BAK1

Gene Summary

Gene:BAK1; BCL2 antagonist/killer 1
Aliases: BAK, CDN1, BCL2L7, BAK-LIKE
Location:6p21.31
Summary:The protein encoded by this gene belongs to the BCL2 protein family. BCL2 family members form oligomers or heterodimers and act as anti- or pro-apoptotic regulators that are involved in a wide variety of cellular activities. This protein localizes to mitochondria, and functions to induce apoptosis. It interacts with and accelerates the opening of the mitochondrial voltage-dependent anion channel, which leads to a loss in membrane potential and the release of cytochrome c. This protein also interacts with the tumor suppressor P53 after exposure to cell stress. [provided by RefSeq, Jul 2008]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:bcl-2 homologous antagonist/killer
Source:NCBIAccessed: 31 August, 2019

Ontology:

What does this gene/protein do?
Show (57)
Pathways:What pathways are this gene/protein implicaed in?
Show (1)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 01 September 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 31 August, 2019 using data from PubMed, MeSH and CancerIndex

Latest Publications: BAK1 (cancer-related)

Cruz-Galvez CC, Ortiz-Lazareno PC, Pedraza-Brindis EJ, et al.
Pentoxifylline Enhances the Apoptotic Effect of Carboplatin in Y79 Retinoblastoma Cells.
In Vivo. 2019 Mar-Apr; 33(2):401-412 [PubMed] Free Access to Full Article Related Publications
BACKGROUND/AIM: Retinoblastoma (RB) is the most common primary intraocular malignancy. Carboplatin (CPt) is a DNA damage-inducing agent that is widely used for the treatment of RB. Unfortunately, this drug also activates the transcription factor nuclear factor-kappa B (NF-ĸB), leading to promotion of tumor survival. Pentoxifylline (PTX) is a drug that inhibits the phosphorylation of I kappa B-alpha (IĸBα) in serines 32 and 36, and this disrupts NF-ĸB activity that promotes tumor survival. The goal of this study was to evaluate the effect of the PTX on the antitumor activity of CPt.
MATERIALS AND METHODS: Y79 RB cells were treated with CPt, PTX, or both. Cell viability, apoptosis, loss of mitochondrial membrane potential, the activity of caspase-9, -8, and -3, cytochrome c release, cell-cycle progression, p53, and phosphorylation of IĸBα, and pro- and anti-apoptotic genes were evaluated.
RESULTS: Both drugs significantly affected the viability of the Y79 RB cells in a time- and dose-dependent manner. The PTX+CPt combination exhibited the highest rate of apoptosis, a decrease in cell viability and significant caspase activation, as well as loss of mitochondrial membrane potential, release of cytochrome c, and increased p53 protein levels. Cells treated with PTX alone displayed decreased I kappa B-alpha phosphorylation, compared to the CPt treated group. In addition, the PTX+CPt combination treatment induced up-regulation of the proapoptotic genes Bax, Bad, Bak, and caspases- 3, -8, and -9, compared to the CPt and PTX individual treated groups.
CONCLUSION: PTX induces apoptosis per se and increases the CPt-induced apoptosis, augmenting its antitumor effectiveness.

Bąk A, Junkiert-Czarnecka A, Heise M, et al.
Searching for new breast cancer-associated genes. ABRAXAS1 gene mutations in the group of BRCA1-negative patients.
Pol J Pathol. 2018; 69(4):342-346 [PubMed] Related Publications
In the present study, we analysed the association of mutations of a BRCA1-associated gene, ABRAXAS1, with the risk of development of breast cancer (BC) in BRCA1-negative women from North-Central Poland. A hundred women with consecutively diagnosed BC and 100 women belonging to the control group were screened for new mutations predisposing to breast cancer. The first step was a test carried out in order to find one of the three Polish founder mutations in the BRCA1 gene. In 96 BRCA1-negative patients two missense variants: c.422C>T and c.1042G>A as well as two intronic variants: IVS3-34G>A, IVS3-44T>C were detected in the ABRAXAS1 gene. The c.422C>T mutation was detected in one of 96 women diagnosed with breast cancer (1.04%); it was not associated with increased risk of disease in this group, compared to the controls (p = 0.49), but the odds ratio was 3.314; 95% CI: 0.122-75.352. IVS3-44T>C was found more frequently in the control group (15/93) than in the tested group (1/85), OR 0.062; 95% CI: 0.008-0.480, p = 0.007, which may suggest protective properties of this variant against tumorigenicity. The data obtained from the present study suggest the necessity for further research to be conducted on the ABRAXAS1 gene in relation to hereditary predisposition to breast cancer.

Chen WT, Hsu FT, Liu YC, et al.
Fluoxetine Induces Apoptosis through Extrinsic/Intrinsic Pathways and Inhibits ERK/NF-κB-Modulated Anti-Apoptotic and Invasive Potential in Hepatocellular Carcinoma Cells In Vitro.
Int J Mol Sci. 2019; 20(3) [PubMed] Free Access to Full Article Related Publications
The aim of the present study was to verify the effects of fluoxetine on dysregulation of apoptosis and invasive potential in human hepatocellular carcinoma (HCC) SK-Hep1 and Hep3B cells. Cells were treated with different concentrations of fluoxetine for different times. MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) assays were used for testing the effects of fluoxetine on cell viability. The regulation of apoptosis signaling, and anti-apoptotic, proliferation, and metastasis-associated proteins after fluoxetine treatment were assayed by flow cytometry and Western blotting assay. The detection of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation after fluoxetine treatment was performed by NF-κB reporter gene assay. The results demonstrated that fluoxetine significantly reduced cell viability, cell migration/invasion, NF-κB, extracellular signal-regulated kinases (ERK) activation, and expression of anti-apoptotic (Cellular FLICE (FADD-like IL-1β-converting enzyme)-inhibitory protein (C-FLIP), Myeloid cell leukemia-1 (MCL-1), X-Linked inhibitor of apoptosis protein (XAIP), and Survivin), proliferation (Cyclin-D1), angiogenesis (vascular endothelial growth factor (VEGF)), and metastasis-associated proteins (matrix metalloproteinase-9 (MMP-9)). Fluoxetine also significantly induced apoptosis, unregulated extrinsic (activation of first apoptosis signal protein and ligand (Fas/FasL), and caspase-8) and intrinsic (loss of mitochondrial membrane potential (ΔΨm) pathways and increased Bcl-2 homologous antagonist killer (BAK) apoptosis signaling. Taken together, these results demonstrated that fluoxetine induced apoptosis through extrinsic/intrinsic pathways and diminished ERK/NF-κB-modulated anti-apoptotic and invasive potential in HCC cells in vitro.

