Gene Summary

Gene:WEE1; WEE1 G2 checkpoint kinase
Aliases: WEE1A, WEE1hu
Summary:This gene encodes a nuclear protein, which is a tyrosine kinase belonging to the Ser/Thr family of protein kinases. This protein catalyzes the inhibitory tyrosine phosphorylation of CDC2/cyclin B kinase, and appears to coordinate the transition between DNA replication and mitosis by protecting the nucleus from cytoplasmically activated CDC2 kinase. [provided by RefSeq, Jul 2008]
Databases:OMIM, VEGA, HGNC, Ensembl, GeneCard, Gene
Protein:wee1-like protein kinase
Source:NCBIAccessed: 27 February, 2015


What does this gene/protein do?
Show (22)
Pathways:What pathways are this gene/protein implicaed in?
Show (4)

Cancer Overview

Research Indicators

Publications Per Year (1990-2015)
Graph generated 27 February 2015 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Nuclear Proteins
  • Mitosis
  • Breast Cancer
  • Pyrazoles
  • HeLa Cells
  • Cell Cycle Proteins
  • Gene Expression
  • Cyclin-Dependent Kinases
  • RNA Interference
  • Phosphorylation
  • Cell Proliferation
  • ras-GRF1
  • Protein Kinase Inhibitors
  • Sequence Deletion
  • G2 Phase
  • cdc25 Phosphatases
  • Drug Synergism
  • Transcription
  • Messenger RNA
  • Gene Expression Profiling
  • Apoptosis
  • Antineoplastic Agents
  • Protein Kinases
  • Spindle Apparatus
  • Western Blotting
  • Flow Cytometry
  • Drug Resistance
  • Down-Regulation
  • Oligonucleotide Array Sequence Analysis
  • Mutation
  • Cancer Gene Expression Regulation
  • DNA Damage
  • Tyrosine
  • Chromosome 11
  • Cyclins
  • MicroRNAs
  • Cell Cycle
  • Protein-Tyrosine Kinases
  • Cyclin B
  • Pyrimidines
Tag cloud generated 27 February, 2015 using data from PubMed, MeSH and CancerIndex

Specific Cancers (1)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: WEE1 (cancer-related)

Liu J, Shen W, Tang Y, et al.
Proteasome inhibitor MG132 enhances the antigrowth and antimetastasis effects of radiation in human nonsmall cell lung cancer cells.
Tumour Biol. 2014; 35(8):7531-9 [PubMed] Related Publications
The current treatment for advanced nonsmall cell lung cancer (NSCLC) remains unsatisfactory due to resistance to chemotherapy and ionizing radiation. The ubiquitin-proteasome system (UPS) regulates multiple cellular processes that are crucial for the proliferation and survival of all kinds of cells. Carbobenzoxyl-leucinyl-leucinyl-leucinal-H (MG132), a specific and selective reversible inhibitor of the 26S proteasome, represents a novel approach for cancer therapy. However, whether MG132 can potentiate the effect of radiation against the growth and metastasis of NSCLC is not clear. We found that MG132 inhibited the proliferation of human NSCLC cell lines (A549 and H1299) in a dose- and time-dependent manner by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Then MG132 at a nontoxic dose (100 nM) was selected for following studies. Pretreatment of A549 and H1299 cells with 100 nM MG132 before ionizing radiation (IR) potentiated the anticancer effect of IR. Moreover, pretreatment with 100 nM MG132 before IR-enhanced radiation induced cell cycle arrest by decreased CyclinD1 but increased Wee1 expression in A549 and H1299 cells. In addition, pretreatment of MG132 combined with IR significantly suppressed cell migration and invasion abilities in NSCLC cell lines, which was accompanied by decreased expression of matrix metalloproteinase (MMP)-2 and MMP-9 in NSCLC cell lines. Taken together, our results demonstrate that MG132 enhances the antigrowth and antimetastatic effects of irradiation in NSCLC cells by modulating expression of cell cycle and invasion- related genes.

Harris PS, Venkataraman S, Alimova I, et al.
Integrated genomic analysis identifies the mitotic checkpoint kinase WEE1 as a novel therapeutic target in medulloblastoma.
Mol Cancer. 2014; 13:72 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Medulloblastoma is the most common type of malignant brain tumor that afflicts children. Although recent advances in chemotherapy and radiation have improved outcomes, high-risk patients do poorly with significant morbidity.
METHODS: To identify new molecular targets, we performed an integrated genomic analysis using structural and functional methods. Gene expression profiling in 16 medulloblastoma patient samples and subsequent gene set enrichment analysis indicated that cell cycle-related kinases were associated with disease development. In addition a kinome-wide small interfering RNA (siRNA) screen was performed to identify kinases that, when inhibited, could prevent cell proliferation. The two genome-scale analyses were combined to identify key vulnerabilities in medulloblastoma. The inhibition of one of the identified targets was further investigated using RNAi and a small molecule inhibitor.
RESULTS: Combining the two analyses revealed that mitosis-related kinases were critical determinants of medulloblastoma cell proliferation. RNA interference (RNAi)-mediated knockdown of WEE1 kinase and other mitotic kinases was sufficient to reduce medulloblastoma cell proliferation. These data prompted us to examine the effects of inhibiting WEE1 by RNAi and by a small molecule inhibitor of WEE1, MK-1775, in medulloblastoma cell lines. MK-1775 inhibited the growth of medulloblastoma cell lines, induced apoptosis and increased DNA damage at nanomolar concentrations. Further, MK-1775 was synergistic with cisplatin in reducing medulloblastoma cell proliferation and resulted in an associated increase in cell death. In vivo MK-1775 suppressed medulloblastoma tumor growth as a single agent.
CONCLUSIONS: Taken together, these findings highlight mitotic kinases and, in particular, WEE1 as a rational therapeutic target for medulloblastoma.

Lal S, Burkhart RA, Beeharry N, et al.
HuR posttranscriptionally regulates WEE1: implications for the DNA damage response in pancreatic cancer cells.
Cancer Res. 2014; 74(4):1128-40 [PubMed] Related Publications
HuR (ELAV1), an RNA-binding protein abundant in cancer cells, primarily resides in the nucleus, but under specific stress (e.g., gemcitabine), HuR translocates to the cytoplasm in which it tightly modulates the expression of mRNA survival cargo. Here, we demonstrate for the first time that stressing pancreatic ductal adenocarcinoma (PDA) cells by treatment with DNA-damaging anticancer agents (mitomycin C, oxaliplatin, cisplatin, carboplatin, and a PARP inhibitor) results in HuR's translocation from the nucleus to the cytoplasm. Importantly, silencing HuR in PDA cells sensitized the cells to these agents, whereas overexpressing HuR caused resistance. HuR's role in the efficacy of DNA-damaging agents in PDA cells was, in part, attributed to the acute upregulation of WEE1 by HuR. WEE1, a mitotic inhibitor kinase, regulates the DNA damage repair pathway, and therapeutic inhibition of WEE1 in combination with chemotherapy is currently in early phase trials for the treatment of cancer. We validate WEE1 as a HuR target in vitro and in vivo by demonstrating (i) direct binding of HuR to WEE1's mRNA (a discrete 56-bp region residing in the 3' untranslated region) and (ii) HuR siRNA silencing and overexpression directly affects the protein levels of WEE1, especially after DNA damage. HuR's positive regulation of WEE1 increases γ-H2AX levels, induces Cdk1 phosphorylation, and promotes cell-cycle arrest at the G2-M transition. We describe a novel mechanism that PDA cells use to protect against DNA damage in which HuR posttranscriptionally regulates the expression and downstream function of WEE1 upon exposure to DNA-damaging agents.

