TAP2

Gene Summary

Gene:TAP2; transporter 2, ATP binding cassette subfamily B member
Aliases: APT2, PSF2, ABC18, ABCB3, PSF-2, RING11, D6S217E
Location:6p21.32
Summary:The membrane-associated protein encoded by this gene is a member of the superfamily of ATP-binding cassette (ABC) transporters. ABC proteins transport various molecules across extra- and intra-cellular membranes. ABC genes are divided into seven distinct subfamilies (ABC1, MDR/TAP, MRP, ALD, OABP, GCN20, White). This protein is a member of the MDR/TAP subfamily. Members of the MDR/TAP subfamily are involved in multidrug resistance. This gene is located 7 kb telomeric to gene family member ABCB2. The protein encoded by this gene is involved in antigen presentation. This protein forms a heterodimer with ABCB2 in order to transport peptides from the cytoplasm to the endoplasmic reticulum. Mutations in this gene may be associated with ankylosing spondylitis, insulin-dependent diabetes mellitus, and celiac disease. Alternative splicing of this gene produces products which differ in peptide selectivity and level of restoration of surface expression of MHC class I molecules. [provided by RefSeq, Feb 2014]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:antigen peptide transporter 2
Source:NCBIAccessed: 31 August, 2019

Ontology:

What does this gene/protein do?
Show (37)
Pathways:What pathways are this gene/protein implicaed in?
Show (2)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 01 September 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • HLA Antigens
  • Multienzyme Complexes
  • Cancer Gene Expression Regulation
  • Cysteine Endopeptidases
  • Genes, MHC Class I
  • Cancer RNA
  • Tumor Antigens
  • ATP Binding Cassette Transporter, Subfamily B, Member 3
  • Case-Control Studies
  • Single Nucleotide Polymorphism
  • Antigen Presentation
  • Histocompatibility Antigens Class I
  • Trans-Activators
  • Gene Expression
  • Immunohistochemistry
  • Colorectal Cancer
  • ATP Binding Cassette Transporter, Subfamily B, Member 2
  • Chromosome 6
  • Genetic Predisposition
  • Tumor Escape
  • Down-Regulation
  • Promoter Regions
  • Risk Factors
  • Proteasome Endopeptidase Complex
  • Molecular Sequence Data
  • Alleles
  • Haplotypes
  • Viral Matrix Proteins
  • Polymorphism
  • Messenger RNA
  • Up-Regulation
  • Mutation
  • U937 Cells
  • Interferon-gamma
  • Recombinant Proteins
  • ATP-Binding Cassette Transporters
  • Transfection
  • T-Lymphocytes, Cytotoxic
  • Squamous Cell Carcinoma
Tag cloud generated 31 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (1)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: TAP2 (cancer-related)

Li Z, Zhang Y, Meng L, et al.
LncRNA-ENST00000501520 promotes the proliferation of malignant-transformed BEAS-2B cells induced with coal tar pitch mediated by target genes.
Environ Toxicol. 2019; 34(7):869-877 [PubMed] Related Publications
As a human carcinogen, coal tar pitch (CTP) can significantly increase the risk of lung cancer. However, the mechanism underlying CTP-induced lung carcinogenesis has not been well understood. This study aims to explore the role of the LncRNA-ENST00000501520 in the proliferation of malignant-transformed human bronchial epithelial cells (BAES-2B) induced by CTP extract for the first time. BEAS-2B cells were stimulated with 2.4 μg/mL CTP extract, and then passaged for three times, which were named passage 1 and then passaged until passage 30 (named as CTP group). The ENST000001520 of cells in CTP group was interfered using siRNA. The results showed that ENST000001520 located in cell nucleus (>80%) had no or weak ability of protein encoding. After interference of ENST000001520, the migration and proliferation of cells in CTP group were inhibited, and the cell cycle was arrested in the G0/G1 phase; however, the apoptosis of cells in CTP group was promoted. The target genes (SKB1, CLTB, TAP2, PIPK2, and SOCS3) of ENST000001520 were screened out, and the mRNA and protein expression of SBK1 and SOCS3 was significantly decreased after ENST000001520 interference. SBK1 and SOCS3 may play a promoting role in occurrence and development of cancers. The study suggests that LncRNA-ENST00000501520 could promote the proliferation in malignant-transformed BEAS-2B cells induced with CTP extract which may be mediated by target genes. This study may provide a new target for prevention and treatment of lung cancer.

Kimura T, Cui D, Kawano H, et al.
Induced expression of GINS complex is an essential step for reactivation of quiescent stem-like tumor cells within the peri-necrotic niche in human glioblastoma.
J Cancer Res Clin Oncol. 2019; 145(2):363-371 [PubMed] Free Access to Full Article Related Publications
PURPOSE: Glioblastoma is still intractable despite the progress in therapies, and the intractability is attributable to a minor population of stem-like tumor cells. As a niche harboring quiescent stem-like tumor cells with potentially high tumorigenicity, we have specified an area around large ischemic necrosis, termed 'peri-necrotic niche', in glioblastoma. In this study, the behavior of tumor cells inside and outside the peri-necrotic niche was analyzed to find out molecules responsible for reactivation of quiescent stem-like tumor cells to proliferate outside the niche.
METHODS: Expression of Ki-67 and GINS complex composed of SLD5, PSF1, PSF2 and PSF3 was analyzed by immunohistochemistry in human glioblastoma tissue samples. Proliferation assays, immunoblotting and siRNA experiments were performed using a glioblastoma cell line.
RESULTS: Immunohistochemical analysis revealed quiescent and proliferative phenotypes of tumor cells inside and outside the niche, respectively, and the proliferation was spatially correlated with the expression of GINS components in tumor cells. To mimic the tissue microenvironment inside versus outside the niche, glioblastoma cells were cultured under hypoxic versus normoxic conditions, or without versus with serum. Quiescence and proliferation of tumor cells were reversibly determined by the microenvironment inside and outside the niche, respectively, and proliferative activities paralleled the expression levels of GINS components. Furthermore, the reactivation of proliferation after reoxygenation or serum replenishment was suppressed in quiescent tumor cells with PSF1 knockdown.
CONCLUSIONS: These findings indicate the essential role of GINS complex in the switch between quiescence and proliferation of tumor cells inside and outside the peri-necrotic niche.

