, which are named Purafect and Esperase, and were then tested on differentiated and undifferentiated human colonic adenocarcinoma Caco2/TC7 cells. Both hydrolysates did not affect the growth of differentiated cells, while they caused a decrease in undifferentiated cell proliferation by early apoptosis and cell cycle arrest in phase G1. This was triggered by a mitochondrial membrane permeabilization, cytochrome C release to cytoplasm, and caspase-3 activation. In addition, the hydrolysates of fenugreek proteins displayed antioxidant activity since they reduce the intracellular levels of ROS. These findings suggest that fenugreek protein hydrolysates could be used as nutraceutical molecules in colorectal cancer treatment.

Yang Y, Bao Y, Yang GK, et al.
MiR-214 sensitizes human colon cancer cells to 5-FU by targeting Hsp27.
Cell Mol Biol Lett. 2019; 24:22 [PubMed] Free Access to Full Article Related Publications
Overcoming chemorestistance to 5-fluorouracil (5-FU) could offer a new treatment option for highly malignant colon cancer. In our study, differential microRNA expression profiling revealed that miR-214 is downregulated in 5-FU-resistant colon cancer cells compared to normal cells. In vitro, miR-214 could sensitize non-resistant colon cancer cells and 5-FU-resistant colon cancer cellsto 5-FU. Functionally, miR-214 inhibited cell clone formation and cell growth and enhanced 5-FU-inducing cell apoptosis and caspase-3 levels. MiR-214 targeted heat shock protein 27 (Hsp27), as confirmed via dual luciferase reporter assays and western blots. Hsp27 also sensitized HT-29 and LoVo to 5-FU by enhancing cell apoptosis. Overexpression of Hsp27 could block miR-214 with an effect on the sensitivity of colon cancer cells to 5-FU. In conclusion, miR-214 sensitizes colon cancer cells to 5-FU by targeting Hsp27, indicating a significant role for this miRNA in colon cancer chemotherapy.

Li XF, Zhao GQ, Li LY
Ginsenoside impedes proliferation and induces apoptosis of human osteosarcoma cells by down-regulating β-catenin.
Cancer Biomark. 2019; 24(4):395-404 [PubMed] Related Publications
BACKGROUND: Osteosarcoma (OS) is the most commonly occurred primary bone malignancy with high incident rates among children and adolescents. In pharmacologic treatment, the drug ginsenoside has been shown to exert anticancer effects on several malignant diseases. The purpose of this research was to investigate the effect of ginsenoside on the apoptosis and proliferation of human OS MG-63 and Saos-2 cells by regulating the expression of β-catenin.
METHODS: Human OS MG-63 and Saos-2 cells were assigned into control group, and four groups with treatment by varying concentrations (12.5 μg/mL, 25 μg/mL, 50 μg/mL and 100 μg/mL) of ginsenoside, respectively. Cell growth after treatment was observed through cell slides. The proliferation rate of MG-63 and Saos-2 cells in each group was detected by CCK-8. After cell transfection at 48 h, cell cycle and cell apoptosis were detected by FITC-Annexin V staining and flow cytometry. The protein and mRNA expressions of β-catenin, Cyclin D1, Bcl-2, Bax and cleaved caspase-3 were detected by RT-qPCR and western blot analysis.
RESULTS: With increased exposure and concentration of ginsenoside, the cell density, total cell numbers and the absorbance of MG-63 and Saos-2 cells gradually decreased. FITC-Annexin V and FITC-Annexin V/PI staining demonstrated that the cell proportion at S phase decreased, whereas the total apoptotic rate of MG-63 and Saos-2 cells was increased. Furthermore, RT-qPCR and western blot analysis highlighted a gradual decrease in protein and mRNA expressions of β-catenin, Bcl-2 and Cyclin D1, while an elevation in those of Bax and cleaved caspase-3.
CONCLUSION: The results of this study demonstrate that ginsenoside inhibits proliferation and promotes apoptosis of human OS MG-63 and Saos-2 cells by reducing the expressions of β-catenin, Bcl-2 and Cyclin D1 and increasing the expression of Bax and cleaved caspase-3.