Ghiasi N, Habibagahi M, Rosli R, et al.
Tumour suppressive effects of WEE1 gene silencing in breast cancer cells.
Asian Pac J Cancer Prev. 2014; 14(11):6605-11 [PubMed] Related Publications
BACKGROUND: WEE1 is a G2/M checkpoint regulator protein. Various studies have indicated that WEE1 could be a good target for cancer therapy. The main aim of this study was to asssess the tumor suppressive potential of WEE1 silencing in two different breast cancer cell lines, MCF7 which carries the wild-type p53 and MDA-MB468 which contains a mutant type.
MATERIALS AND METHODS: After WEE1 knockdown with specific shRNAs downstream effects on cell viability and cell cycle progression were determined using MTT and flow cytometry analyses, respectively. Real-time PCR and Western blotting were conducted to assess the effect of WEE1 inhibition on the expression of apoptotic (p53) and anti-apoptotic (Bcl2) factors and also a growth marker (VEGF).
RESULTS: The results showed that WEE1 inhibition could cause a significant decrease in the viability of both MCF7 and MDA-MB-468 breast cancer cell lines by more than 50%. Interestingly, DNA content assays showed a significant increase in apoptotic cells following WEE1 silencing. WEE1 inhibition also induced up- regulation of the apoptotic marker, p53, in breast cancer cells. A significant decrease in the expression of VEGF and Bcl-2 was observed following WEE1 inhibition in both cell lines.
CONCLUSIONS: In concordance with previous studies, our data showed that WEE1 inhibition could induce G2 arrest abrogation and consequent cell death in breast cancer cells. Moreover, in this study, the observed interactions between the pro- and anti-apoptotic proteins and decrease in the angiogenesis marker expression confirm the susceptibility to apoptosis and validate the tumor suppressive effect of WEE1 inhibition in breast cancer cells. Interestingly, the levels of the sensitivity to WEE1 silencing in breast cancer cells, MCF7 and MDA-MB468, seem to be in concordance with the level of p53 expression.

Mueller S, Hashizume R, Yang X, et al.
Targeting Wee1 for the treatment of pediatric high-grade gliomas.
Neuro Oncol. 2014; 16(3):352-60 [PubMed] Article available free on PMC after 01/03/2015 Related Publications
BACKGROUND: We investigated the efficacy of the Wee1 inhibitor MK-1775 in combination with radiation for the treatment of pediatric high-grade gliomas (HGGs), including diffuse intrinsic pontine gliomas (DIPGs).
METHODS: Gene expression analysis was performed for 38 primary pediatric gliomas (3 grade I, 10 grade II, 11 grade III, 14 grade IV) and 8 normal brain samples using the Agilent 4 × 44 K array. Clonogenic survival assays were carried out in pediatric and adult HGG cell lines (n = 6) to assess radiosensitizing effects of MK-1775. DNA repair capacity was evaluated by measuring protein levels of γ-H2AX, a marker of double strand DNA breaks. In vivo activity of MK-1775 with radiation was assessed in 2 distinct orthotopic engraftment models of pediatric HGG, including 1 derived from a genetically engineered mouse carrying a BRAF(V600E) mutation, and 1 xenograft model in which tumor cells were derived from a patient's DIPG.
RESULTS: Wee1 is overexpressed in pediatric HGGs, with increasing expression positively correlated with malignancy (P = .007 for grade III + IV vs I + II) and markedly high expression in DIPG. Combination treatment of MK-1775 and radiation reduced clonogenic survival and increased expression of γ-H2AX to a greater extent than achieved by radiation alone. Finally, combined MK-1775 and radiation conferred greater survival benefit to mice bearing engrafted, orthotopic HGG and DIPG tumors, compared with treatment with radiation alone (BRAF(V600E) model P = .0061 and DIPG brainstem model P = .0163).
CONCLUSION: Our results highlight MK-1775 as a promising new therapeutic agent for use in combination with radiation for the treatment of pediatric HGGs, including DIPG.

Cizkova M, Vacher S, Meseure D, et al.
PIK3R1 underexpression is an independent prognostic marker in breast cancer.
BMC Cancer. 2013; 13:545 [PubMed] Article available free on PMC after 01/03/2015 Related Publications
BACKGROUND: The present study focused on the prognostic roles of PIK3CA and PIK3R1 genes and additional PI3K pathway-associated genes in breast cancer.
METHODS: The mutational and mRNA expression status of PIK3CA, PIK3R1 and AKT1, and expression status of other genes involved in the PI3K pathway (EGFR, PDK1, PTEN, AKT2, AKT3, GOLPH3, WEE1, P70S6K) were assessed in a series of 458 breast cancer samples.
RESULTS: PIK3CA mutations were identified in 151 samples (33.0%) in exons 1, 2, 9 and 20. PIK3R1 mutations were found in 10 samples (2.2%) and underexpression in 283 samples (61.8%). AKT1 mutations were found in 15 samples (3.3%) and overexpression in 116 samples (25.3%). PIK3R1 underexpression tended to mutual exclusivity with PIK3CA mutations (p = 0.00097). PIK3CA mutations were associated with better metastasis-free survival and PIK3R1 underexpression was associated with poorer metastasis-free survival (p = 0.014 and p = 0.00028, respectively). By combining PIK3CA mutation and PIK3R1 expression status, four prognostic groups were identified with significantly different metastasis-free survival (p = 0.00046). On Cox multivariate regression analysis, the prognostic significance of PIK3R1 underexpression was confirmed in the total population (p = 0.0013) and in breast cancer subgroups.
CONCLUSIONS: PIK3CA mutations and PIK3R1 underexpression show opposite effects on patient outcome and could become useful prognostic and predictive factors in breast cancer.