Duan Y, Liu T, Li S, et al.
CHAF1B promotes proliferation and reduces apoptosis in 95‑D lung cancer cells and predicts a poor prognosis in non‑small cell lung cancer.
Oncol Rep. 2019; 41(4):2518-2528 [PubMed] Related Publications
Chromatin assembly factor 1 subunit B (CHAF1B) participates in DNA synthesis and repair. High CHAF1B expression has been associated with a poor prognosis in several types of cancers. However, no study has evaluated the clinical significance and biological function of CHAF1B in non‑small cell lung cancer (NSCLC). In the present study, we aimed to investigate CHAF1B expression and its role in NSCLC. In the present study, it was revealed that CHAF1B was highly expressed in NSCLC lung tissues and 95‑D cells. Kaplan‑Meier survival analysis indicated that high CHAF1B expression in tumour tissue was associated with poor clinical outcomes in NSCLC patients. Multivariate Cox analyses revealed that lymph node metastasis, tumour‑node‑metastasis (TNM) stage and CHAF1B expression were independent prognostic factors in NSCLC patients. Moreover, CHAF1B knockdown in 95‑D cells markedly inhibited tumour proliferation, reduced colony formation, induced cell cycle arrest and promoted apoptosis. In vivo studies demonstrated that CHAF1B knockdown inhibited the growth of transplanted tumours. Furthermore, our results revealed that the mechanism by which CHAF1B induced apoptosis was mediated by the activation of the p53‑dependent apoptotic signalling pathway (BAK/Bcl‑2/caspase‑3) in 95‑D cells. These data indicated that CHAF1B plays an important role in tumourigenesis and may be a therapeutic molecular target to counter NSCLC progression.

Nguyen PH, Niesen E, Hallek M
New roles for B cell receptor associated kinases: when the B cell is not the target.
Leukemia. 2019; 33(3):576-587 [PubMed] Related Publications
Targeting of B cell receptor associated kinases (BAKs), such as Bruton's tyrosine kinase (BTK) or phosphoinositol-3-kinase (PI3K) delta, by specific inhibitors has revolutionized the therapy of B lymphoid malignancies. BAKs are critical signaling transducers of BCR signaling and seem relevant in B cell lymphoma pathogenesis. The functional relevance of BTK for lymphoid malignancies is strongly supported by the observation that resistance to therapy in CLL patients treated with BTK inhibitors such as ibrutinib is often associated with mutations in genes coding for BTK or Phospholipase-C gamma (PLCɣ). In some contrast, next generation sequencing data show that BAKs are mutated at very low frequency in treatment-naïve B cell lymphomas. Therefore, it remains debatable whether BAKs are essential drivers for lymphoma development. In addition, results obtained by targeted deletion of BAKs such as Lyn and Btk in murine CLL models suggest that BAKs may be essential to shape the dialogue between malignant B cells and the tumor microenvironment (TME). Since BAKs are expressed in multiple cell types, BAK inhibitors may disrupt the lymphoma supportive microenvironment. This concept also explains the typical response to BAK inhibitor treatment, characterized by a long-lasting increase of peripheral blood lymphoid cells, due to a redistribution from the lymphoid homing compartments. In addition, BAK inhibitors have shown some efficacy in solid tumors, probably through mediator cells in the TME. This review summarizes and validates the evidence for BAK inhibitors being part of a class of agents that modulate the (hematopoietic) microenvironment of cancers.

Ma J, Niu W, Wang X, et al.
Bromodomain‑containing protein 7 sensitizes breast cancer cells to paclitaxel by activating Bcl2‑antagonist/killer protein.
Oncol Rep. 2019; 41(3):1487-1496 [PubMed] Free Access to Full Article Related Publications
Our previous study demonstrated that bromodomain‑containing protein 7 (BRD7) inhibits cell proliferation and tumor growth, restoring the expression of B‑cell lymphoma 2 antagonist/killer (Bak) sensitized breast cancer cells to paclitaxel. However, the association between BRD7 and paclitaxel sensitization, as well as BRD7 and Bak in breast cancer remains unknown. In the present study, immunochemical staining was performed to measure the expression of BRD7 and Bak in breast cancer tissues. Cell Counting Kit‑8 assay, flow cytometry and tumor xenograft procedures were performed to evaluate the biological role of BRD7 and Bak in breast cancer cells. Western blotting, reverse transcription‑quantitative polymerase chain reaction, chromatin immunoprecipitation and luciferase reporter assays were also performed. BRD7 was positively correlated with Bak levels in breast cancer tissues, and the survival rate of patients with low Bak and BRD7 expression was significantly lower than that of patients with high Bak and BRD7 expression. In addition, BRD7 activated Bak promoter activity and induced Bak expression in an indirect manner. Furthermore, ectopic expression of BRD7 inhibited cell proliferation, tumor growth and sensitized cancer cells to paclitaxel, while knockdown of Bak abolished BRD7‑mediated inhibitory effects on cell proliferation and paclitaxel sensitization in breast cancer cells whether in vitro and in vivo. The results demonstrated that BRD7 inhibits cell proliferation and sensitizes breast cancer cells to paclitaxel by activating Bak; they also provide promising targets for the diagnosis and treatment of breast cancer.