Wang Z, Shen J, Sun W, et al.
Antitumor activity of Raddeanin A is mediated by Jun amino-terminal kinase activation and signal transducer and activator of transcription 3 inhibition in human osteosarcoma.
Cancer Sci. 2019; 110(5):1746-1759 [PubMed] Free Access to Full Article Related Publications
Osteosarcoma is the most common primary malignant bone tumor. Raddeanin A (RA) is an active oleanane-type triterpenoid saponin extracted from the traditional Chinese herb Anemone raddeana Regel that exerts antitumor activity against several cancer types. However, the effect of RA on osteosarcoma remains unclear. In the present study, we showed that RA inhibited proliferation and induced apoptosis of osteosarcoma cells in a dose- and time-dependent way in vitro and in vivo. RA treatment resulted in excessive reactive oxygen species (ROS) generation and JNK and ERK1/2 activation. Apoptosis induction was evaluated by the activation of caspase-3, caspase-8, and caspase-9 and poly-ADP ribose polymerase (PARP) cleavage. RA-induced cell death was significantly restored by the ROS scavenger glutathione (GSH), the pharmacological inhibitor of JNK SP600125, or specific JNK knockdown by shRNA. Additionally, signal transducer and activator of transcription 3 (STAT3) activation was suppressed by RA in human osteosarcoma, and this suppression was restored by GSH, SP600125, and JNK-shRNA. Further investigation showed that STAT3 phosphorylation was increased after JNK knockdown. In a tibial xenograft tumor model, RA induced osteosarcoma apoptosis and notably inhibited tumor growth. Taken together, our results show that RA suppresses proliferation and induces apoptosis by modulating the JNK/c-Jun and STAT3 signaling pathways in human osteosarcoma. Therefore, RA may be a promising candidate antitumor drug for osteosarcoma intervention.

He F, Fang L, Yin Q
miR-363 acts as a tumor suppressor in osteosarcoma cells by inhibiting PDZD2.
Oncol Rep. 2019; 41(5):2729-2738 [PubMed] Free Access to Full Article Related Publications
PDZ domain containing 2 (PDZD2) is a multi-PDZ domain protein that promotes the proliferation of insulinoma cells, and is upregulated during prostate tumorigenesis. However, the function of PDZD2 in other cancers, including osteosarcoma (OS), remains unclear. Dysregulation of microRNAs (miRNAs) contributes to tumor initiation, proliferation and metastasis, via the regulation of their target genes. The present study investigated the functions of miR-363 and PDZD2 in MG-63 OS cells. The results revealed that MG-63 cells contained low levels of miR-363, and that overexpression of miR-363 in MG-63 cells significantly inhibited the vitality, proliferation, and colony formation ability of the cells, but promoted their apoptosis and G1/S arrest by regulating proliferating cell nuclear antigen (PCNA) and caspase-3 expression. Additionally, miR-363 impaired the migration and invasion of MG-63 cells by regulating the epithelial-mesenchymal transition (EMT) phenotype. Notably, a bioinformatics analysis and luciferase reporter assay indicated that PDZD2 was a direct target of miR-363. miR-363 overexpression reduced PDZD2 protein levels and knockdown of PDZD2 suppressed the colony formation, migration and invasion of MG-63 cells, but promoted their apoptosis by regulating expression of PCNA, caspase-3, and the EMT phenotype. In vivo studies further confirmed that miR-363 functioned as tumor suppressor, by inhibiting tumor growth, promoting cell apoptosis, and reducing PDZD2 and PCNA levels and the prevalence of the EMT phenotype in tumor tissues. The present data demonstrated that downregulation of the tumor suppressor miR-363 may be involved in the development of osteosarcoma via regulation of PDZD2.