Rana S, Munawar M, Shahid A, et al.
Deregulated expression of circadian clock and clock-controlled cell cycle genes in chronic lymphocytic leukemia.
Mol Biol Rep. 2014; 41(1):95-103 [PubMed] Related Publications
Circadian rhythms are endogenous and self-sustained oscillations of multiple biological processes with approximately 24-h rhythmicity. Circadian genes and their protein products constitute the molecular components of the circadian oscillator that form positive/negative feedback loops and generate circadian rhythms. The circadian regulation extends from core clock genes to various clock-controlled genes that include various cell cycle genes. Aberrant expression of circadian clock genes, therefore, may lead to genomic instability and accelerated cellular proliferation potentially promoting carcinogenesis. The current study encompasses the investigation of simultaneous expression of four circadian clock genes (Bmal1, Clock, Per1 and Per2) and three clock-controlled cell cycle genes (Myc, Cyclin D1 and Wee1) at mRNA level and determination of serum melatonin levels in peripheral blood samples of 37 CLL (chronic lymphocytic leukemia) patients and equal number of age- and sex-matched healthy controls in order to indicate association between deregulated circadian clock and manifestation of CLL. Results showed significantly down-regulated expression of Bmal1, Per1, Per2 and Wee1 and significantly up-regulated expression of Myc and Cyclin D1 (P < 0.0001) in CLL patients as compared to healthy controls. When expression of these genes was compared between shift-workers and non-shift-workers within the CLL group, the expression was found more aberrant in shift-workers as compared to non-shift-workers. However, this difference was found statistically significant for Myc and Cyclin D1 only (P < 0.05). Serum melatonin levels were found significantly low (P < 0.0001) in CLL subjects as compared to healthy controls whereas melatonin levels were found still lower in shift-workers as compared to non-shift-workers within CLL group (P < 0.01). Our results suggest that aberrant expression of circadian clock genes can lead to aberrant expression of their downstream targets that are involved in cell proliferation and apoptosis and hence may result in manifestation of CLL. Moreover, shift-work and low melatonin levels may also contribute in etiology of CLL by further perturbing of circadian clock.

Kelleher FC, Rao A, Maguire A
Circadian molecular clocks and cancer.
Cancer Lett. 2014; 342(1):9-18 [PubMed] Related Publications
Physiological processes such as the sleep-wake cycle, metabolism and hormone secretion are controlled by a circadian rhythm adapted to 24h day-night periodicity. This circadian synchronisation is in part controlled by ambient light decreasing melatonin secretion by the pineal gland and co-ordinated by the suprachiasmatic nucleus of the hypothalamus. Peripheral cell autonomous circadian clocks controlled by the suprachiasmatic nucleus, the master regulator, exist within every cell of the body and are comprised of at least twelve genes. These include the basic helix-loop-helix/PAS domain containing transcription factors; Clock, BMal1 and Npas2 which activate transcription of the periodic genes (Per1 and Per2) and cryptochrome genes (Cry1 and Cry2). Points of coupling exist between the cellular clock and the cell cycle. Cell cycle genes which are affected by the molecular circadian clock include c-Myc, Wee1, cyclin D and p21. Therefore the rhythm of the circadian clock and cancer are interlinked. Molecular examples exist including activation of Per2 leads to c-myc overexpression and an increased tumor incidence. Mice with mutations in Cryptochrome 1 and 2 are arrhythmic (lack a circadian rhythm) and arrhythmic mice have a faster rate of growth of implanted tumors. Epidemiological finding of relevance include 'The Nurses' Health Study' where it was established that women working rotational night shifts have an increased incidence of breast cancer. Compounds that affect circadian rhythm exist with attendant future therapeutic possibilities. These include casein kinase I inhibitors and a candidate small molecule KL001 that affects the degradation of cryptochrome. Theoretically the cell cycle and malignant disease may be targeted vicariously by selective alteration of the cellular molecular clock.

McClellan MJ, Wood CD, Ojeniyi O, et al.
Modulation of enhancer looping and differential gene targeting by Epstein-Barr virus transcription factors directs cellular reprogramming.
PLoS Pathog. 2013; 9(9):e1003636 [PubMed] Article available free on PMC after 01/03/2015 Related Publications
Epstein-Barr virus (EBV) epigenetically reprogrammes B-lymphocytes to drive immortalization and facilitate viral persistence. Host-cell transcription is perturbed principally through the actions of EBV EBNA 2, 3A, 3B and 3C, with cellular genes deregulated by specific combinations of these EBNAs through unknown mechanisms. Comparing human genome binding by these viral transcription factors, we discovered that 25% of binding sites were shared by EBNA 2 and the EBNA 3s and were located predominantly in enhancers. Moreover, 80% of potential EBNA 3A, 3B or 3C target genes were also targeted by EBNA 2, implicating extensive interplay between EBNA 2 and 3 proteins in cellular reprogramming. Investigating shared enhancer sites neighbouring two new targets (WEE1 and CTBP2) we discovered that EBNA 3 proteins repress transcription by modulating enhancer-promoter loop formation to establish repressive chromatin hubs or prevent assembly of active hubs. Re-ChIP analysis revealed that EBNA 2 and 3 proteins do not bind simultaneously at shared sites but compete for binding thereby modulating enhancer-promoter interactions. At an EBNA 3-only intergenic enhancer site between ADAM28 and ADAMDEC1 EBNA 3C was also able to independently direct epigenetic repression of both genes through enhancer-promoter looping. Significantly, studying shared or unique EBNA 3 binding sites at WEE1, CTBP2, ITGAL (LFA-1 alpha chain), BCL2L11 (Bim) and the ADAMs, we also discovered that different sets of EBNA 3 proteins bind regulatory elements in a gene and cell-type specific manner. Binding profiles correlated with the effects of individual EBNA 3 proteins on the expression of these genes, providing a molecular basis for the targeting of different sets of cellular genes by the EBNA 3s. Our results therefore highlight the influence of the genomic and cellular context in determining the specificity of gene deregulation by EBV and provide a paradigm for host-cell reprogramming through modulation of enhancer-promoter interactions by viral transcription factors.

Chen B, Duan L, Yin G, et al.
miR-381, a novel intrinsic WEE1 inhibitor, sensitizes renal cancer cells to 5-FU by up-regulation of Cdc2 activities in 786-O.
J Chemother. 2013; 25(4):229-38 [PubMed] Related Publications
BACKGROUND: Few researches on increase of chemotherapy sensitivity by microRNA (miRNA) were reported. We aim to investigate exact role of miR-381 in chemotherapy sensitivity of 5-fluorouracil (5-FU) in renal cancer cells.
METHODS: We investigated the cell survival, cell-cycle and apoptosis of 786-O and HK-2 cells treated with miR-381 and 5-FU. IC50 of 5-FU was calculated. To study apoptosis and G2/M arrest, we determined pHH3, mitotic index and caspase-3/7 activity.
RESULTS: We showed that miR-381 combined with 5-FU inhibited proliferation and potentiated the anti-tumour efficacies of 5-FU at tolerated concentration in vitro. miR-381 combined with 5-FU led to Cdc2 activation, mitotic catastrophe, and cell apoptosis through inhibitory WEE1. WEE1 was also validated as the direct target of miR-381. IC50 of 5-FU decreased significantly in the presence of miR-381.
CONCLUSION: miR-381 increases sensitivity of 786-O cells to 5-FU by inhibitory WEE1 and increase of Cdc2 activity.