Forsare C, Bak M, Falck AK, et al.
Non-linear transformations of age at diagnosis, tumor size, and number of positive lymph nodes in prediction of clinical outcome in breast cancer.
BMC Cancer. 2018; 18(1):1226 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Prognostic factors in breast cancer are often measured on a continuous scale, but categorized for clinical decision-making. The primary aim of this study was to evaluate if accounting for continuous non-linear effects of the three factors age at diagnosis, tumor size, and number of positive lymph nodes improves prognostication. These factors will most likely be included in the management of breast cancer patients also in the future, after an expected implementation of gene expression profiling for adjuvant treatment decision-making.
METHODS: Four thousand four hundred forty seven and 1132 women with primary breast cancer constituted the derivation and validation set, respectively. Potential non-linear effects on the log hazard of distant recurrences of the three factors were evaluated during 10 years of follow-up. Cox-models of successively increasing complexity: dichotomized predictors, predictors categorized into three or four groups, and predictors transformed using fractional polynomials (FPs) or restricted cubic splines (RCS), were used. Predictive performance was evaluated by Harrell's C-index.
RESULTS: Using FP-transformations, non-linear effects were detected for tumor size and number of positive lymph nodes in univariable analyses. For age, non-linear transformations did, however, not improve the model fit significantly compared to the linear identity transformation. As expected, the C-index increased with increasing model complexity for multivariable models including the three factors. By allowing more than one cut-point per factor, the C-index increased from 0.628 to 0.674. The additional gain, as measured by the C-index, when using FP- or RCS-transformations was modest (0.695 and 0.696, respectively). The corresponding C-indices for these four models in the validation set, based on the same transformations and parameter estimates from the derivation set, were 0.675, 0.700, 0.706, and 0.701.
CONCLUSIONS: Categorization of each factor into three to four groups was found to improve prognostication compared to dichotomization. The additional gain by allowing continuous non-linear effects modeled by FPs or RCS was modest. However, the continuous nature of these transformations has the advantage of making it possible to form risk groups of any size.

Ahsanul Kabir KM, Amin R, Hasan I, et al.
Geodorum densiflorum rhizome lectin inhibits Ehrlich ascites carcinoma cell growth by inducing apoptosis through the regulation of BAX, p53 and NF-κB genes expression.
Int J Biol Macromol. 2019; 125:92-98 [PubMed] Related Publications
A lectin with a molecular mass of 12 ± 1 kDa was isolated for the first time from Geodorum densiflorum (Lam.) rhizome (GDL). The lectin exhibited hemagglutination activity both in mice and human erythrocytes which was inhibited by 4-nitrophenyl-β-D-glucopyranoside among the tested 26 sugars. The lectin was heat stable and showed its full activity in the pH range from 5.0 to 9.0. The lectin did not lose its activity in the presence of urea but the activity lost significantly when treated with EDTA. Divalent cation Ca

Klopotowska D, Matuszyk J, Wietrzyk J
Steroid hormone calcitriol and its analog tacalcitol inhibit miR-125b expression in a human breast cancer MCF-7 cell line.
Steroids. 2019; 141:70-75 [PubMed] Related Publications
MiR-125b belongs to the class of microRNAs, which are short endogenous non-coding RNAs that negatively regulate gene expression at the post-transcriptional level. Recently, it was reported that miR-125b was found to promote migration and invasion of MCF-7 cells and was involved in chemotherapeutic resistance. Decreasing miR-125b expression would have potential therapeutic significance in preventing dissemination of breast cancer cells. The objective of this study was to evaluate miR-125b expression levels in MCF-7 cells following treatment with 1,25-dihydroxyvitamin D

Qiu XG, Chen YD, Yuan J, et al.
Functional BCL-2 rs2279115 Promoter Noncoding Variant Contributes to Glioma Predisposition, Especially in Males.
DNA Cell Biol. 2019; 38(1):85-90 [PubMed] Related Publications
As a crucial oncogene, B cell lymphoma-2 (BCL-2) could promote cancer cell survival by inhibiting apoptosis via suppressing activation of proapoptotic proteins, such as BAX and BAK. There is a functional rs2279115 genetic polymorphism locating in BCL-2 promoter and deregulating BCL-2 expression. However, it is still largely undefined how BCL-2 rs2279115 promoter noncoding genetic variant is involved in glioma development. We examined the association between BCL-2 rs2279115 and glioma risk using a case-control approach. Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated by logistic regression adjusted by age and sex. Our results demonstrated that BCL-2 rs2279115 was significantly associated with glioma risk. The odd of individuals harboring A allele (CA + AA genotype) was 0.50 (95% CI = 0.39-0.64, p = 1.0 × 10

Chin HS, Li MX, Tan IKL, et al.
VDAC2 enables BAX to mediate apoptosis and limit tumor development.
Nat Commun. 2018; 9(1):4976 [PubMed] Free Access to Full Article Related Publications
Intrinsic apoptosis is critical to prevent tumor formation and is engaged by many anti-cancer agents to eliminate tumor cells. BAX and BAK, the two essential mediators of apoptosis, are thought to be regulated through similar mechanisms and act redundantly to drive apoptotic cell death. From an unbiased genome-wide CRISPR/Cas9 screen, we identified VDAC2 (voltage-dependent anion channel 2) as important for BAX, but not BAK, to function. Genetic deletion of VDAC2 abrogated the association of BAX and BAK with mitochondrial complexes containing VDAC1, VDAC2, and VDAC3, but only inhibited BAX apoptotic function. Deleting VDAC2 phenocopied the loss of BAX in impairing both the killing of tumor cells by anti-cancer agents and the ability to suppress tumor formation. Together, our studies show that efficient BAX-mediated apoptosis depends on VDAC2, and reveal a striking difference in how BAX and BAK are functionally impacted by their interactions with VDAC2.