Rolvering C, Zimmer AD, Ginolhac A, et al.
The PD-L1- and IL6-mediated dampening of the IL27/STAT1 anticancer responses are prevented by α-PD-L1 or α-IL6 antibodies.
J Leukoc Biol. 2018; 104(5):969-985 [PubMed] Related Publications
Interleukin-27 (IL27) is a type-I cytokine of the IL6/IL12 family and is predominantly secreted by activated macrophages and dendritic cells. We show that IL27 induces STAT factor phosphorylation in cancerous cell lines of different tissue origin. IL27 leads to STAT1 phosphorylation and recapitulates an IFN-γ-like response in the microarray analyses, with up-regulation of genes involved in antiviral defense, antigen presentation, and immune suppression. Like IFN-γ, IL27 leads to an up-regulation of TAP2 and MHC-I proteins, which mediate increased tumor immune clearance. However, both cytokines also upregulate proteins such as PD-L1 (CD274) and IDO-1, which are associated with immune escape of cancer. Interestingly, differential expression of these genes was observed within the different cell lines and when comparing IL27 to IFN-γ. In coculture experiments of hepatocellular carcinoma (HCC) cells with peripheral blood mononuclear cells, pre-treatment of the HCC cells with IL27 resulted in lowered IL2 production by anti-CD3/-CD28 activated T-lymphocytes. Addition of anti-PD-L1 antibody, however, restored IL2 secretion. The levels of other T

Mari L, Hoefnagel SJM, Zito D, et al.
microRNA 125a Regulates MHC-I Expression on Esophageal Adenocarcinoma Cells, Associated With Suppression of Antitumor Immune Response and Poor Outcomes of Patients.
Gastroenterology. 2018; 155(3):784-798 [PubMed] Related Publications
BACKGROUND & AIMS: Immune checkpoint inhibition may affect growth or progression of highly aggressive cancers, such as esophageal adenocarcinoma (EAC). We investigated the regulation of expression of major histocompatibility complex, class 1 (MHC-I) proteins (encoded by HLA-A, HLA-B, and HLA-C) and the immune response to EACs in patient samples.
METHODS: We performed quantitative polymerase chain reaction array analyses of OE33 cells and OE19 cells, which express different levels of the ATP binding cassette subfamily B member 1 (TAP1) and TAP2, required for antigen presentation by MHC-I, to identify microRNAs (miRNAs) that regulate their expression. We performed luciferase assays to validate interactions between miRNAs and potential targets. We overexpressed candidate miRNAs in OE33, FLO-1, and OACP4 C cell lines and performed quantitative polymerase chain reaction, immunoblot, and flow cytometry analyses to identify changes in messenger RNA (mRNA) and protein expression; we studied the effects of cytotoxic T cells. We performed miRNA in situ hybridization, RNA-sequencing, and immunohistochemical analyses of tumor tissues from 51 untreated patients with EAC in the Netherlands. Clinical and survival data were collected for patients, and EAC subtypes were determined.
RESULTS: We found OE19 cells to have increased levels of 7 miRNAs. Of these, we found binding sites for miRNA 125a (MIR125a)-5p in the 3' untranslated region of the TAP2 mRNA and binding sites for MIR148a-3p in 3' untranslated regions of HLA-A, HLA-B, and HLA-C mRNAs. Overexpression of these miRNAs reduced expression of TAP2 in OE33, FLO-1, and OACP4 C cells, and reduced cell-surface levels of MHC-I. OE33 cells that expressed the viral peptide BZLF1 were killed by cytotoxic T cells, whereas OE33 that overexpressed MIR125a-5p or MIR 148a along with BZLF1 were not. In EAC and nontumor tissues, levels of MIR125a-5p correlated inversely with levels of TAP2 protein. High expression of TAP1 by EAC correlated with significantly shorter overall survival times of patients. EACs that expressed high levels of TAP1 and genes involved in antigen presentation also expressed high levels of genes that regulate the adaptive immune response, PD-L1, PD-L2, and IDO1; these EACs had a poor response to neoadjuvant chemoradiotherapy and associated with shorter overall survival times of patients.
CONCLUSIONS: In studies of EAC cell lines and tumor tissues, we found increased levels of MIR125a-5p and MIR148a-3p to reduce levels of TAP2 and MHC-I, required for antigen presentation. High expression of MHC-I molecules by EAC correlated with markers of an adaptive immune response and significantly shorter overall survival times of patients.

Lang Z, Wu Y, Pan X, et al.
Study of differential gene expression between invasive multifocal/ multicentric and unifocal breast cancer.
J BUON. 2018 Jan-Feb; 23(1):134-142 [PubMed] Related Publications
PURPOSE: To investigate the differential gene expression pattern between invasive multifocal/multicentric (MMBC) and unifocal breast cancer (UFBC) with cDNA array and to discover the potential outlier genes associated with the incidence of MMBC and also to provide a guidance for clinical treatment and prognosis prediction.
METHODS: This retrospective study analyzed the gene expression pattern alteration in breast cancer. We collected 156 MMBC (136 cases with 2 foci, 20 cases with 3 foci) and 130 UFBC samples from patients hospitalized in Yuhuangding Hospital, Yantai, from January 2005 to December 2015. The outlier genes were screened by cDNA expression microarray and validated by RT-PCR.
RESULTS: 18 overexpressed and 22 underexpressed genes were identified in the differential analysis, including family genes ABCC11, ABCB5 and PRODH, PROL1. Noteworthily, ABCC11 was significantly upregulated, while ABCB3 was downregulated, which were confirmed by RT-PCR results.
CONCLUSION: The differential expression pattern of ABCC11 and ABCB5 genes may serve as outliers, potentially associated with incidence of MMBS.

Sethumadhavan S, Silva M, Philbrook P, et al.
Hypoxia and hypoxia-inducible factor (HIF) downregulate antigen-presenting MHC class I molecules limiting tumor cell recognition by T cells.
PLoS One. 2017; 12(11):e0187314 [PubMed] Free Access to Full Article Related Publications
Human cancers are known to downregulate Major Histocompatibility Complex (MHC) class I expression thereby escaping recognition and rejection by anti-tumor T cells. Here we report that oxygen tension in the tumor microenvironment (TME) serves as an extrinsic cue that regulates antigen presentation by MHC class I molecules. In support of this view, hypoxia is shown to negatively regulate MHC expression in a HIF-dependent manner as evidenced by (i) lower MHC expression in the hypoxic TME in vivo and in hypoxic 3-dimensional (3D) but not 2-dimensional (2D) tumor cell cultures in vitro; (ii) decreased MHC in human renal cell carcinomas with constitutive expression of HIF due to genetic loss of von Hippel-Lindau (VHL) function as compared with isogenically paired cells with restored VHL function, and iii) increased MHC in tumor cells with siRNA-mediated knockdown of HIF. In addition, hypoxia downregulated antigen presenting proteins like TAP 1/2 and LMP7 that are known to have a dominant role in surface display of peptide-MHC complexes. Corroborating oxygen-dependent regulation of MHC antigen presentation, hyperoxia (60% oxygen) transcriptionally upregulated MHC expression and increased levels of TAP2, LMP2 and 7. In conclusion, this study reveals a novel mechanism by which intra-tumoral hypoxia and HIF can potentiate immune escape. It also suggests the use of hyperoxia to improve tumor cell-based cancer vaccines and for mining novel immune epitopes. Furthermore, this study highlights the advantage of 3D cell cultures in reproducing hypoxia-dependent changes observed in the TME.