Chen B, Duan L, Yin G, et al.
Simultaneously expressed miR-424 and miR-381 synergistically suppress the proliferation and survival of renal cancer cells---Cdc2 activity is up-regulated by targeting WEE1.
Clinics (Sao Paulo). 2013; 68(6):825-33 [PubMed] Article available free on PMC after 01/03/2015 Related Publications
OBJECTIVES: MiRNAs are intrinsic RNAs that interfere with protein translation. Few studies on the synergistic effects of miRNAs have been reported. Both miR-424 and miR-381 have been individually reported to be involved in carcinogenesis. They share a common putative target, WEE1, which is described as an inhibitor of G2/M progression. Here, we studied the synergistic effects of miR-424 and miR-381 on renal cancer cells.
METHODS: The viability of 786-O cells was analyzed after transfection with either a combination of miR-424 and miR-381 or each miRNA alone. We investigated cell cycle progression and apoptosis with flow cytometry. To confirm apoptosis and the abrogation of G2/M arrest, we determined the level of pHH3, which is an indicator of mitosis, and caspase-3/7 activity. The expression levels of WEE1, Cdc25, γH2AX, and Cdc2 were manipulated to investigate the roles of these proteins in the miRNA-induced anti-tumor effects. To verify that WEE1 was a direct target of both miR-424 and miR-381, we performed a dual luciferase reporter assay.
RESULTS: We showed that the combination of these miRNAs synergistically inhibited proliferation, abrogated G2/M arrest, and induced apoptosis. This combination led to Cdc2 activation through WEE1 inhibition. This regulation was more effective when cells were treated with both miRNAs than with either miRNA alone, indicating synergy between these miRNAs. WEE1 was verified to be a direct target of each miRNA according to the luciferase reporter assay.
CONCLUSIONS: These data clearly demonstrate that these two miRNAs might synergistically act as novel modulators of tumorigenesis by down-regulating WEE1 expression in renal cell cancer cells.

Guertin AD, Li J, Liu Y, et al.
Preclinical evaluation of the WEE1 inhibitor MK-1775 as single-agent anticancer therapy.
Mol Cancer Ther. 2013; 12(8):1442-52 [PubMed] Related Publications
Inhibition of the DNA damage checkpoint kinase WEE1 potentiates genotoxic chemotherapies by abrogating cell-cycle arrest and proper DNA repair. However, WEE1 is also essential for unperturbed cell division in the absence of extrinsic insult. Here, we investigate the anticancer potential of a WEE1 inhibitor, independent of chemotherapy, and explore a possible cellular context underlying sensitivity to WEE1 inhibition. We show that MK-1775, a potent and selective ATP-competitive inhibitor of WEE1, is cytotoxic across a broad panel of tumor cell lines and induces DNA double-strand breaks. MK-1775-induced DNA damage occurs without added chemotherapy or radiation in S-phase cells and relies on active DNA replication. At tolerated doses, MK-1775 treatment leads to xenograft tumor growth inhibition or regression. To begin addressing potential response markers for MK-1775 monotherapy, we focused on PKMYT1, a kinase functionally related to WEE1. Knockdown of PKMYT1 lowers the EC(50) of MK-1775 by five-fold but has no effect on the cell-based response to other cytotoxic drugs. In addition, knockdown of PKMYT1 increases markers of DNA damage, γH2AX and pCHK1(S345), induced by MK-1775. In a post hoc analysis of 305 cell lines treated with MK-1775, we found that expression of PKMYT1 was below average in 73% of the 33 most sensitive cell lines. Our findings provide rationale for WEE1 inhibition as a potent anticancer therapy independent of a genotoxic partner and suggest that low PKMYT1 expression could serve as an enrichment biomarker for MK-1775 sensitivity.

Haarberg HE, Paraiso KH, Wood E, et al.
Inhibition of Wee1, AKT, and CDK4 underlies the efficacy of the HSP90 inhibitor XL888 in an in vivo model of NRAS-mutant melanoma.
Mol Cancer Ther. 2013; 12(6):901-12 [PubMed] Article available free on PMC after 01/03/2015 Related Publications
The HSP90 inhibitor XL888 is effective at reversing BRAF inhibitor resistance in melanoma, including that mediated through acquired NRAS mutations. The present study has investigated the mechanism of action of XL888 in NRAS-mutant melanoma. Treatment of NRAS-mutant melanoma cell lines with XL888 led to an inhibition of growth, G2-M phase cell-cycle arrest, and the inhibition of cell survival in three-dimensional spheroid and colony formation assays. In vitro, HSP90 inhibition led to the degradation of ARAF, CRAF, Wee1, Chk1, and cdc2 and was associated with decreased mitogen-activated protein kinase (MAPK), AKT, mTOR, and c-jun NH2 kinase (JNK) signaling. Apoptosis induction was associated with increased BIM expression and a decrease in the expression of the prosurvival protein Mcl-1. The critical role of increased BIM and decreased Mcl-1 expression in the survival of NRAS-mutant melanoma cell lines was shown through siRNA knockdown and overexpression studies. In an animal xenograft model of NRAS-mutant melanoma, XL888 treatment led to reduced tumor growth and apoptosis induction. Important differences in the pattern of client degradation were noted between the in vivo and in vitro studies. In vivo, XL888 treatment led to degradation of CDK4 and Wee1 and the inhibition of AKT/S6 signaling with little or no effect observed upon ARAF, CRAF, or MAPK. Blockade of Wee1, using either siRNA knockdown or the inhibitor MK1775, was associated with significant levels of growth inhibition and apoptosis induction. Together, these studies have identified Wee1 as a key target of XL888, suggesting novel therapeutic strategies for NRAS-mutant melanoma.

Mahajan K, Mahajan NP
WEE1 tyrosine kinase, a novel epigenetic modifier.
Trends Genet. 2013; 29(7):394-402 [PubMed] Article available free on PMC after 01/03/2015 Related Publications
The cell cycle requires cells to duplicate their chromatin, DNA, and histones, while retaining a subset of epigenetic marks, in a highly coordinated manner. The WEE1 kinase was identified as an important regulator during S phase, preventing entry into mitosis until DNA replication has been completed. Interestingly, WEE1 has also emerged as a key player in regulating histone synthesis. It phosphorylates histone H2B at tyrosine 37 in the nucleosomes found upstream of the histone gene cluster, and this suppresses histone transcription in late S phase. These observations highlight a dual role for WEE1 as both a mitotic gatekeeper and a surveyor of chromatin synthesis, providing a direct link between epigenetics and cell-cycle progression. Importantly, this link has implications for the design of novel epigenetic inhibitors targeting cancers that display elevated expression of this kinase.