Phelan JJ, MacCarthy F, O'Toole D, et al.
The Mitochondrial Genes
Int J Mol Sci. 2018; 19(11) [PubMed] Free Access to Full Article Related Publications
Barrett's esophagus and esophageal cancer lack prognostic markers that allow the tailoring of personalized medicine and biomarkers with potential to provide insight into treatment response. This study aims to characterize mitochondrial function across the metaplasia-dysplasia-adenocarcinoma disease sequence in Barrett's esophagus and examines the functional effect of manipulating mitochondrial genes. Mitochondrial genes of interest were validated in in vitro cell lines across the metaplasia (QH), dysplasia (GO) and adenocarcinoma (OE33) sequence and in in vivo patient tissue samples. These genes were subsequently knocked down in QH and OE33 cells and the functional effect of siRNA-induced knockdown on reactive oxygen species production, mitochondrial mass, mitochondrial membrane potential and cellular metabolism was investigated. Three global mitochondrial genes (

Vallet S, Fan F, Malvestiti S, et al.
Rationally derived drug combinations with the novel Mcl-1 inhibitor EU-5346 in breast cancer.
Breast Cancer Res Treat. 2019; 173(3):585-596 [PubMed] Related Publications
PURPOSE: Recent studies have emphasized a key role for the anti-apoptotic Bcl-2 family member Mcl-1 in conferring tumor cell survival and drug resistance in breast cancer (BC). Mcl-1 inhibitors, such as the BH3-mimetic EU-5346, therefore represent an exciting new class of targeting agents and are a current focus of widespread cancer-drug development efforts.
METHODS: ONCOMINE analysis was utilized to compare expression profiles of Bcl-2 family members across all major BC subgroups. Potential toxicities of EU-5346 were evaluated using iPS-generated cardiomyocytes, blood cells and astrocytes. The anti-BC cell activity of EU-5346-based therapies was evaluated using [
RESULTS: We previously demonstrated significant anti-tumor activity of EU-5346 in all BC subtypes. Our present results go further and suggest that EU-5346 may induce limited adverse events such as cardiotoxicity, hematotoxicity, and neurotoxicity, frequently observed with other BH3 mimetics. As demonstrated by our mathematical scoring model, the prediction of EU-5643-induced IC
CONCLUSION: These data strongly support the further clinical development of EU-5346 to improve BC patient survival.

Saitoh Y, Bureta C, Sasaki H, et al.
The histone deacetylase inhibitor LBH589 inhibits undifferentiated pleomorphic sarcoma growth via downregulation of FOS-like antigen 1.
Mol Carcinog. 2019; 58(2):234-246 [PubMed] Related Publications
Undifferentiated pleomorphic sarcoma (UPS) is the second most frequent soft tissue sarcoma. Because of its resistance to chemotherapy, UPS patients are treated with surgical resection and complementary radiotherapy. However, since standard chemotherapy has not been established, unresectable or metastatic cases result in a poor prognosis. Therefore, the identification of a more effective therapy for UPS patients is needed. The development and progression of malignant tumors involve epigenetic alterations, and histone deacetylases (HDAC) have become a promising chemotherapeutic target. In this study, we investigated the potential effects and mechanisms of an HDAC inhibitor, LBH589, in UPS cells. We confirmed that LBH589 exhibits potent antitumor activities in four human UPS cell lines (GBS-1, TNMY-1, Nara-F, and Nara-H) and IC

Park S, Lim W, Song G
Chrysophanol selectively represses breast cancer cell growth by inducing reactive oxygen species production and endoplasmic reticulum stress via AKT and mitogen-activated protein kinase signal pathways.
Toxicol Appl Pharmacol. 2018; 360:201-211 [PubMed] Related Publications
Breast cancer is a leading lethal gynecological cancer. Although many tumor markers and target genes have been studied in breast cancer, its incidence is increasing. Recently, the therapeutic effects of natural phytochemicals have been studied in various cancers as adjuvants. Chrysophanol is an anti-inflammatory, anti-angiogenetic, and anti-tumor anthraquinone but has not been widely studied in cancers. Here, we verified the anti-cancer effects and cellular mechanism of chrysophanol in human breast cancer cells (BT-474 and MCF-7). Chrysophanol selectively inhibited cell proliferation and induced apoptosis of breast cancer cells but not of normal mammary ductal epithelial cells, MCF-12A. Additionally, chrysophanol increased loss of mitochondrial membrane potential and cytosolic calcium levels to activate pro-apoptotic proteins, Bax, Bak, and cytochrome c, in both cell lines. Reactive oxygen species (ROS) overproduction by chrysophanol resulted in endoplasmic reticulum (ER) stress, leading to an increase in PERK, eIF2α, GADD153, and IRE1α levels in BT-474 and MCF-7 cells. These ER stress proteins increased by chrysophanol were repressed by co-treatment with N-acetyl-L-cysteine, an ROS inhibitor. Western blotting showed that chrysophanol down-regulated ERK1/2, AKT, P70S6K, and S6 in both cell lines. However, P38 and JNK activities decreased in BT-474 cells and increased in MCF-7 cells. Additionally, co-treatment with ERK1/2 (U0126) or an AKT inhibitor (LY294002) plus chrysophanol reduced cell proliferation, whereas P38 (SB203580) and a JNK inhibitor (SP600125) showed synergic effects only in BT-474 cell lines. These results show that chrysophanol has anti-cancer effects on human breast cancer cells, specifically through mitochondrial apoptosis and ER stress induction.