Carbotti G, Nikpoor AR, Vacca P, et al.
IL-27 mediates HLA class I up-regulation, which can be inhibited by the IL-6 pathway, in HLA-deficient Small Cell Lung Cancer cells.
J Exp Clin Cancer Res. 2017; 36(1):140 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Recently, immunotherapy with anti-PD-1 antibodies has shown clinical benefit in recurrent Small Cell Lung Cancer (SCLC). Since anti-PD-1 re-activates anti-tumor Cytotoxic T Lymphocyte (CTL) responses, it is crucial to understand the mechanisms regulating HLA class I, and PD-L1 expression in HLA-negative SCLC. Here we addressed the role of IL-27, a cytokine related to both IL-6 and IL-12 families.
METHODS: The human SCLC cell lines NCI-N592, -H69, -H146, -H446 and -H82 were treated in vitro with different cytokines (IL-27, IFN-γ, IL-6 or a soluble IL-6R/IL-6 chimera [sIL-6R/IL-6]) at different time points and analyzed for tyrosine-phosphorylated STAT proteins by Western blot, for surface molecule expression by immunofluorescence and FACS analyses or for specific mRNA expression by QRT-PCR. Relative quantification of mRNAs was calculated by the ΔΔCT method. The Student's T test was used for the statistical analysis of experimental replicates.
RESULTS: IL-27 triggered STAT1/3 phosphorylation and up-regulated the expression of surface HLA class I antigen and of TAP1 and TAP2 mRNA in four out of five SCLC cell lines tested. The IL-27-resistant NCI-H146 cells showed up-regulation of HLA class I by IFN-γ. IFN-γ also induced expression of PD-L1 in SCLC cells, while IL-27 was less potent in this respect. IL-27 failed to activate STAT1/3 phosphorylation in NCI-H146 cells, which display a low expression of the IL-27RA and GP130 receptor chains. As GP130 is shared in IL-27R and IL-6R complexes, we assessed its functionality in response to sIL-6R/IL-6. sIL-6R/IL-6 failed to trigger STAT1/3 signaling in NCI-H146 cells, suggesting low GP130 expression or uncoupling from signal transduction. Although both sIL-6R/IL-6 and IL-27 triggered STAT1/3 phosphorylation, sIL-6R/IL-6 failed to up-regulate HLA class I expression, in relationship to the weak activation of STAT1. Finally sIL-6R/IL-6 limited IL-27-effects, particularly in NCI-H69 cells, in a SOCS3-independent manner, but did not modify IFN-γ induced HLA class I up-regulation.
CONCLUSIONS: In conclusion, IL-27 is a potentially interesting cytokine for restoring HLA class I expression for SCLC combined immunotherapy purposes. However, the concomitant activation of the IL-6 pathway may limit the IL-27 effect on HLA class I induction but did not significantly alter the responsiveness to IFN-γ.

Ha YJ, Tak KH, Kim CW, et al.
PSMB8 as a Candidate Marker of Responsiveness to Preoperative Radiation Therapy in Rectal Cancer Patients.
Int J Radiat Oncol Biol Phys. 2017; 98(5):1164-1173 [PubMed] Related Publications
PURPOSE: The ability to predict individual responsiveness to cancer therapy is urgently needed. This is particularly true for patients with locally advanced rectal cancer (LARC) because a large proportion are resistant to preoperative chemoradiation therapy (CRT). In this study, we sought to identify markers that could predict response by comparing the gene expression profiles of the tumors of patients who received preoperative CRT.
METHODS AND MATERIALS: The basal gene expression profiles of tumors from 22 LARC patients who were responders (n=9) and nonresponders (n=13) to preoperative CRT were analyzed using RNA sequencing (RNA-Seq). To validate the RNA-Seq findings, real-time reverse transcriptase polymerase chain reaction (RT-PCR) was performed on tumor samples from an additional 40 LARC patients (n=20 responders; n=20 nonresponders). Candidate genes were stably overexpressed or knocked down in colorectal cancer (CRC) cell lines, and the effect on response to radiation was tested in vitro and also in vivo in a mouse xenograft model.
RESULTS: Eight differentially expressed (>16-fold) genes (B3GALT4, HSPA1B, KRBOX1, PPBP, PPP1R18, PSMB8, SLC39A7, and TAP2) associated with the preoperative CRT response were identified (P<.0005). Among these genes, real-time RT-PCR showed that PSMB8 and SLC39A7 were upregulated in the responsive group of the additional 40 LARC patients. In CRC cell lines, PSMB8 overexpression significantly reduced colony formation and increased the apoptosis-inducing molecules cleaved caspase-3 and cleaved PARP after 6-Gy irradiation. PSMB8 knockdown increased colony formation and decreased caspase-3 activation and cleaved PARP levels after irradiation. SLC39A7 overexpression had no significant effects on irradiated CSC cells. After irradiation of the xenografted mice, tumors that arose from CRC cell line HCT116 overexpressing PSMB8 grew more slowly than did those from HCT116 with vector alone.
CONCLUSION: These results suggest that PSMB8 is a predictive marker of preoperative radiosensitivity in LARC patients. Clinical validation in a larger cohort is now required.

Ritter C, Fan K, Paschen A, et al.
Epigenetic priming restores the HLA class-I antigen processing machinery expression in Merkel cell carcinoma.
Sci Rep. 2017; 7(1):2290 [PubMed] Free Access to Full Article Related Publications
Merkel cell carcinoma (MCC) is a rare and aggressive, yet highly immunogenic skin cancer. The latter is due to its viral or UV-associated carcinogenesis. For tumor progression MCC has to escape the host's immuno-surveillance, e.g. by loss of HLA class-I expression. Indeed, a reduced HLA class-I expression was observed in MCC tumor tissues and MCC cell lines. This reduced HLA class-I surface expression is caused by an impaired expression of key components of the antigen processing machinery (APM), including LMP2 and LMP7 as well as TAP1 and TAP2. Notably, experimental provisions of HLA class-I binding peptides restored HLA class-I surface expression on MCC cells. Silencing of the HLA class-I APM is due to histone deacetylation as inhibition of histone deacetylases (HDACs) not only induced acetylation of histones in the respective promoter regions but also re-expression of APM components. Thus, HDAC inhibition restored HLA class-I surface expression in vitro and in a mouse xenotransplantation model. In contrast to re-induction of HLA class-I by interferons, HDAC inhibitors did not interfere with the expression of immuno-dominant viral proteins. In summary, restoration of HLA class-I expression on MCC cells by epigenetic priming is an attractive approach to enhance therapies boosting adaptive immune responses.

Nielsen KR, Steffensen R, Bendtsen MD, et al.
Inherited Inflammatory Response Genes Are Associated with B-Cell Non-Hodgkin's Lymphoma Risk and Survival.
PLoS One. 2015; 10(10):e0139329 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Malignant B-cell clones are affected by both acquired genetic alterations and by inherited genetic variations changing the inflammatory tumour microenvironment.
METHODS: We investigated 50 inflammatory response gene polymorphisms in 355 B-cell non-Hodgkin's lymphoma (B-NHL) samples encompassing 216 diffuse large B cell lymphoma (DLBCL) and 139 follicular lymphoma (FL) and 307 controls. The effect of single genes and haplotypes were investigated and gene-expression analysis was applied for selected genes. Since interaction between risk genes can have a large impact on phenotype, two-way gene-gene interaction analysis was included.
RESULTS: We found inherited SNPs in genes critical for inflammatory pathways; TLR9, IL4, TAP2, IL2RA, FCGR2A, TNFA, IL10RB, GALNT12, IL12A and IL1B were significantly associated with disease risk and SELE, IL1RN, TNFA, TAP2, MBL2, IL5, CX3CR1, CHI3L1 and IL12A were, associated with overall survival (OS) in specific diagnostic entities of B-NHL. We discovered noteworthy interactions between DLBCL risk alleles on IL10 and IL4RA and FL risk alleles on IL4RA and IL4. In relation to OS, a highly significant interaction was observed in DLBCL for IL4RA (rs1805010) * IL10 (rs1800890) (HR = 0.11 (0.02-0.50)). Finally, we explored the expression of risk genes from the gene-gene interaction analysis in normal B-cell subtypes showing a different expression of IL4RA, IL10, IL10RB genes supporting a pathogenetic effect of these interactions in the germinal center.
CONCLUSIONS: The present findings support the importance of inflammatory genes in B-cell lymphomas. We found association between polymorphic sites in inflammatory response genes and risk as well as outcome in B-NHL and suggest an effect of gene-gene interactions during the stepwise oncogenesis.