Creevey L, Ryan J, Harvey H, et al.
MicroRNA-497 increases apoptosis in MYCN amplified neuroblastoma cells by targeting the key cell cycle regulator WEE1.
Mol Cancer. 2013; 12:23 [PubMed] Article available free on PMC after 01/03/2015 Related Publications
BACKGROUND: Neuroblastoma is responsible for 15% of all childhood cancer deaths. Despite advances in treatment and disease management, the overall 5-year survival rates remain poor in high-risk disease (25-40%). MiR-497 was previously identified by our laboratory as a member of a miRNA expression signature, predictive of neuroblastoma patient survival and has been reported as a tumor suppressor in a variety of other cancers. WEE1, a tyrosine kinase regulator of the cell cycle and predicted target of miR-497, has emerged as an oncogene in several cancer types and therefore represents an attractive potential target for novel therapy approaches in high-risk neuroblastoma. Our aim was to investigate the potential tumor suppressive role of miR-497 in high-risk neuroblastoma.
METHODS: Expression levels of miR-497 and WEE1 in tissues and cells were determined using RT-PCR. The effect of miR-497 and siWEE1 on cell viability was evaluated using MTS assays, apoptosis levels were determined using FACS analysis of Annexin V/PI stained cells, and target protein expression was determined using western blot. Luciferase reporter plasmids were constructed to confirm direct targeting. Results were reported as mean±S.E.M and differences were tested for significance using 2-tailed Students t-test.
RESULTS: We determined that miR-497 expression was significantly lower in high-risk MYCN amplified (MNA) tumors and that low miR-497 expression was associated with worse EFS and OS in our cohort. Over-expression of miR-497 reduced cell viability and increased apoptosis in MNA cells. We identified WEE1 as a novel target for miR-497 in neuroblastoma. Furthermore, our analysis showed that high WEE1 levels are significantly associated with poor EFS and OS in neuroblastoma and that siRNA knockdown of WEE1 in MNA cell lines results in significant levels of apoptosis, supporting an oncogenic role of WEE1 in neuroblastoma. Cisplatin (CDDP) treatment of both miR-497 over-expressing cells and WEE1 inhibited cells, resulted in a significant increase in apoptosis in MNA cells, describing a synergistic effect and therefore a potential therapeutic for high-risk neuroblastoma.
CONCLUSION: Our study's results are consistent with miR-497 being a candidate tumor suppressor in neuroblastoma, through the direct targeting of WEE1. These findings re-enforce the proposal of WEE1 as a therapeutic target in neuroblastoma.

Sharma A, Madhunapantula SV, Gowda R, et al.
Identification of aurora kinase B and Wee1-like protein kinase as downstream targets of (V600E)B-RAF in melanoma.
Am J Pathol. 2013; 182(4):1151-62 [PubMed] Article available free on PMC after 01/03/2015 Related Publications
BRAF is the most mutated gene in melanoma, with approximately 50% of patients containing V600E mutant protein. (V600E)B-RAF can be targeted using pharmacological agents, but resistance develops in patients by activating other proteins in the signaling pathway. Identifying downstream members in this signaling cascade is important to design strategies to avoid the development of resistance. Unfortunately, downstream proteins remain to be identified and therapeutic potential requires validation. A kinase screen was undertaken to identify downstream targets in the (V600E)B-RAF signaling cascade. Involvement of aurora kinase B (AURKB) and Wee1-like protein kinase (WEE1) as downstream proteins in the (V600E)B-RAF pathway was validated in xenografted tumors, and mechanisms of action were characterized in size- and time-matched tumors. Levels of only AURKB and WEE1 decreased in melanoma cells, when (V600E)B-RAF, mitogen-activated protein kinase 1/2, or extracellular signal-regulated kinase 1/2 protein levels were reduced using siRNA compared with other identified kinases. AURKB and WEE1 were expressed in tumors of patients with melanoma at higher levels than observed in normal human melanocytes. Targeting these proteins reduced tumor development by approximately 70%, similar to that observed when inhibiting (V600E)B-RAF. Furthermore, protein or activity levels of AURKB and WEE1 decreased in melanoma cells when pharmacological agents targeting upstream (V600E)B-RAF or mitogen-activated protein kinase were used to inhibit the (V600E)B-RAF pathway. Thus, AURKB and WEE1 are targets and biomarkers of therapeutic efficacy, lying downstream of (V600E)B-RAF in melanomas.

Karlisch C, Harati K, Chromik AM, et al.
Effects of TRAIL and taurolidine on apoptosis and proliferation in human rhabdomyosarcoma, leiomyosarcoma and epithelioid cell sarcoma.
Int J Oncol. 2013; 42(3):945-56 [PubMed] Related Publications
Soft tissue sarcomas (STS) are a heterogeneous group of malignant tumours representing 1% of all malignancies in adults. Therapy for STS should be individualised and multimodal, but complete surgical resection with clear margins remains the mainstay of therapy. Disseminated soft tissue sarcoma still represents a therapeutic dilemma. Commonly used chemotherapeutic agents such as doxorubicin and ifosfamide have proven to be effective in fewer than 30% in these cases. Therefore, we tested the apoptotic and anti-proliferative in vitro effects of TNF-related apoptosis-inducing ligand (TRAIL) and taurolidine (TRD) on rhabdomyosarcoma (A-204), leiomyosarcoma (SK-LMS-1) and epithelioid cell sarcoma (VA-ES-BJ) cell lines. Viability, apoptosis and necrosis were quantified by FACS analysis (propidium iodide/Annexin V staining). Gene expression was analysed by DNA microarrays and the results validated for selected genes by rtPCR. Protein level changes were documented by western blot analysis. Cell proliferation was analysed by BrdU ELISA assay. The single substances TRAIL and TRD significantly induced apoptotic cell death and decreased proliferation in rhabdomyosarcoma and epithelioid cell sarcoma cells. The combined use of TRAIL and TRD resulted in a synergistic apoptotic effect in all three cell lines, especially in rhabdomyosarcoma cells leaving 18% viable cells after 48 h of incubation (p<0.05). Analysis of the differentially regulated genes revealed that TRD and TRAIL influence apoptotic pathways, including the TNF-receptor associated and the mitochondrial pathway. Microarray analysis revealed remarkable expression changes in a variety of genes, which are involved in different apoptotic pathways and cross talk to other pathways at multiple levels. This in vitro study demonstrates that TRAIL and TRD synergise in inducing apoptosis and inhibiting proliferation in different human STS cell lines. Effects on gene expression differ relevantly in the sarcoma entities. These results provide experimental support for in vivo trials assessing the effect of TRAIL and TRD in STS and sustain the approach of individualized therapy.

Choi YH, Yoo YH
Taxol-induced growth arrest and apoptosis is associated with the upregulation of the Cdk inhibitor, p21WAF1/CIP1, in human breast cancer cells.
Oncol Rep. 2012; 28(6):2163-9 [PubMed] Related Publications
The anticancer agent, taxol, stabilizes tubulin polymerization, resulting in arrest at the G2/M phase of the cell cycle and apoptotic cell death. However, the molecular mechanism of this growth inhibition and apoptosis is poorly understood. In this study, we used MCF-7 and MDA-MB-231 human breast carcinoma cells which have different estrogen receptor (ER) and tumor suppressor p53 statuses to examine the mechanisms of taxol-induced growth inhibition and apoptosis. Treatment of the cells with taxol resulted in a time-dependent inhibition of cell viability, which was accompanied by an accumulation of cells at G2/M and the sub-G1 apoptotic region, determined by flow cytometric analysis. Furthermore, chromatin condensation, DNA ladder formation and proteolytic cleavage of poly(ADP-ribose) polymerase (PARP) in both cell lines were observed following treatment with taxol, indicating the occurrence of apoptotic cell death. Western blot analysis using whole cell lysates from MCF-7 and MDA-MB-231 cells treated with taxol demonstrated that taxol treatment inhibited expression of cyclin A and cyclin B1 proteins in a time-dependent manner. The inhibitory effects of taxol on cell growth and apoptosis induced by taxol were also associated with the downregulation of Wee1 kinase expression and a marked induction in the activity of the cyclin-dependent kinase inhibitor, p21WAF/CIP1. Furthermore, taxol elevated p21 promoter activity in both cell lines. These findings suggest that taxol-induced G2/M arrest and apoptosis in human breast carcinoma cells is mediated through the ER- and p53-independent upregulation of p21.