Liao W, Liu J, Liu B, et al.
JIB‑04 induces cell apoptosis via activation of the p53/Bcl‑2/caspase pathway in MHCC97H and HepG2 cells.
Oncol Rep. 2018; 40(6):3812-3820 [PubMed] Related Publications
JIB‑04 is a structurally unique small molecule, known to exhibit anticancer activity and to inhibit the growth of human lung cancer and prostate cancer cell lines. However, the anticancer effect of JIB‑04 against human hepatic carcinoma, and its underlying mechanisms, are still unclear. In the present study, MHCC97H and HepG2 cells were employed to investigate the anticancer effects of JIB‑04 on cell viability and apoptosis. Annexin V/PI staining, a CCK‑8 assay and western blot analysis demonstrated that JIB‑04 induced apoptosis in MHCC97H and HepG2 cells, which was evidenced by the expression of proapoptotic and apoptotic proteins including p53, Bak, Bax, caspase‑3 and caspase‑9. Subsequently, the expression trends of Bcl‑2 and p53 were reversed after co‑treatment with pifithrin‑α (PFT‑α, a p53 inhibitor). The results revealed that JIB‑04 suppressed the cell viability of MHCC97H and HepG2 cells in a concentration‑dependent manner. Meanwhile, it was also demonstrated that JIB‑04 effectively triggered MHCC97H and HepG2 cell apoptosis by downregulating Bcl‑2/Bax expression, and upregulating proapoptotic and apoptotic protein expression via the p53/Bcl2/caspase signaling pathway. JIB‑04 had effects on the inhibition of cell viability and the induction of apoptosis in MHCC97H and HepG2 cells. The underlying mechanism of action of JIB‑04 was associated with the p53/Bcl‑2/caspase signaling pathway. Our findings provide a foundation for understanding the anticancer effect of JIB‑04 on MHCC97H and HepG2 cells, and suggested that JIB‑04 may be a promising therapeutic agent in human liver cancer.

Jang HJ, Bak Y, Pham TH, et al.
STK899704 inhibits stemness of cancer stem cells and migration via the FAK-MEK-ERK pathway in HT29 cells.
BMB Rep. 2018; 51(11):596-601 [PubMed] Free Access to Full Article Related Publications
Colon cancer is one of the most lethal and common malignancies worldwide. STK899704, a novel synthetic agent, has been reported to exhibit anticancer effects towards numerous cancer cells. However, the effect of STK899704 on the biological properties of colon cancer, including cancer cell migration and cancer stem cells (CSCs), remains unknown. Here, we examined the inhibitory effect of STK899704 on cell migration and CSC stemness. In the wound healing assay, STK899704 significantly inhibited the motility of colon cancer cells. Furthermore, STK899704 downregulated the mRNA expression levels of the cell migration mediator focal adhesion kinase (FAK). STK899704 also suppressed mitogen-activated protein kinase kinase and extracellular signal-regulated kinase, which are downstream signaling molecules of FAK. Additionally, STK899704 inhibited stemness gene expression and sphere formation in colon cancer stem cells. These results suggest that STK899704 can be used to treat human colon cancer. [BMB Reports 2018; 51(11): 596-601].

Samadi P, Saki S, Dermani FK, et al.
Emerging ways to treat breast cancer: will promises be met?
Cell Oncol (Dordr). 2018; 41(6):605-621 [PubMed] Related Publications
BACKGROUND: Breast cancer (BC) is the most common cancer among women and it is responsible for more than 40,000 deaths in the United States and more than 500,000 deaths worldwide each year. In previous decades, the development of improved screening, diagnosis and treatment methods has led to decreases in BC mortality rates. More recently, novel targeted therapeutic options, such as the use of monoclonal antibodies and small molecule inhibitors that target specific cancer cell-related components, have been developed. These components include ErbB family members (HER1, HER2, HER3 and HER4), Ras/MAPK pathway components (Ras, Raf, MEK and ERK), VEGF family members (VEGFA, VEGFB, VEGFC, VEGF and PGF), apoptosis and cell cycle regulators (BAK, BAX, BCL-2, BCL-X, MCL-1 and BCL-W, p53 and PI3K/Akt/mTOR pathway components) and DNA repair pathway components such as BRCA1. In addition, long noncoding RNA inhibitor-, microRNA inhibitor/mimic- and immunotherapy-based approaches are being developed for the treatment of BC. Finally, a novel powerful technique called CRISPR-Cas9-based gene editing is emerging as a precise tool for the targeted treatment of cancer, including BC.
CONCLUSIONS: Potential new strategies that are designed to specifically target BC are presented. Several clinical trials using these strategies are already in progress and have shown promising results, but inherent limitations such as off-target effects and low delivery efficiencies still have to be resolved. By improving the clinical efficacy of current therapies and exploring new ones, it is anticipated that novel ways to overcome BC may become attainable.

Kim SJ, Pham TH, Bak Y, et al.
7-Methoxy-luteolin-8-C-β-6-deoxy-xylo-pyranos-3-uloside exactly (mLU8C-PU) isolated from Arthraxon hispidus inhibits migratory and invasive responses mediated via downregulation of MMP-9 and IL-8 expression in MCF-7 breast cancer cells.
Environ Toxicol. 2018; 33(11):1143-1152 [PubMed] Related Publications
7-Methoxy-luteolin-8-C-β-6-deoxy-xylo-pyranos-3-uloside (mLU8C-PU) is a glycosylflavone of luteolin isolated from Arthraxon hispidus (Thunb.). Luteolin is known to exert anti-migratory and anti-invasive effects on tumor cells. However, there are no reports on the effects of mLU8C-PU on tumor invasiveness and associated signaling pathways. In this study, we demonstrated the anti-migratory and anti-invasive effects of mLU8C-PU in 12-O-tetradecanoylphorbol-13-acetate (TPA)-treated MCF-7 breast cancer cells. We also investigated the effect of mLU8C-PU on invasion- related signal transducers, including protein kinase Cα (PKCα), c-Jun N terminal kinase (JNK), activator protein-1 (AP-1), and nuclear factor-kappa B (NF-ĸB). TPA-induced membrane translocation of PKCα, phosphorylation of JNK, and the nuclear translocations of AP-1 and NF-κB were downregulated by mLU8C-PU in MCF-7 cells. In addition, mLU8C-PU also inhibited matrix metalloproteinase-9 (MMP-9) and interleukin-8 (IL-8) expression. These results indicate that mLU8C-PU inhibits migratory and invasive responses in MCF-7 breast cancer cells by suppressing MMP-9 and IL-8 expression through mitigating TPA-induced PKCα, JNK activation, and the nuclear translocation of AP-1 and NF-κB. These results suggest that mLU8C-PU may be used as an anti-metastatic agent.