Mehta AM, Spaans VM, Mahendra NB, et al.
Differences in genetic variation in antigen-processing machinery components and association with cervical carcinoma risk in two Indonesian populations.
Immunogenetics. 2015; 67(5-6):267-75 [PubMed] Free Access to Full Article Related Publications
Genetic variation of antigen-processing machinery (APM) components has been shown to be associated with cervical carcinoma risk and outcome in a genetically homogeneous Dutch population. However, the role of APM component single nucleotide polymorphisms (SNPs) in genetically heterogeneous populations with different distributions of human papillomavirus (HPV) subtypes remains unclear. Eleven non-synonymous, coding SNPs in the TAP1, TAP2, LMP2, LMP7 and ERAP1 genes were genotyped in cervical carcinoma patients and healthy controls from two distinct Indonesian populations (Balinese and Javanese). Individual genotype and allele distributions were investigated using single-marker analysis, and combined SNP effects were assessed by haplotype construction and haplotype interaction analysis. Allele distribution patterns in Bali and Java differed in relation to cervical carcinoma risk, with four ERAP1 SNPs and one TAP2 SNP in the Javanese population showing significant association with cervical carcinoma risk, while in the Balinese population, only one TAP2 SNP showed this association. Multimarker analysis demonstrated that in the Javanese patients, one specific haplotype, consisting of the ERAP1-575 locus on chromosome 5 and the TAP2-379 and TAP2-651 loci on chromosome 6, was significantly associated with cervical carcinoma risk (global P = 0.008); no significant haplotype associations were found in the Balinese population. These data indicate not only that genetic variation in APM component genes is associated with cervical carcinoma risk in Indonesia but also that the patterns of association differ depending on background genetic composition and possibly on differences in HPV type distribution.

Sheyhidin I, Hasim A, Zheng F, Ma H
Epigenetic changes within the promoter regions of antigen processing machinery family genes in Kazakh primary esophageal squamous cell carcinoma.
Asian Pac J Cancer Prev. 2014; 15(23):10299-306 [PubMed] Related Publications
The esophageal squamous cell carcinoma (ESCC) is thought to develop through a multi-stage process. Epigenetic gene silencing constitutes an alternative or complementary mechanism to mutational events in tumorigenesis. Posttranscriptional regulation of human leukocyte antigen class I (HLA-I) and antigen processing machinery (APM) proteins expression may be associated with novel epigenetic modifications in cancer development. In the present study, we determined the expression levels of HLA-I antigen and APM components by immunohistochemistry. Then by a bisulfite-sequencing PCR (BSP) approach, we identified target CpG islands methylated at the gene promoter region of APM family genes in a ESCC cell line (ECa109), and further quantitative analysis of CpG site specific methylation of these genes in cases of Kazakh primary ESCCs with corresponding non-cancerous esophageal tissues using the Sequenom MassARRAY platform. Here we showed that the development of ESCCs was accompanied by partial or total loss of protein expression of HLA-B, TAP2, LMP7, tapasin and ERp57. The results demonstrated that although no statistical significance was found of global target CpG fragment methylation level sof HLA-B, TAP2, tapasin and ERp57 genes between ESCC and corresponding non-cancerous esophageal tissues, there was significant differences in the methylation level of several single sites between the two groups. Of thesse only the global methylation level of LMP7 gene target fragments was statistically higher (0.0517±0.0357) in Kazakh esophageal cancer than in neighboring normal tissues (0.0380±0.0214, p<0.05). Our results suggest that multiple CpG sites, but not methylation of every site leads to down regulation or deletion of gene expression. Only some of them result in genetic transcription, and silencing of HLA-B, ERp57, and LMP7 expression through hypermethylation of the promoters or other mechanisms may contribute to mechanisms of tumor escape from immune surveillance in Kazakh esophageal carcinogenesis.

Sun X, Sui W, Huang M, et al.
Partner of Sld five 3: a potential prognostic biomarker for colorectal cancer.
Diagn Pathol. 2014; 9:217 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Partner of Sld five 3 (PSF3) is a member of the evolutionarily conserved heterotetrameric complex "Go-Ichi-Ni-San" (GINS), which consists of SLD5, PSF1, PSF2, and PSF3. Previous studies have suggested that some GINS complex members are upregulated in cancer, but the status of PSF3 expression in colorectal cancer has not been investigated.
METHODS: We investigated the status of PSF3 expression in 137 consecutive resected colorectal caners by quantitative reverse-transcription polymerase chain reaction. Univariable and multivariable Cox regression analyses were performed to assess independent prognostic factors for overall survival in colorectal cancer.
RESULTS: In 137 restected colorectal cancer samples, median messenger RNA (mRNA) expression levels of PSF3 were significantly higher in tumor tissues (1.35 × 10(-3), range 2.88 × 10(-4) to 3.16 × 10(-2)) than in adjacent normal tissues (2.94 × 10(-4), range 5.48 × 10(-5) to 1.27 × 10(-3)) (P < 0.05). Moreover, high expression of PSF3 in tumor tissues was associated with shorter disease-free survival and overall survival. When analyzed with a Cox regression model, the PSF3 expression was an independent prognostic factor for overall survival. In addition, in patients with early stage (stage I and II) colorectal cancer, the overall survival rate of the high PSF3 expression group was significantly lower than that of the low PSF3 expression group (P < 0.001).
CONCLUSIONS: The PSF3 expression plays an important role in the progression of colorectal cancer and acts as a factor significantly affecting the prognosis of patients.
VIRTUAL SLIDES: The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/13000_2014_217.

Natter C, Polterauer S, Rahhal-Schupp J, et al.
Association of TAP gene polymorphisms and risk of cervical intraepithelial neoplasia.
Dis Markers. 2013; 35(2):79-84 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Transporter associated with antigen processing (TAP) is responsible for peptide loading onto class I major histocompatibility complex (MHC-I) molecules. TAP seems to facilitate the detection of HPV by MHC-I molecules and contributes to successful eradication of HPV. TAP polymorphisms could have an important impact on the course of HPV infection.
OBJECTIVE: The aim of this study is to evaluate the association between five TAP gene polymorphisms and the risk of CIN. Methods. This case-control study investigated five common TAP polymorphisms in TAP1 (1341 and 2254) and TAP2 (1135, 1693, and 1993) in 616 women with CIN and 206 controls. Associations between gene polymorphisms and risk of CIN were analysed by univariate and multivariable models. The combined effect of the five TAP gene polymorphisms on the risk for CIN was investigated by haplotype analysis.
RESULTS: No significant difference in genotype distribution of the five TAP polymorphisms was observed in women with CIN and controls. Haplotype analysis revealed that women with haplotype mut-wt-wt-wt-wt (TAP polymorphisms t1135-t1341-t1693-t1993-t2254) had a significantly lower risk for CIN, compared to women with the haplotype wt-wt-wt-wt-wt (P = 0.006; OR 0.5 [0.35-0.84]).
CONCLUSION: Identification of this haplotype combination could be used to identify women, less susceptible for development of CIN following HPV infection.