Pouliot LM, Chen YC, Bai J, et al.
Cisplatin sensitivity mediated by WEE1 and CHK1 is mediated by miR-155 and the miR-15 family.
Cancer Res. 2012; 72(22):5945-55 [PubMed] Article available free on PMC after 01/03/2015 Related Publications
Resistance to platinum-based therapies arises by multiple mechanisms, including by alterations to cell-cycle kinases that mediate G(2)-M phase arrest. In this study, we conducted parallel high-throughput screens for microRNAs (miRNA) that could restore sensitivity to cisplatin-resistant cells, and we screened for kinases targeted by miRNAs that mediated cisplatin resistance. Overexpression of the cell-cycle kinases WEE1 and CHK1 occurred commonly in cisplatin-resistant cells. miRNAs in the miR-15/16/195/424/497 family were found to sensitize cisplatin-resistant cells to apoptosis by targeting WEE1 and CHK1. Loss-of-function and gain-of-function studies showed that miR-15 family members controlled the expression of WEE1 and CHK1. Supporting these results, we found that in the presence of cisplatin altering expression of miR-16 or related genes altered cell cycle distribution. Our findings reveal critical regulation of miRNAs and their cell-cycle-associated kinase targets in mediating resistance to cisplatin.

Iwai A, Bourboulia D, Mollapour M, et al.
Combined inhibition of Wee1 and Hsp90 activates intrinsic apoptosis in cancer cells.
Cell Cycle. 2012; 11(19):3649-55 [PubMed] Article available free on PMC after 01/03/2015 Related Publications
Heat shock protein 90 (Hsp90) is an essential, evolutionarily conserved molecular chaperone. Cancer cells rely on Hsp90 to chaperone mutated and/or activated oncoproteins, and its involvement in numerous signaling pathways makes it an attractive target for drug development. Surprisingly, however, the impact of Hsp90 inhibitors on cancer cells is frequently cytostatic in nature, and efforts to enhance the antitumor activity of Hsp90 inhibitors in the clinic remain a significant challenge. In agreement with previous data obtained using Wee1 siRNA, we show that dual pharmacologic inhibition of Wee1 tyrosine kinase and Hsp90 causes cancer cells to undergo apoptosis in vitro and in vivo. Gene expression profiling revealed that induction of the intrinsic apoptotic pathway by this drug combination coincided with transcriptional downregulation of Survivin and Wee1, an outcome not seen in cells treated separately with either agent. At the translational level, expression of these two proteins, as well as activated Akt, was completely abrogated. These data support the hypothesis that Wee1 inhibition sensitizes cancer cells to Hsp90 inhibitors; they establish combined Wee1/Hsp90 inhibition as a novel therapeutic strategy; and they provide a mechanistic rationale for enhancing the pro-apoptotic activity of Hsp90 inhibitors.

Tsai SC, Yang JS, Peng SF, et al.
Bufalin increases sensitivity to AKT/mTOR-induced autophagic cell death in SK-HEP-1 human hepatocellular carcinoma cells.
Int J Oncol. 2012; 41(4):1431-42 [PubMed] Related Publications
Bufalin is the major component of Chan-Su (a traditional Chinese medicine, TCM) extracts from the venom of Bufo bufo gargarizan. In the present study, we investigated the pharmacological mechanisms of cell cycle arrest and autophagic cell death induced by bufalin in SK-HEP-1 human hepatocellular carcinoma cells in vitro. Bufalin inhibited cell survival by MTT assay and increased cell death by trypan blue exclusion assay in a concentration-dependent manner. In addition, bufalin induced G2/M phase arrest by reducing CDK1 activity. Bufalin triggered DNA fragmentation and apoptotic cell death in SK-HEP-1 cells by DNA gel electrophoresis, TUNEL and caspase-3 activity assay, while bufalin induced autophagic cell death by double-membrane vacuoles (transmission electron microscopy, TEM), acidic vesicular organelles (acridine orange staining) and cleavage of microtubule-associated protein 1 light chain 3 (LC3). Protein expression levels of cyclin A and B, CDK1, phospho-CDK1 (Thr161), Cdc25c, phospho-Cdc25c (Ser198), phospho-AKT (Thr308), phospho-AKT (Ser473), phospho‑mTOR (Ser2481) were downregulated. In contrast, protein expression levels of the Chk1, Wee1, LC3-II, Beclin-1, Atg 5, Atg 7 and Atg 12 were upregulated in SK-HEP-1 cells after bufalin treatment. Inhibition of autophagy by 3-methyladenine (an inhibitor of class III phosphatidylinositol-3 kinase; 3-MA) or bafilomycin A1 (an inhibitor of the vacuolar proton pump of lysosomes and endosomes) reduced the effect of bufalin on cell viability and enhanced the effect of bufalin on apoptosis. In conclusion, bufalin triggered autophagic cell death and G2/M phase arrest through the AKT/mTOR signaling pathway in SK-HEP-1 cells. Our findings showed that bufalin may be potentially efficacious in the treatment of human hepatocellular carcinoma.

Bhattacharya A, Schmitz U, Wolkenhauer O, et al.
Regulation of cell cycle checkpoint kinase WEE1 by miR-195 in malignant melanoma.
Oncogene. 2013; 32(26):3175-83 [PubMed] Related Publications
WEE1 kinase has been described as a major gate keeper at the G2 cell cycle checkpoint and to be involved in tumour progression in different malignant tumours. Here we analysed the expression levels of WEE1 in a series of melanoma patient samples and melanoma cell lines using immunoblotting, quantitative real-time PCR and immunohistochemistry. WEE1 expression was significantly downregulated in patient samples of metastatic origin as compared with primary melanomas and in melanoma cell lines of high aggressiveness as compared with cell lines of low aggressiveness. Moreover, there was an inverse correlation between the expression of WEE1 and WEE1-targeting microRNA miR-195. Further analyses showed that transfection of melanoma cell lines with miR-195 indeed reduced WEE1 mRNA and protein expression in these cells. Reporter gene analysis confirmed direct targeting of the WEE1 3' untranslated region (3'UTR) by miR-195. Overexpression of miR-195 in SK-Mel-28 melanoma cells was accompanied by WEE1 reduction and significantly reduced stress-induced G2-M cell cycle arrest, which could be restored by stable overexpression of WEE1. Moreover, miR-195 overexpression and WEE1 knockdown, respectively, increased melanoma cell proliferation. miR-195 overexpression also enhanced migration and invasiveness of melanoma cells. Taken together, the present study shows that WEE1 expression in malignant melanoma is directly regulated by miR-195. miR-195-mediated downregulation of WEE1 in metastatic lesions may help to overcome cell cycle arrest under stress conditions in the local tissue microenvironment to allow unrestricted growth of tumour cells.