Li J, Rong MH, Dang YW, et al.
Differentially expressed gene profile and relevant pathways of the traditional Chinese medicine cinobufotalin on MCF‑7 breast cancer cells.
Mol Med Rep. 2019; 19(5):4256-4270 [PubMed] Free Access to Full Article Related Publications
Cinobufotalin is a chemical compound extracted from the skin of dried bufo toads that may have curative potential for certain malignancies through different mechanisms; however, these mechanisms remain unexplored in breast cancer. The aim of the present study was to investigate the antitumor mechanism of cinobufotalin in breast cancer by using microarray data and in silico analysis. The microarray data set GSE85871, in which cinobufotalin exerted influences on the MCF‑7 breast cancer cells, was acquired from the Gene Expression Omnibus database, and the differentially expressed genes (DEGs) were analyzed. Subsequently, protein interaction analysis was conducted, which clarified the clinical significance of core genes, and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes were used to analyze cinobufotalin‑related pathways. The Connectivity Map (CMAP) database was used to select existing compounds that exhibited curative properties similar to those of cinobufotalin. A total of 1,237 DEGs were identified from breast cancer cells that were treated with cinobufotalin. Two core genes, SRC proto‑oncogene non‑receptor tyrosine kinase and cyclin‑dependent kinase inhibitor 2A, were identified as serving a vital role in the onset and development of breast cancer, and their expression levels were markedly reduced following cinobufotalin treatment as detected by the microarray of GSE85871. It also was revealed that the 'neuroactive ligand‑receptor interaction' and 'calcium signaling' pathways may be crucial for cinobufotalin to perform its functions in breast cancer. Conducting a matching search in CMAP, miconazole and cinobufotalin were indicated to possessed similar molecular mechanisms. In conclusion, cinobufotalin may serve as an effective compound for the treatment of a subtype of breast cancer that is triple positive for the presence of estrogen, progesterone and human epidermal growth factor receptor‑2 receptors, and its mechanism may be related to different pathways. In addition, cinobufotalin is likely to exert its antitumor influences in a similar way as miconazole in MCF‑7 cells.

Wang S, Niu X, Bao X, et al.
The PI3K inhibitor buparlisib suppresses osteoclast formation and tumour cell growth in bone metastasis of lung cancer, as evidenced by multimodality molecular imaging.
Oncol Rep. 2019; 41(5):2636-2646 [PubMed] Free Access to Full Article Related Publications
Non‑small cell lung cancer (NSCLC) metastasis commonly occurs in bone, which often results in pathological fractures. Sustained phosphoinositide‑3‑kinase (PI3K) signalling promotes the growth of PI3K‑dependent NSCLC and elevates osteoclastogenic potential. The present study investigated the effects of a PI3K inhibitor on NSCLC growth in bone and osteoclast formation, and aimed to determine whether it could control symptoms associated with bone metastasis. A bone metastasis xenograft model was established by implanting NCI‑H460‑luc2 lung cancer cells, which contain a phosphatidylinositol‑​4,5‑bisphosphate 3‑kinase catalytic subunit α mutation, into the right tibiae of mice. After 1 week, the tumours were challenged with a PI3K inhibitor (buparlisib) or blank control for 3 weeks. Tumour growth and burden were longitudinally assessed in vivo via reporter gene bioluminescence imaging (BLI), small animal positron emission tomography/computed tomography (CT) [18F‑fluorodeoxyglucose (18F‑FDG)] and single‑photon emission computed tomography/CT [99mTc‑methylene diphosphonate (99mTc‑MDP)] imaging. Tibia sections of intraosseous NCI‑H460 tumours were analysed by immunohistochemistry (IHC), western blotting and flow cytometry. Dynamic weight bearing (DWB) tests were further performed to examine the improvement of symptoms associated with bone metastasis during the entire study. Administration of buparlisib significantly inhibited the progression of bone metastasis of NSCLC, as evidenced by significantly reduced uptake of 18F‑FDG, 99mTc‑MDP and BLI signals in the treated lesions. In addition, buparlisib appeared to inhibit the expression of tartrate‑resistant acid phosphatase and receptor activator of nuclear factor‑κB ligand, as determined by IHC. Buparlisib also resulted in increased cell apoptosis, as determined by a higher percentage of Annexin V staining and increased caspase 3 expression. Furthermore, buparlisib significantly increased weight‑bearing capacity, as revealed by DWB tests. The PI3K inhibitor, buparlisib, suppressed osteoclast formation in vivo, and exhibited antitumour activity, thus leading to increased weight‑bearing ability in mice with bone metastasis of lung cancer. Therefore, targeting the PI3K pathway may be a potential therapeutic strategy that prevents the structural skeletal damage associated with bone metastasis of lung cancer.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. CASP3, Cancer Genetics Web: http://www.cancer-genetics.org/CASP3.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 01 September, 2019     Cancer Genetics Web, Established 1999