Ozbas-Gerceker F, Bozman N, Gezici S, et al.
Association of TAP1 and TAP2 gene polymorphisms with hematological malignancies.
Asian Pac J Cancer Prev. 2013; 14(9):5213-7 [PubMed] Related Publications
Transporter associated with antigen presenting (TAP) 1 and TAP2 genes are localized in the major histocompatability complex (MHC) class II region and form a heterodimer playing a key role in endogenous pathways for antigen presentation. Defects of these genes have been reported to be common in different types of cancer. Polymorphisms identified in these loci have also been investigated and reported to be associated with several autoimmune disorders, viral infections and neoplasms. In the present study, for the first time, the allele and genotype frequencies of TAP1-333, TAP2-565, TAP2-651 and TAP2-665 were determined in patients with hematological malignancies (HM) using a PCR-RFLP method and compared with the frequencies in the control group. Our results suggested an association of TAP1-333 polymorphism with multiple myeloma-MM and TAP2- 565 polymorphism with chronic lymphoid leukemia-CLL. In addition, it could be concluded that the TAP2-665 GG genotype might be a risk factor for all types of hematological malignancies included in this study.

Ricciardelli C, Ween MP, Lokman NA, et al.
Chemotherapy-induced hyaluronan production: a novel chemoresistance mechanism in ovarian cancer.
BMC Cancer. 2013; 13:476 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Hyaluronan (HA) an important component of the extracellular matrix, has been linked to tumor progression and drug resistance in several malignancies. However, limited data is available for ovarian cancer. This study investigated the role of hyaluronan (HA) and a potential link between the HA-CD44 pathway and membrane ATP binding cassette (ABC) transporter proteins in ovarian cancer chemoresistance.
METHODS: We investigated the ability of HA to block the cytotoxic effects of the chemotherapy drug carboplatin, and to regulate the expression of ABC transporters in ovarian cancer cells. We also examined HA serum levels in ovarian cancer patients prior to and following chemotherapy and assessed its prognostic relevance.
RESULTS: HA increased the survival of carboplatin treated ovarian cancer cells expressing the HA receptor, CD44 (OVCAR-5 and OV-90). Carboplatin significantly increased expression of HAS2, HAS3 and ABCC2 and HA secretion in ovarian cancer cell conditioned media. Serum HA levels were significantly increased in patients following platinum based chemotherapy and at both 1st and 2nd recurrence when compared with HA levels prior to treatment. High serum HA levels (>50 μg/ml) prior to chemotherapy treatment were associated with significantly reduced progression-free (P = 0.014) and overall survival (P = 0.036). HA production in ovarian cancer cells was increased in cancer tissues collected following chemotherapy treatment and at recurrence. Furthermore HA treatment significantly increased the expression of ABC drug transporters (ABCB3, ABCC1, ABCC2, and ABCC3), but only in ovarian cancer cells expressing CD44. The effects of HA and carboplatin on ABC transporter expression in ovarian cancer cells could be abrogated by HA oligomer treatment. Importantly, HA oligomers increased the sensitivity of chemoresistant SKOV3 cells to carboplatin.
CONCLUSIONS: Our findings indicate that carboplatin chemotherapy induces HA production which can contribute to chemoresistance by regulating ABC transporter expression. The HA-CD44 signaling pathway is therefore a promising target in platinum resistant ovarian cancer.

Leone P, Shin EC, Perosa F, et al.
MHC class I antigen processing and presenting machinery: organization, function, and defects in tumor cells.
J Natl Cancer Inst. 2013; 105(16):1172-87 [PubMed] Related Publications
The surface presentation of peptides by major histocompatibility complex (MHC) class I molecules is critical to all CD8(+) T-cell adaptive immune responses, including those against tumors. The generation of peptides and their loading on MHC class I molecules is a multistep process involving multiple molecular species that constitute the so-called antigen processing and presenting machinery (APM). The majority of class I peptides begin as proteasome degradation products of cytosolic proteins. Once transported into the endoplasmic reticulum by TAP (transporter associated with antigen processing), peptides are not bound randomly by class I molecules but are chosen by length and sequence, with peptidases editing the raw peptide pool. Aberrations in APM genes and proteins have frequently been observed in human tumors and found to correlate with relevant clinical variables, including tumor grade, tumor stage, disease recurrence, and survival. These findings support the idea that APM defects are immune escape mechanisms that disrupt the tumor cells' ability to be recognized and killed by tumor antigen-specific cytotoxic CD8(+) T cells. Detailed knowledge of APM is crucial for the optimization of T cell-based immunotherapy protocols.

El Hage F, Durgeau A, Mami-Chouaib F
TAP expression level in tumor cells defines the nature and processing of MHC class I peptides for recognition by tumor-specific cytotoxic T lymphocytes.
Ann N Y Acad Sci. 2013; 1283:75-80 [PubMed] Related Publications
We identified that the antigen preprocalcitonin (ppCT) is recognized on a human lung carcinoma by a cytotoxic T lymphocyte clone derived from autologous tumor-infiltrating lymphocytes. The antigenic peptide ppCT(16-25) is encoded by the gene calcitonin-related polypeptide alpha (CALCA), which codes for CT and is overexpressed in several lung carcinomas compared with normal tissues. The ppCT peptide is derived from the C-terminal region of the signal peptide and is processed independently of proteasomes and the transporter associated with antigen processing (TAP)1/TAP2 heterodimeric complexes. Instead, processing occurs within the endoplasmic reticulum by a novel mechanism involving signal pepsidase (SP) and signal peptide peptidase (SPP). Although lung cancer cells bearing the ppCT(16-25) epitope displayed low levels of TAP, restoration of TAP expression by interferon (IFN)-γ treatment or by TAP1/TAP2 gene transfer inhibited ppCT antigen presentation. Thus, the ppCT(16-25) human tumor epitope requires low TAP expression for efficient presentation. These results indicate that emerging SP-generated peptides represent alternative T cell targets that permit cytotoxic T lymphocytes to destroy TAP-impaired tumors, a process that helps to overcome tumor escape from CD8(+) T cell immunity. Additionally, our data suggest that ppCT is a promising candidate for cancer immunotherapy.