Zhang X, Jia S, Yang S, et al.
Arsenic trioxide induces G2/M arrest in hepatocellular carcinoma cells by increasing the tumor suppressor PTEN expression.
J Cell Biochem. 2012; 113(11):3528-35 [PubMed] Related Publications
Arsenic trioxide (As(2)O(3)), an effective agent against acute promyelocytic leukemia, has been reported to inhibit the viability of solid tumors cell lines recently. The detailed molecular mechanism underlying the As(2)O(3)-induced inactivation of the cdc2 and possible functional role of PTEN in the observed G2/M arrest has yet to be elucidated. Here, we assessed the role of PTEN in regulation of As(2)O(3)-mediated G2/M cell cycle arrest in Hepatocellular carcinoma cell lines (HepG2 and SMMC7721). After 24 h following treatment, As(2)O(3) induced a concentration-dependent accumulation of cells in the G2/M phase of the cell cycle. The sustained G2/M arrest by As(2)O(3) is associated with decreased cdc2 protein and increased phospho-cdc2(Tyr15). As(2)O(3) treatment increased Wee1 levels and decreased phospho-Wee1(642). Moreover, As(2)O(3) substantially decreased the Ser473 and Thr308 phosphorylation of Akt and upregulated PTEN expression. Downregulation of PTEN by siRNA in As(2)O(3) -treated cells increased phospho-Wee1(Ser642) while decreased phospho-cdc2(Tyr15), resulting in decreased the G2/M cell cycle arrest. Therefore, induction of G2/M cell cycle arrest by As(2)O(3) involved upregulation of PTEN.

Magnussen GI, Holm R, Emilsen E, et al.
High expression of Wee1 is associated with poor disease-free survival in malignant melanoma: potential for targeted therapy.
PLoS One. 2012; 7(6):e38254 [PubMed] Article available free on PMC after 01/03/2015 Related Publications
Notoriously resistant malignant melanoma is one of the most increasing forms of cancer worldwide; there is thus a precarious need for new treatment options. The Wee1 kinase is a major regulator of the G(2)/M checkpoint, and halts the cell cycle by adding a negative phosphorylation on CDK1 (Tyr15). Additionally, Wee1 has a function in safeguarding the genome integrity during DNA synthesis. To assess the role of Wee1 in development and progression of malignant melanoma we examined its expression in a panel of paraffin-embedded patient derived tissue of benign nevi and primary- and metastatic melanomas, as well as in agarose-embedded cultured melanocytes. We found that Wee1 expression increased in the direction of malignancy, and showed a strong, positive correlation with known biomarkers involved in cell cycle regulation: Cyclin A (p<0.0001), Ki67 (p<0.0001), Cyclin D3 (p = 0.001), p21(Cip1/WAF1) (p = 0.003), p53 (p = 0.025). Furthermore, high Wee1 expression was associated with thicker primary tumors (p = 0.001), ulceration (p = 0.005) and poor disease-free survival (p = 0.008). Transfections using siWee1 in metastatic melanoma cell lines; WM239(WTp53), WM45.1(MUTp53) and LOX(WTp53), further support our hypothesis of a tumor promoting role of Wee1 in melanomas. Whereas no effect was observed in LOX cells, transfection with siWee1 led to accumulation of cells in G(1)/S and S phase of the cell cycle in WM239 and WM45.1 cells, respectively. Both latter cell lines displayed DNA damage and induction of apoptosis, in the absence of Wee1, indicating that the effect of silencing Wee1 may not be solely dependent of the p53 status of the cells. Together these results reveal the importance of Wee1 as a prognostic biomarker in melanomas, and indicate a potential role for targeted therapy, alone or in combination with other agents.

Carrassa L, Chilà R, Lupi M, et al.
Combined inhibition of Chk1 and Wee1: in vitro synergistic effect translates to tumor growth inhibition in vivo.
Cell Cycle. 2012; 11(13):2507-17 [PubMed] Related Publications
Targeting Chk1 protein kinase can enhance the antitumor effects of radio- and chemotherapy. Recent evidence disclosed a role of Chk1 in unperturbed cell proliferation and survival, implying that Chk1 inhibitors could also be effective as single agents in tumors with a specific genetic background. To identify genes in synthetic lethality with Chk1, we did a high-throughput screening using a siRNA library directed against 719 human protein kinases in the human ovarian cancer cell line OVCAR-5, resistant to Chk1 inhibitors. Wee1 tyrosine kinase was the most significant gene in synthetic lethality with Chk1. Treatment with non-toxic concentrations of a Chk1 inhibitor (PF-00477736) and a Wee1 inhibitor (MK-1775) confirmed the marked synergistic effect in various human cancer cell lines (breast, ovarian, colon, prostate), independently of the p53 status. Detailed molecular analysis showed that the combination caused cancer cells to undergo premature mitosis before the end of DNA replication, with damaged DNA leading to cell death partly by apoptosis. In vivo treatment of mice bearing OVCAR-5 xenografts with the combination of Chk1 and Wee1 inhibitors led to greater tumor growth inhibition than with the inhibitors used as single agents with no toxicity. These data provide a strong rationale for the clinical investigation of the combination of a Chk1 and a Wee1 inhibitor.

Mackintosh C, García-Domínguez DJ, Ordóñez JL, et al.
WEE1 accumulation and deregulation of S-phase proteins mediate MLN4924 potent inhibitory effect on Ewing sarcoma cells.
Oncogene. 2013; 32(11):1441-51 [PubMed] Related Publications
Ewing sarcoma (ES) is an aggressive bone and soft tissue tumor of children and young adults in which finding effective new targeted therapies is imperative. Here, we report an in-depth preclinical study of the investigational cullin-RING ubiquitin ligase (CRL) inhibitor MLN4924 in ES, as we have recently demonstrated the implication of a CRL component in the ES pathogenesis. First, our results support a high sensitivity of ES cells to MLN4924 growth inhibition both in vitro (14 ES cell lines tested, median IC50=81 nM) and in tumor xenografts (tumor regression achieved with 60 mg/kg BID, subcutaneously, n=9). Second, we report a dual mechanism of action of MLN4924 in ES cells: while a wide range of MLN4924 concentrations (∼30-300 nM) trigger a G2 arrest that can only be rescued by WEE1 kinase inhibition or depletion, saturating doses of the drug (>300 nM) cause a delay in S-phase progression concomitant with unbalanced CDK2-Cyclin E and CDK2-Cyclin A relative levels (accumulation of the first and depletion of the latter). The aberrant presence of CDC6 in the nucleus at late S-phase cell cycle stage confirmed the loss of CDK2-Cyclin A-specific functions. Remarkably, other mechanisms explored (P27 accumulation and DNA damage signaling pathways) were found unable to explain MLN4924 effects, strengthening the specificity of our findings and suggesting the absence of functionality of some CRL substrates accumulated in response to MLN4924. This study renders a rationale for clinical trials and contributes molecular mechanisms for a better understanding of this promising antitumoral agent.