Pedersen MH, Hood BL, Ehmsen S, et al.
CYPOR is a novel and independent prognostic biomarker of recurrence-free survival in triple-negative breast cancer patients.
Int J Cancer. 2019; 144(3):631-640 [PubMed] Related Publications
Prognostic and predictive biomarkers of disease and treatment outcome are needed to ensure optimal treatment of patients with triple-negative breast cancer (TNBC). In a mass spectrometry-based global proteomic study of 44 formalin-fixed, paraffin-embedded (FFPE) primary TNBC tumors and 10 corresponding metastases, we found that Cytochrome P450 reductase (CYPOR) expression correlated with patient outcome. The correlation between CYPOR expression and outcome was further evaluated in a Danish cohort of 113 TNBC patients using immunohistochemistry and publicly available gene expression data from two cohorts of TNBC and basal-like breast cancer patients, respectively (N = 249 and N = 580). A significant correlation between high CYPOR gene expression and shorter recurrence-free survival (RFS), but not overall survival, was found in the cohort of 249 TNBC patients (p = 0.018, HR = 1.77, 95% CI 1.1-2.85), and this correlation was recapitulated in a cohort of 580 basal-like breast cancer patients (p = 0.018, HR = 1.4, 95% CI 1.06-1.86). High CYPOR protein expression was also associated with shorter RFS in the cohort of 113 TNBC patients (p = 0.017, HR = 2.73, 95% CI 1.20-6.19), particularly those who were lymph node tumor-negative (p = 0.029, HR = 5.22). Multivariate Cox regression analysis identified CYPOR as an independent prognostic factor for shorter RFS in TNBC patients (p = 0.032, HR = 2.19, 95% CI 1.07-4.47). Together, these data suggest high expression of CYPOR as an independent prognostic biomarker of shorter RFS, which could be used to identify patients who should receive more extensive adjuvant treatment and more aggressive surveillance.

Carriere PP, Kapur N, Mir H, et al.
Cinnamtannin B-1 inhibits cell survival molecules and induces apoptosis in colon cancer.
Int J Oncol. 2018; 53(4):1442-1454 [PubMed] Free Access to Full Article Related Publications
Colon cancer patients receiving chemotherapy continue to be burdened with therapeutic failure and adverse side effects, yielding a need to develop more effective treatments. The present study investigates Cinnamtannin B-1 (CTB-1) as a potential low-toxicity therapeutic alternative for colon cancer. CTB-1-treated DLD-1, COLO 201 and HCT-116 (WT p53 and p53 null) colon cancer cells and CCD 841 CoN normal colon epithelial cells were assessed for changes in survival using MTT assay. The effects of CTB-1 on cell cycle progression and the apoptosis of colon cancer cells were measured using flow cytometry and/or immunofluorescence. The expression profiles of cell survival molecules, particularly apoptotic proteins, in the colon cancer cells were evaluated following CTB-1 treatment via antibody array, then validated by western blot analysis. Additionally, the potential synergy between CTB-1 and 5-fluorouracil (5-FU), a conventional chemotherapeutic agent used in the treatment of colon cancer, against colon cancer cells was assessed using MTT assay and Calcusyn software. The results revealed that CTB-1 significantly decreased the survival of the DLD-1, COLO 201 and HCT-116 cells in a time and/or dose-dependent manner, with minimal cytotoxicity to normal colon cells. CTB-1 treatment was shown to induce cell cycle arrest and apoptosis of DLD-1 and COLO 201 cells. Of note, CTB-1 modulated the expression of several cell survival molecules, which tend to be deregulated in colon cancer, including p53, a key transcription factor involved in apoptosis. The downstream regulation of Bcl-2 and Bak expression, as well as cytochrome c release into the cytosol, was also observed following CTB-1 treatment. Furthermore, CTB-1 was shown to significantly enhance the potency of 5-FU via a synergistic drug interaction. This study reveals for the first time, to the best of our knowledge, the ability of CTB-1 to decrease the survival of colon cancer cells through pro-apoptotic mechanisms and display synergy with conventional chemotherapy, demonstrating the potential therapeutic benefit of CTB-1 in colon cancer.

Wang J, Zhang YS, Thakur K, et al.
Licochalcone A from licorice root, an inhibitor of human hepatoma cell growth via induction of cell apoptosis and cell cycle arrest.
Food Chem Toxicol. 2018; 120:407-417 [PubMed] Related Publications
We investigated the anti-cancer activity of Licochalcone A (LCA), extracted from licorice root. LCA inhibited the proliferation of HepG

Sindhu R, Manonmani HK
l-asparaginase induces intrinsic mitochondrial-mediated apoptosis in human gastric adenocarcinoma cells and impedes tumor progression.
Biochem Biophys Res Commun. 2018; 503(4):2393-2399 [PubMed] Related Publications
l-asparagine essentially regulates growth and proliferation of cancer cells. l-asparaginase is an anti-cancer enzyme that deprives the cancer cells of l-asparagine. The purpose of this study was to explore the mechanism of a novel l-asparaginase from Pseudomonas fluorescens on l-asparagine deprivation mediated anti-proliferation, apoptosis in human gastric adenocarcinoma cells and to evaluate inhibition of angiogenesis. We observed that, the presence of extracellular l-asparagine was essential for the growth of AGS cells. l-asparagine deprivation by l-asparaginase induced metabolic stress, cytotoxicity and apoptosis by G0 phase cell-cycle arrest, modulated the mitochondrial membrane integrity, accelerated caspase-3 activation and instigated DNA damage. The RT-PCR analysis of pro-apoptosis genes: bak1, bax, bbc3, bik, pmaip1, bnip3l, apaf1, casp3, casp7 and casp9 were significantly higher (P < 0.05), while anti-apoptotic markers xiap, bid, mcl1, and death receptor genes tnf and tradd were significantly down-regulated (P < 0.05). Additionally, higher protein expressions of p53, caspase-3 and TEM analysis showing modulations in mitochondria confirmed intrinsic apoptosis pathway. The enzyme impeded tumor progression through inhibition of cell migration and vascular remodelling of endothelial cells. Our findings suggests that the action of l-asparaginase alters mitochondrial membrane permeability and auxiliary activates intrinsic apoptosis. Therefore, this mechanistic approach might be considered as a targeted enzymotherapy against gastric adenocarcinoma.