Skov V, Riley CH, Thomassen M, et al.
Whole blood transcriptional profiling reveals significant down-regulation of human leukocyte antigen class I and II genes in essential thrombocythemia, polycythemia vera and myelofibrosis.
Leuk Lymphoma. 2013; 54(10):2269-73 [PubMed] Related Publications
Gene expression profiling studies in the Philadelphia-negative chronic myeloproliferative neoplasms have revealed significant deregulation of several immune and inflammation genes that might be of importance for clonal evolution due to defective tumor immune surveillance. Other mechanisms might be down-regulation of major histocompatibility (MHC) class I and II genes, which are used by tumor cells to escape antitumor T-cell-mediated immune responses. We have performed whole blood transcriptional profiling of genes encoding human leukocyte antigen (HLA) class I and II molecules, β2-microglobulin and members of the antigen processing machinery of HLA class I molecules (LMP2, LMP7, TAP1, TAP2 and tapasin). The findings of significant down-regulation of several of these genes may possibly be of major importance for defective tumor immune surveillance. Since up-regulation of HLA genes is recorded during treatment with epigenome modulating agents (DNA-hypomethylators and DNA-hyperacetylators [histone deacetylase inhibitors]) and interferon-α2, our findings call for prospective transcriptional studies of HLA genes during treatment with these agents.

Eto M, Kamba T, Miyake H, et al.
STAT3 polymorphism can predict the response to interferon-α therapy in patients with metastatic renal cell carcinoma.
Eur Urol. 2013; 63(4):745-52 [PubMed] Related Publications
BACKGROUND: In our 2007 retrospective study, we reported that single nucleotide polymorphisms (SNPs) in the signal transducer and activator of transcription 3 (acute-phase response factor) (STAT3) gene were significantly associated with better response to interferon (IFN)-α in patients with metastatic renal cell carcinoma (mRCC).
OBJECTIVE: To prospectively confirm those results, the Japan Immunotherapy SNPs-Study Group for Kidney Cancer conducted this trial.
DESIGN, SETTING, AND PARTICIPANTS: In this multicenter, prospective study, 203 eligible patients were enrolled. We evaluated the correlation between the antitumor effects of IFN-α and 11 SNPs (STAT3-2, STAT3-0, SOCS3-1, IL4R-34, PTGS1-3, PTGS1-4, PTGS1-5, PTGS2-12, IRF2-67, ICSBP-38, and TAP2-5) in eight genes in 180 patients who received IFN-α for >12 wk.
INTERVENTIONS: Patients were treated with three doses per week of IFN-α 5 million IU.
OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: We analyzed the association of response to IFN-α and overall survival (OS) with genetic polymorphisms using a chi-square test and a logistic regression model.
RESULTS AND LIMITATIONS: The response rate of IFN-α was 13.8% (28 of 203 patients; 9 complete responses [CRs], 19 partial responses [PRs]). The CR rate of 4.4% was higher than we expected. Response to IFN-α was not associated with any of the 11 SNPs examined. However, when we assessed patients with CR, PR, and stable disease >24 wk as a group representing those with clinical response, a significant association was observed between STAT3-2 (rs1905341) and the clinical response of IFN-α (p=0.039). Namely, C/C genotype of STAT3-2 was significantly associated with the clinical response of IFN-α and OS. These results were generated in Japanese patients and should be studied in other ethnic groups.
CONCLUSIONS: This is the first prospective study demonstrating that a STAT3 polymorphism can be a predictive marker for treatment with IFN-α for patients with mRCC.

Williams BJ, Bhatia S, Adams LK, et al.
Dendritic cell based PSMA immunotherapy for prostate cancer using a CD40-targeted adenovirus vector.
PLoS One. 2012; 7(10):e46981 [PubMed] Free Access to Full Article Related Publications
Human prostate tumor vaccine and gene therapy trials using ex vivo methods to prime dendritic cells (DCs) with prostate specific membrane antigen (PSMA) have been somewhat successful, but to date the lengthy ex vivo manipulation of DCs has limited the widespread clinical utility of this approach. Our goal was to improve upon cancer vaccination with tumor antigens by delivering PSMA via a CD40-targeted adenovirus vector directly to DCs as an efficient means for activation and antigen presentation to T-cells. To test this approach, we developed a mouse model of prostate cancer by generating clonal derivatives of the mouse RM-1 prostate cancer cell line expressing human PSMA (RM-1-PSMA cells). To maximize antigen presentation in target cells, both MHC class I and TAP protein expression was induced in RM-1 cells by transduction with an Ad vector expressing interferon-gamma (Ad5-IFNγ). Administering DCs infected ex vivo with CD40-targeted Ad5-huPSMA, as well as direct intraperitoneal injection of the vector, resulted in high levels of tumor-specific CTL responses against RM-1-PSMA cells pretreated with Ad5-IFNγ as target cells. CD40 targeting significantly improved the therapeutic antitumor efficacy of Ad5-huPSMA encoding PSMA when combined with Ad5-IFNγ in the RM-1-PSMA model. These results suggest that a CD-targeted adenovirus delivering PSMA may be effective clinically for prostate cancer immunotherapy.

Hasim A, Abudula M, Aimiduo R, et al.
Post-transcriptional and epigenetic regulation of antigen processing machinery (APM) components and HLA-I in cervical cancers from Uighur women.
PLoS One. 2012; 7(9):e44952 [PubMed] Free Access to Full Article Related Publications
Normal function of human leukocyte antigen class I (HLA-I) and antigen processing machinery (APM) proteins is required for T cell-mediated anti-tumor or antiviral immunity, whereas the tumor survival indicates a failure of the host in immune surveillance associated with the dysfunction in antigen presentation, mainly due to the deregulation in HLA-I and APM expression or function. The posttranscriptional regulation of HLA-I and APM expression may associate with epigenetic modifications in cancer development which was not described so far. Here we showed that the development of cervical intraepithelial neoplasia (CIN) and cervical squamous cell carcinoma (CSCC) in Uighur women was accompanied with the partial or total loss of protein expression of HLA-I, ß2-m and APM components, including the transporter associated with antigen processing (TAP1/2), low molecular mass protein (LMP2, LMP7), endoplasmic reticulum aminopeptidase 1(ERAP1), chaperone molecules include calreticulin (CLR), calnexin (CNX) and ERp57, and this was proved again by analysis of transcription of the same genes in addition to three genes HLA-A, B and C coding for HLA-I. By bisulfite sequencing approach, we identified target CpG islands methylated at the gene promoter region of TAP1, TAP2, LMP7, tapasin and ERp57 in cervical carcinoma cells. Further analysis of CpG site specific methylation of these genes in cases of CSCC and CIN demonstrated an inverse correlation of altered CpG island methylation of TAP1, LMP7, and ERp57 with changes in protein expression. Moreover, promoter methylation of these genes was significantly higher in cases positive for human papillomavirus 16 (HPV 16) than negative ones. Our results suggested that epigenetic modifications are responsible for the aberrant expression of certain HLA-I and APM genes, and may help to understand unrevealed mechanisms of tumor escape from immune surveillance in cervical carcinogenesis.