Aarts M, Sharpe R, Garcia-Murillas I, et al.
Forced mitotic entry of S-phase cells as a therapeutic strategy induced by inhibition of WEE1.
Cancer Discov. 2012; 2(6):524-39 [PubMed] Related Publications
Inhibition of the protein kinase WEE1 synergizes with chemotherapy in preclinical models and WEE1 inhibitors are being explored as potential cancer therapies. Here, we investigate the mechanism that underlies this synergy. We show that WEE1 inhibition forces S-phase-arrested cells directly into mitosis without completing DNA synthesis, resulting in highly abnormal mitoses characterized by dispersed chromosomes and disorganized bipolar spindles, ultimately resulting in mitotic exit with gross micronuclei formation and apoptosis. This mechanism of cell death is shared by CHK1 inhibitors, and combined WEE1 and CHK1 inhibition forces mitotic entry from S-phase in the absence of chemotherapy. We show that p53/p21 inactivation combined with high expression of mitotic cyclins and EZH2 predispose to mitotic entry during S-phase with cells reliant on WEE1 to prevent premature cyclin-dependent kinase (CDK)1 activation. These features are characteristic of aggressive breast, and other, cancers for which WEE1 inhibitor combinations represent a promising targeted therapy.

Elshazley M, Sato M, Hase T, et al.
The circadian clock gene BMAL1 is a novel therapeutic target for malignant pleural mesothelioma.
Int J Cancer. 2012; 131(12):2820-31 [PubMed] Article available free on PMC after 01/03/2015 Related Publications
Malignant pleural mesothelioma (MPM) is a highly aggressive neoplasm arising from the mesothelial cells lining the parietal pleura and it exhibits poor prognosis. Although there has been significant progress in MPM treatment, development of more efficient therapeutic approaches is needed. BMAL1 is a core component of the circadian clock machinery and its constitutive overexpression in MPM has been reported. Here, we demonstrate that BMAL1 may serve as a molecular target for MPM. The majority of MPM cell lines and a subset of MPM clinical specimens expressed higher levels of BMAL1 compared to a nontumorigenic mesothelial cell line (MeT-5A) and normal parietal pleural specimens, respectively. A serum shock induced a rhythmical BMAL1 expression change in MeT-5A but not in ACC-MESO-1, suggesting that the circadian rhythm pathway is deregulated in MPM cells. BMAL1 knockdown suppressed proliferation and anchorage-dependent and independent clonal growth in two MPM cell lines (ACC-MESO-1 and H290) but not in MeT-5A. Notably, BMAL1 depletion resulted in cell cycle disruption with a substantial increase in apoptotic and polyploidy cell population in association with downregulation of Wee1, cyclin B and p21(WAF1/CIP1) and upregulation of cyclin E expression. BMAL1 knockdown induced mitotic catastrophe as denoted by disruption of cell cycle regulators and induction of drastic morphological changes including micronucleation and multiple nuclei in ACC-MESO-1 cells that expressed the highest level of BMAL1. Taken together, these findings indicate that BMAL1 has a critical role in MPM and could serve as an attractive therapeutic target for MPM.

Porter CC, Kim J, Fosmire S, et al.
Integrated genomic analyses identify WEE1 as a critical mediator of cell fate and a novel therapeutic target in acute myeloid leukemia.
Leukemia. 2012; 26(6):1266-76 [PubMed] Article available free on PMC after 01/03/2015 Related Publications
Acute myeloid leukemia (AML) remains a therapeutic challenge despite increasing knowledge about the molecular origins of the disease, as the mechanisms of AML cell escape from chemotherapy remain poorly defined. We hypothesized that AML cells are addicted to molecular pathways in the context of chemotherapy and used complementary approaches to identify these addictions. Using novel molecular and computational approaches, we performed genome-wide short-hairpin RNA screens to identify proteins that mediate AML cell fate after cytarabine exposure; gene expression profiling of AML cells exposed to cytarabine to identify genes with induced expression in this context; and examination of existing gene expression data from primary patient samples. Integration of these independent analyses strongly implicates cell-cycle checkpoint proteins, particularly WEE1, as critical mediators of AML cell survival after cytarabine exposure. Knockdown of WEE1 in a secondary screen confirmed its role in AML cell survival. Pharmacologic inhibition of WEE1 in AML cell lines and primary cells is synergistic with cytarabine. Further experiments demonstrate that inhibition of WEE1 prevents S-phase arrest induced by cytarabine, broadening the functions of WEE1 that may be exploited therapeutically. These data highlight the power of integrating functional and descriptive genomics, and identify WEE1 as a potential therapeutic target in AML.

Garimella SV, Rocca A, Lipkowitz S
WEE1 inhibition sensitizes basal breast cancer cells to TRAIL-induced apoptosis.
Mol Cancer Res. 2012; 10(1):75-85 [PubMed] Article available free on PMC after 01/03/2015 Related Publications
TRAIL is a member of the TNF super family and has been shown to induce apoptosis in many cancer cell lines but not in normal cells. Breast cancers can be divided into different subgroups on the basis of the expression of estrogen and progesterone receptors, HER-2 amplification, or the lack of these three markers (known as triple-negative or basal-type breast cancer). Our group and others have shown previously that triple-negative breast cancer cell lines are sensitive to TRAIL whereas others are relatively resistant. In an earlier study, we reported that inhibition of WEE1, a cell-cycle checkpoint regulator, causes increased cell death in breast cancer cell lines. In this study, we tested the effects of WEE1 inhibition on TRAIL-mediated apoptosis in breast cancer cell lines. Pretreatment with WEE1 inhibitor or knockdown of WEE1 increased the toxicity of TRAIL in the basal/triple-negative breast cancer cell lines compared with WEE1 inhibitor or TRAIL treatment alone. The enhanced cell death is attributed to increased surface expression of death receptors, increased caspase activation which could be blocked by the pan-caspase inhibitor, Z-VAD-FMK, thereby rescuing cells from caspase-mediated apoptosis. The cell death was initiated primarily by caspase-8 because knockdown of caspase-8 and not of any other initiator caspases (i.e., caspase-2, -9, or -10) rescued cells from WEE1 inhibitor-sensitized TRAIL-induced cell death. Taken together, the data suggest that the combination of WEE1 inhibitor and TRAIL could provide a novel combination for the treatment of basal/triple-negative breast cancer.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. WEE1, Cancer Genetics Web: http://www.cancer-genetics.org/WEE1.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 27 February, 2015     Cancer Genetics Web, Established 1999