Alves CL, Elias D, Lyng MB, et al.
SNAI2 upregulation is associated with an aggressive phenotype in fulvestrant-resistant breast cancer cells and is an indicator of poor response to endocrine therapy in estrogen receptor-positive metastatic breast cancer.
Breast Cancer Res. 2018; 20(1):60 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Endocrine resistance in estrogen receptor-positive (ER+) breast cancer is a major clinical problem and is associated with accelerated cancer cell growth, increased motility and acquisition of mesenchymal characteristics. However, the specific molecules and pathways involved in these altered features remain to be detailed, and may be promising therapeutic targets to overcome endocrine resistance.
METHODS: In the present study, we evaluated altered expression of epithelial-mesenchymal transition (EMT) regulators in ER+ breast cancer cell models of tamoxifen or fulvestrant resistance, by gene expression profiling. We investigated the specific role of increased SNAI2 expression in fulvestrant-resistant cells by gene knockdown and treatment with a SNAIL-p53 binding inhibitor, and evaluated the effect on cell growth, migration and expression of EMT markers. Furthermore, we evaluated SNAI2 expression by immunohistochemical analysis in metastatic samples from two cohorts of patients with breast cancer treated with endocrine therapy in the advanced setting.
RESULTS: SNAI2 was found to be significantly upregulated in all endocrine-resistant cells compared to parental cell lines, while no changes were observed in the expression of other EMT-associated transcription factors. SNAI2 knockdown with specific small interfering RNA (siRNA) converted the mesenchymal-like fulvestrant-resistant cells into an epithelial-like phenotype and reduced cell motility. Furthermore, inhibition of SNAI2 with specific siRNA or a SNAIL-p53 binding inhibitor reduced growth of cells resistant to fulvestrant treatment. Clinical evaluation of SNAI2 expression in two independent cohorts of patients with ER+ metastatic breast cancer treated with endocrine therapy in the advanced setting (N = 86 and N = 67) showed that high SNAI2 expression in the metastasis correlated significantly with shorter progression-free survival on endocrine treatment (p = 0.0003 and p = 0.004).
CONCLUSIONS: Our results suggest that SNAI2 is a key regulator of the aggressive phenotype observed in endocrine-resistant breast cancer cells, an independent prognostic biomarker in ER+ advanced breast cancer treated with endocrine therapy, and may be a promising therapeutic target in combination with endocrine therapies in ER+ metastatic breast cancer exhibiting high SNAI2 levels.

Janiszewska H, Bąk A, Skonieczka K, et al.
Constitutional mutations of the CHEK2 gene are a risk factor for MDS, but not for de novo AML.
Leuk Res. 2018; 70:74-78 [PubMed] Related Publications
CHEK2 plays a key role in cellular response to DNA damage, and also in regulation of mitosis and maintenance of chromosomal stability. In patients newly diagnosed with myelodysplastic syndrome (MDS, n = 107) or acute myeloid leukemia (AML, n = 117) congenital CHEK2 mutations (c.444 + 1G > A, c.1100delC, del5395, p.I157 T) were tested by PCR and sequencing analysis. The karyotype of bone marrow cells of each patient was assessed at disease diagnosis using classical cytogenetic methods and fluorescence in situ hybridization. The CHEK2 mutations were strongly associated with the risk of MDS (p < 0.0001) but not with the risk of de novo AML (p = 0.798). In CHEK2-positive MDS patients, two times higher frequency of aberrant karyotypes than in CHEK2-negative patients was found (71% vs. 37%, p = 0.015). In CHEK2-positive patients with cytogenetic abnormalities, subtypes of MDS: refractory anemia with excess blasts-1 or 2, associated with unfavorable disease prognosis, were diagnosed two times more often than in CHEK2-negative cases with aberrations (78% vs. 44%). In conclusion, the congenital CHEK2 inactivation is strongly associated with the risk of MDS and with a poorer prognosis of the disease. However, the chromosomal instability in AML is not correlated with the hereditary dysfunction of CHEK2.

Ishikawa C, Senba M, Mori N
Mitotic kinase PBK/TOPK as a therapeutic target for adult T‑cell leukemia/lymphoma.
Int J Oncol. 2018; 53(2):801-814 [PubMed] Related Publications
Adult T‑cell leukemia/lymphoma (ATLL) is a disorder involving human T-cell leukemia virus type 1 (HTLV‑1)-infected T‑cells characterized by increased clonal neoplastic proliferation. PDZ-binding kinase (PBK) [also known as T‑lymphokine-activated killer cell-originated protein kinase (TOPK)] is a serine/threonine kinase expressed in proliferative cells and is phosphorylated during mitosis. In this study, the expression and phosphorylation of PBK/TOPK were examined by western blot analysis and RT‑PCR. We found that PBK/TOPK was upregulated and phosphorylated in HTLV‑1-transformed T‑cell lines and ATLL‑derived T‑cell lines. Notably, CDK1/cyclin B1, which phosphorylates PBK/TOPK, was overexpressed in these cells. HTLV‑1 infection upregulated PBK/TOPK expression in peripheral blood mononuclear cells (PBMCs) in co-culture assays. The potent PBK/TOPK inhibitors, HI‑TOPK‑032, and fucoidan from brown algae, decreased the proliferation and viability of these cell lines in a dose‑dependent manner. By contrast, the effect of HI‑TOPK‑032 on PBMCs was less pronounced. Treatment with HI‑TOPK‑032 resulted in G1 cell cycle arrest, and decreased CDK6 expression and pRb phosphorylation, which are critical determinants of progression through the G1 phase. In addition, HI‑TOPK‑032 induced apoptosis, as evidenced by morphological changes, the cleavage of poly(ADP-ribose) polymerase with the activation of caspase‑3, -8 and -9, and an increase in the sub‑G1 cell population and APO2.7-positive cells. Moreover, HI‑TOPK‑032 inhibited the expression of cellular inhibitor of apoptosis 2 (c-IAP2), X-linked inhibitor of apoptosis protein (XIAP), survivin and myeloid cell leukemia‑1 (Mcl‑1), and induced the expression of Bak and interferon-induced protein with tetratricopeptide repeats (IFIT)1, 2 and 3. It is noteworthy that the use of this inhibitor led to the inhibition of the phosphorylation of IκB kinase (IKK)α, IKKβ, IκBα, phosphatase and tensin homolog (PTEN) and Akt, and to the decreased protein expression of JunB and JunD, suggesting that PBK/TOPK affects the nuclear factor-κB, Akt and activator protein‑1 signaling pathways. In vivo, the administration of HI‑TOPK‑032 suppressed tumor growth in an ATLL xenograft model. Thus, on the whole, this study on the identification and functional analysis of PBK/TOPK suggests that this kinase is a promising molecular target for ATLL treatment.