Qiu B, Huang B, Wang X, et al.
Association of TAP1 and TAP2 polymorphisms with the outcome of persistent HBV infection in a northeast Han Chinese population.
Scand J Gastroenterol. 2012; 47(11):1368-74 [PubMed] Related Publications
OBJECTIVE: Transporter associated with antigen processing (TAP) plays a central role in a cellular immune response against HBV. Polymorphisms exist at the coding region of TAP and alter its structure and function. The aim of this study was to evaluate the potential relationship between polymorphisms of TAP and different outcomes of persistent HBV infection in a Han population in northeastern China.
MATERIAL AND METHODS: 189 HBV spontaneously recovered (SR) subjects, 571 HBV-infected patients including 180 chronic hepatitis B (CHB), 196 liver cirrhosis (LC) and 195 hepatocellular carcinoma (HCC) individuals were included in this study. TAP1-333 Ile/Val and -637 Asp/Gly, TAP2-651 Arg/Cys and -687 Stop/Gln were genotyped in all the samples by using a PCR-RFLP method.
RESULTS: The frequency of TAP1-637-Gly (allele G) was significantly higher in persistently HBV-infected individuals (CHB and LC) than that of SR subjects (OR = 1.58, 95% CI 1.12-2.45, p = 0.024; OR = 1.78, 95% CI 1.27-2.68, p = 0.002) by a logistic regression analysis. In addition, the statistically significant difference in the distribution of TAP2-651-Cys (allele T) was observed between HCC cases and SR controls (OR = 2.30, 95% CI 1.51-3.72, p < 0.001), and TAP2-687-Gln (allele C) in CHB patients was more common than that in SR subjects (OR = 1.41, 95% CI 1.13-1.97, p = 0.021). The data also revealed that haplotype 687 Gln-651 Cys-637 Gly-333 Ile was strongly associated with persistent HBV infection (CHB, LC and HCC) (p < 0.001, < 0.05 and < 0.001, respectively).
CONCLUSION: These results suggested that TAP variants were likely to play a substantial role in different outcomes of persistent HBV infection in the studied population.

Cerhan JR, Fredericksen ZS, Novak AJ, et al.
A two-stage evaluation of genetic variation in immune and inflammation genes with risk of non-Hodgkin lymphoma identifies new susceptibility locus in 6p21.3 region.
Cancer Epidemiol Biomarkers Prev. 2012; 21(10):1799-806 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Non-Hodgkin lymphoma (NHL) is a malignancy of lymphocytes, and there is growing evidence for a role of germline genetic variation in immune genes in NHL etiology.
METHODS: To identify susceptibility immune genes, we conducted a 2-stage analysis of single-nucleotide polymorphisms (SNP) from 1,253 genes using the Immune and Inflammation Panel. In Stage 1, we genotyped 7,670 SNPs in 425 NHL cases and 465 controls, and in Stage 2 we genotyped the top 768 SNPs on an additional 584 cases and 768 controls. The association of individual SNPs with NHL risk from a log-additive model was assessed using the OR and 95% confidence intervals (CI).
RESULTS: In the pooled analysis, only the TAP2 coding SNP rs241447 (minor allele frequency = 0.26; Thr655Ala) at 6p21.3 (OR = 1.34, 95% CI 1.17-1.53) achieved statistical significance after accounting for multiple testing (P = 3.1 × 10(-5)). The TAP2 SNP was strongly associated with follicular lymphoma (FL, OR = 1.82, 95%CI 1.46-2.26; p = 6.9 × 10(-8)), and was independent of other known loci (rs10484561 and rs2647012) from this region. The TAP2 SNP was also associated with diffuse large B-cell lymphoma (DLBCL, OR = 1.38, 95% CI 1.08-1.77; P = 0.011), but not chronic lymphocytic leukemia (OR = 1.08; 95% CI 0.88-1.32). Higher TAP2 expression was associated with the risk allele in both FL and DLBCL tumors.
CONCLUSION: Genetic variation in TAP2 was associated with NHL risk overall, and FL risk in particular, and this was independent of other established loci from 6p21.3.
IMPACT: Genetic variation in antigen presentation of HLA class I molecules may play a role in lymphomagenesis.

Stölzel F, Hackmann K, Kuithan F, et al.
Clonal evolution including partial loss of human leukocyte antigen genes favoring extramedullary acute myeloid leukemia relapse after matched related allogeneic hematopoietic stem cell transplantation.
Transplantation. 2012; 93(7):744-9 [PubMed] Related Publications
BACKGROUND: Relapse of acute myeloid leukemia (AML) after allogeneic hematopoietic stem cell transplantation (HSCT) leaves few therapeutic options, and mechanisms of immune escape of recurring leukemic cells remain poorly understood. Recently, acquired loss of mismatched human leukocyte antigen (HLA) was demonstrated in patients with AML undergoing haploidentical allogeneic HSCT and was suggested not to occur in HLA-matched HSCT. We hypothesized that this mechanism applies to extramedullary AML relapse which occurs frequently after allogeneic HSCT and might also not be restricted to haploidentical HSCT.
METHODS: DNA from extramedullary AML relapse after HSCT was compared with bone marrow at diagnosis with array comparative genomic hybridization to investigate relapse-specific genomic aberrations in relapsing AML after allogeneic HSCT. Formalin-fixed, paraffin-embedded tissues from the same points of time were assessed for HLA, major histocompatibility complex class I chain-related gene A, and TAP2 immunohistochemistry staining to assess cell surface expression of deleted loci encoded on chromosome 6p.
RESULTS: Array comparative genomic hybridization revealed a partial loss of chromosome 6p in extramedullary myeloid sarcoma relapse of AML after sustained complete remission was achieved through matched related allogeneic HSCT. Among others, a deleted region 6p21.32-p21.33, which included several HLA class I genes, was detected.
CONCLUSIONS: These results suggest that the loss of HLA class I haplotype also occurs in AML relapse after HLA-matched related HSCT. Partial loss of several HLA class I genes and subsequent reduced presentation of minor histocompatibility antigens and reduced ligation of activating natural killer-cell receptors may explain the loss of graft-versus-leukemia response and extramedullary AML relapse in tissue with reduced immunologic surveillance.

Bernal M, García-Alcalde F, Concha A, et al.
Genome-wide differential genetic profiling characterizes colorectal cancers with genetic instability and specific routes to HLA class I loss and immune escape.
Cancer Immunol Immunother. 2012; 61(6):803-16 [PubMed] Related Publications
AIM: We compared the expression of genes related to inflammatory and cytotoxic functions between MSI and MSS (HLA-class I-negative and HLA-class I-positive) colorectal cancers (CRCs), seeking evidence of differences in inflammatory mediators and cytotoxic T-cell responses. Twenty-two CRCs were divided into three study groups as a function of HLA class I expression and MSI phenotype: 8 MSI tumours, 6 MSS/HLA- tumours and 6 MSS/HLA+ tumours (controls).
FINDINGS: A first comparison between eight MSI and six MSS/HLA-positive (control) cancers, based on microarray analysis on an Affymetrix(®) HG-U133-Plus-PM plate, identified 1974 differentially expressed genes (P < 0.05). We grouped genes in Gene Ontology functional categories: apoptotic programme (72 genes, P = 5.5·10(-3)), leucocyte activation (43 genes, P = 1.8·10(-5)), T-cell activation (24 genes, P = 6.3·10(-4)), inflammatory response (40 genes, 2.3·10(-2)) and cytokine production (10 genes, P = 1.9·10(-2)). Real-time PCR and immunohistochemical evaluation were used to validate the data, finding that increased mRNA levels of pro-inflammatory cytokines and cytotoxic mediators were associated with greater infiltration by CD8+T lymphocytes in the MSI group (P < 0.001). Finally, HLA-class I-negative tumours were not grouped together but rather in accordance with features of the gene expression profile of MSI or MSS tumours. As expected, genes associated with antigen processing machinery and MHC class I molecules (TAP2, B2m) were downregulated in MSS/HLA-class I-negative CRCs (n = 6) in comparison to controls.
CONCLUSIONS: In conclusion, microarray and immunohistochemical data may be useful to comprehensively assess tumour-host interactions and differentiate MSI from MSS cancers. The two types of tumour, MSI/HLA-class I-negative and MSS/HLA-class I-negative, showed marked differences in the composition and intensity of infiltrating leucocytes, suggesting that their immune escape strategies involve distinct pathways.

Fellerhoff B, Gu S, Laumbacher B, et al.
The LMP7-K allele of the immunoproteasome exhibits reduced transcript stability and predicts high risk of colon cancer.
Cancer Res. 2011; 71(23):7145-54 [PubMed] Related Publications
Destruction of cancer cells by cytotoxic T lymphocytes depends on immunogenic tumor peptides generated by proteasomes and presented by human leukocyte antigen (HLA) molecules. Functional differences arising from alleles of immunoproteasome subunits have not been recognized so far. We analyzed the genetic polymorphism of the immunoproteasome subunits LMP2 and LMP7 and of the transporters associated with antigen processing (TAP1 and TAP2) in two independently collected panels of colorectal carcinoma patients (N(1) = 112, N(2) = 62; controls, N = 165). High risk of colon cancer was associated with the LMP7-K/Q genotype (OR = 8.10, P = 1.10 × 10(-11)) and low risk with the LMP7-Q/Q genotype (OR = 0.10, P = 5.97 × 10(-13)). The basis for these distinct associations of LMP7 genotypes was functionally assessed by IFN-γ stimulation of colon carcinoma cell lines (N = 10), followed by analyses of mRNA expression of HLA class I, TAP1, TAP2, and LMP7, with real-time PCR. Whereas induction of HLA-B, TAP1, and TAP2 was comparable in all cell lines, transcript amounts of LMP7-Q increased 10-fold, but of LMP7-K only 3.8-fold. This correlated with a reduced transcript stability of LMP7-K (t(1/2) ≈ 7 minutes) compared with LMP7-Q (t(1/2) ≈ 33 minutes). In addition, LMP7-Q/Q colon carcinoma cells increased (the peptide based) HLA class I surface expression significantly after IFN-γ stimulation, whereas LMP7-Q/K and LMP7-K/K carcinoma cells showed minimal (<20%) changes. These results suggest that the presence of LMP7-K can reduce the formation of immunoproteasomes and thus peptide processing, followed by reduced peptide-HLA presentation, a crucial factor in the immune response against cancer.

Durgeau A, El Hage F, Vergnon I, et al.
Different expression levels of the TAP peptide transporter lead to recognition of different antigenic peptides by tumor-specific CTL.
J Immunol. 2011; 187(11):5532-9 [PubMed] Related Publications
Decreased antigenicity of cancer cells is a major problem in tumor immunology. This is often acquired by an expression defect in the TAP. However, it has been reported that certain murine Ags appear on the target cell surface upon impairment of TAP expression. In this study, we identified a human CTL epitope belonging to this Ag category. This epitope is derived from preprocalcitonin (ppCT) signal peptide and is generated within the endoplasmic reticulum by signal peptidase and signal peptide peptidase. Lung cancer cells bearing this antigenic peptide displayed low levels of TAP, but restoration of their expression by IFN-γ treatment or TAP1 and TAP2 gene transfer abrogated ppCT Ag presentation. In contrast, TAP upregulation in the same tumor cells increased their recognition by proteasome/TAP-dependent peptide-specific CTLs. Thus, to our knowledge, ppCT(16-25) is the first human tumor epitope whose surface expression requires loss or downregulation of TAP. Lung tumors frequently display low levels of TAP molecules and might thus be ignored by the immune system. Our results suggest that emerging signal peptidase-generated peptides represent alternative T cell targets, which permit CTLs to destroy TAP-impaired tumors and thus overcome tumor escape from CD8(+) T cell immunity.

Bormann F, Sers C, Seliger B, et al.
Methylation-specific ligation detection reaction (msLDR): a new approach for multiplex evaluation of methylation patterns.
Mol Genet Genomics. 2011; 286(3-4):279-91 [PubMed] Related Publications
A new sensitive method for multiplex gene-specific methylation analysis was developed using a ligation-based approach combined with a TaqMan-based detection and readout employing universal reporter probes. The approach, termed methylation-specific Ligation Detection Reaction (msLDR), was applied to test 16 loci in 8 different colorectal cancer cells in parallel. These loci encode immune regulatory genes involved in T-cell and natural killer cell activation, whose silencing is associated with the development or progression of colorectal cancer. Parallel analysis of HLA-A, HLA-B, STAT1, B2M, LMP2, LMP7, PA28α, TAP1, TAP2, TAPBP, ULBP2 and ULBP3 by msLDR in eight colorectal cancer cell lines showed preferential methylation at the HLA-B, ULBP2 and ULBB3 loci, but not at the other loci. MsLDR was found to represent a suitable and sensitive method for the detection of distinct methylation patterns as validated by conventional bisulphite Sanger sequencing and COBRA analysis. Since gene silencing by epigenetic mechanisms plays a central role during transformation of a normal differentiated somatic cell into a cancer cell, characterization of the gene methylation status in tumours is a major topic not only in basic research, but also in clinical diagnostics. Due to a very simple workflow, msLDR is likely to be applicable to clinical samples and thus comprises a potential diagnostic tool for clinical purposes.

Wu TH, Schreiber K, Arina A, et al.
Progression of cancer from indolent to aggressive despite antigen retention and increased expression of interferon-gamma inducible genes.
Cancer Immun. 2011; 11:2 [PubMed] Free Access to Full Article Related Publications
Many cancers escape host immunity without losing tumor-specific rejection antigens or MHC class I expression. This study tracks the evolution of one such cancer that developed in a mouse following exposure to ultraviolet light. The primary autochthonous tumor was not highly malignant and was rejected when transplanted into naïve immunocompetent mice. Neoplastic cells isolated from the primary tumor were susceptible to the growth-inhibitory effects of IFNγ in vitro, but expressed very low levels of MHC I antigen and were resistant to tumor-specific T cells unless they were first exposed to IFNγ. Serial passage of the primary tumor cells in vivo led to a highly aggressive variant that caused fast-growing tumors in normal mice. In vitro, the variant tumor cells showed increased resistance to the growth-inhibitory effects of IFNγ but expressed high levels of immunoproteasomes and MHC I molecules and were susceptible to tumor-specific T cells even without prior exposure to IFNγ.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. TAP2, Cancer Genetics Web: http://www.cancer-genetics.org/TAP2.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 31 August, 2019     Cancer Genetics Web, Established 1999