Elhinnawi MA, Mohareb RM, Rady HM, et al.
Novel pregnenolone derivatives modulate apoptosis via Bcl-2 family genes in hepatocellular carcinoma in vitro.
J Steroid Biochem Mol Biol. 2018; 183:125-136 [PubMed] Related Publications
A series of pregnenolone derivatives were synthesized and assessed for anti-cancer activity against hepatocellular carcinoma cell line (HepG2). The synthesized hetero-steroids (compounds 3, 4, 5, 6, 7, 8a and 8b) were evaluated for their cytotoxic activities using MTT (3-(4,5-Dimethylthiazol-2-yl)- 2,5-diphenyltetrazolium bromide) assay. Apoptotic activity was assessed using dual acridine orange/ethidium bromide staining method and DNA fragmentation assay. Pro-apoptotic genes (Bax and Bak) and anti-apoptotic genes (Bcl-2 and Bcl-xL) were analyzed using quantitative real time PCR. The results revealed that compounds 4 and 6 displayed cytotoxic activity (IC

Enßle JC, Boedicker C, Wanior M, et al.
Co-targeting of BET proteins and HDACs as a novel approach to trigger apoptosis in rhabdomyosarcoma cells.
Cancer Lett. 2018; 428:160-172 [PubMed] Related Publications
Histone acetylation marks exert essential functions in regulating gene expression. These marks are written by histone acetyltransferases (HATs), removed by histone deacetylases (HDACs) and read by e.g. BET proteins. While BET inhibitors are promising new anticancer drugs, little is yet known about their antitumor activity in rhabdomyosarcoma (RMS). We therefore investigated the efficacy of the prototypic BET inhibitor JQ1 alone or in combination with other epigenetic modifiers, namely HDAC inhibitors (HDACIs). Here, we discover a synergistic interaction of the panBET inhibitor JQ1 together with various HDACIs, i.e. Quisinostat (JNJ-26481585), Vorinostat (SAHA), Entinostat (MS-275) and Panobinostat (LBH589), inducing apoptosis in RMS cells, whereas JQ1 as single agent exhibits little cytotoxicity. Calculation of combination index (CI) confirmed the synergism of this combination. Importantly, JQ1 and JNJ-26481585 act in concert to suppress colony formation and to trigger apoptosis in an in vivo model. Mechanistic studies revealed that combination of JQ1 and JNJ-26481585 cooperatively upregulates BIM and BMF, while downregulating BCL-x

Liu L, Huang Z, Chen J, et al.
Protein phosphatase 2A mediates JS-K-induced apoptosis by affecting Bcl-2 family proteins in human hepatocellular carcinoma HepG2 cells.
J Cell Biochem. 2018; 119(8):6633-6643 [PubMed] Related Publications
Protein phosphatase 2A (PP2A) is an important enzyme within various signal transduction pathways. The present study was investigated PP2A mediates JS-K-induced apoptosis by affecting Bcl-2 family protein. JS-K showed diverse inhibitory effects in five HCC cell lines, especially HepG2 cells. JS-K caused a dose- and time-dependent reduction in cell viability and increased in levels of LDH release. Meanwhile, JS-K- induced apoptosis was characterized by mitochondrial membrane potential reduction, Hoechst 33342

Peng X, Zhou Y, Sun Y, et al.
Overexpression of modified human TRβ1 suppresses the growth of hepatocarcinoma SK-hep1 cells in vitro and in xenograft models.
Mol Cell Biochem. 2018; 449(1-2):207-218 [PubMed] Free Access to Full Article Related Publications
Association studies suggest that TRβ1 functions as a tumor suppressor. Thyroid hormone receptors (TRs) mediate transcriptional responses through a highly conserved DNA-binding domain (DBD). We previously constructed an artificially modified human TRβ1 (m-TRβ1) via the introduction of a 108-bp exon sequence into the corresponding position of the wild-type human TRβ1 (TRβ1) DBD. Studies confirmed that m-TRβ1 was functional and could inhibit the proliferation of breast cancer MDA-MB-468 cells in vitro. To understand the role of m-TRβ1 in liver tumor development, we adopted a gain-of-function approach by stably expressing TRβ (m-TRβ1 and TRβ1) genes in a human hepatocarcinoma cell line, SK-hep1 (without endogenous TRβ), and then evaluated the effects of the expressed TRβ on cancer cell proliferation, migration, and tumor growth in cell-based studies and xenograft models. In the presence of 3,5,3-L-triiodothyronine (T3), the expression of TRβ in SK-hep1 cells inhibited cancer cell proliferation and impeded tumor cell migration through the up-regulation of 4-1BB, Caspase-3, and Bak gene expression; down-regulation of Bcl-2 gene expression; and activation of the Caspase-3 protein. TRβ expression in SK-hep1 led to less tumor growth in xenograft models. Additionally, the anti-tumor effect of m-TRβ1 was stronger than that of TRβ1. These data indicate that m-TRβ1 can act as a tumor suppressor in hepatocarcinoma and its role was significantly better than that of TRβ1.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. BAK1, Cancer Genetics Web: http://www.cancer-genetics.org/BAK1.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 31 August, 2019     Cancer Genetics Web, Established 1999