PMS2

Gene Summary

Gene:PMS2; PMS2 postmeiotic segregation increased 2 (S. cerevisiae)
Aliases: PMSL2, HNPCC4, PMS2CL
Location:7p22.2
Summary:This gene is one of the PMS2 gene family members found in clusters on chromosome 7. The product of this gene is involved in DNA mismatch repair. It forms a heterodimer with MLH1 and this complex interacts with other complexes bound to mismatched bases. Mutations in this gene are associated with hereditary nonpolyposis colorectal cancer, Turcot syndrome, and are a cause of supratentorial primitive neuroectodermal tumors. Alternatively spliced transcript variants have been observed for this gene. [provided by RefSeq, Jul 2008]
Databases:OMIM, VEGA, HGNC, Ensembl, GeneCard, Gene
Protein:mismatch repair endonuclease PMS2
HPRD
Source:NCBIAccessed: 27 February, 2015

Ontology:

What does this gene/protein do?
Show (18)

Cancer Overview

Research Indicators

Publications Per Year (1990-2015)
Graph generated 27 February 2015 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 27 February, 2015 using data from PubMed, MeSH and CancerIndex

Specific Cancers (7)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: PMS2 (cancer-related)

Ye J, Zhou Y, Weiser MR, et al.
Immunohistochemical detection of ARID1A in colorectal carcinoma: loss of staining is associated with sporadic microsatellite unstable tumors with medullary histology and high TNM stage.
Hum Pathol. 2014; 45(12):2430-6 [PubMed] Related Publications
AT-rich interactive domain-containing protein 1A (ARID1A), a chromatin remodeling gene recently discovered to be a tumor suppressor in ovarian cancers, has been found to be mutated at low frequencies in many other tumors including colorectal carcinoma (CRC). An association between ARID1A alteration and DNA mismatch repair (MMR) deficiency has been implicated; understanding this association may facilitate the understanding of the role of ARID1A in the various tumors. In this pilot study, we analyzed the immunohistochemical expression of ARID1A in a consecutive series of 257 CRCs that fulfilled a set of relaxed criteria for Lynch syndrome screening; 59 (23%) were MMR deficient by immunohistochemistry (44 MLH1/PMS2 deficient, 9 MSH2/MSH6 deficient, 4 MSH6 deficient, and 2 PMS2 deficient). ARID1A loss was observed in 9% (22/257) of the cohort: 24% of MMR-deficient tumors (14/59, 13 of the 14 being MLH1/PMS2 deficient) and 4% of MMR-normal tumors (8/198) (P < .05). MLH1 (mutL homolog 1) promoter hypermethylation was observed in 10 of the 13 MLH1/PMS2-deficient/ARID1A-loss tumors, indicating an association between ARID1A loss and sporadic microsatellite unstable CRCs. Among the MMR-deficient cases, ARID1A loss correlated with old age (P = .04), poor tumor differentiation (P < .01), medullary histology (P < .01), and an increased rate of nodal and distant metastasis (P = .03); these patients also trended toward a worse 5-year overall survival. Among MMR-normal tumors, no differences in clinicopathological features were detected between the groups stratified by ARID1A. In conclusion, our results suggest that ARID1A loss may be linked to a specific subset of sporadic microsatellite unstable CRCs that may be medullary but is more likely to present with metastatic disease, warranting further investigation.

Mills AM, Liou S, Ford JM, et al.
Lynch syndrome screening should be considered for all patients with newly diagnosed endometrial cancer.
Am J Surg Pathol. 2014; 38(11):1501-9 [PubMed] Related Publications
Lynch syndrome (LS) is an autosomal dominant inherited disorder caused by germline mutations in DNA mismatch repair (MMR) genes. Mutation carriers are at substantially increased risk of developing cancers of the colorectum and endometrium, among others. Given recent recommendations for universal, cost-effective screening of all patients with newly diagnosed colorectal cancer using MMR protein immunohistochemistry, we evaluated MMR protein expression in a series of endometrial cancers in the general population. A total of 605 consecutive cases of primary endometrial cancer at a single institution (1997 to 2013) were evaluated regardless of age, family history, or histologic features. Evaluation methods consisted of immunohistochemistry for the MMR proteins MLH1, MSH2, MSH6, and PMS2, followed by DNA methylation analysis for cases with MLH1/PMS2 deficiency. Germline mutation testing was performed on a subset of cases. Forty MMR-deficient, nonmethylated endometrial cancers were identified: 3 MLH1/PMS2 and 37 MSH6/MSH2 protein deficiencies. Only 25% occurred in women below 50 years of age (range, 39 to 88 y), 1 of which was in a risk-reducing hysterectomy specimen. Only 15% of patients had a prior history of carcinoma, including only 2 patients with prior colorectal carcinoma. Most (80%) of the endometrial cancers were purely endometrioid; there were 2 mixed endometrioid/mucinous, 1 mucinous, 1 serous, 2 clear cell, and 2 carcinosarcoma cases. When grading was applicable, 40% of the endometrial malignancies were FIGO grade 1, 34% grade 2, and 26% grade 3. Thirteen percent arose in the lower uterine segment, and 23% had tumor-infiltrating lymphocytes. Of the tumors with known germline testing, 41% with a LS-associated germline mutation were not associated with any of the traditional indicators that have been recommended for LS screening (ie, age 50 y or younger, personal/family cancer pedigree that meets Bethesda guideline criteria, presence of MMR-associated tumor morphology, or location in the lower uterine segment). These data suggest that a significant number of LS-associated endometrial carcinomas are missed using clinical, histologic, and locational screening parameters and provide support for universal screening of all newly diagnosed endometrial cancers.

Haraldsdottir S, Hampel H, Tomsic J, et al.
Colon and endometrial cancers with mismatch repair deficiency can arise from somatic, rather than germline, mutations.
Gastroenterology. 2014; 147(6):1308-1316.e1 [PubMed] Article available free on PMC after 01/12/2015 Related Publications
BACKGROUND & AIMS: Patients with Lynch syndrome carry germline mutations in single alleles of genes encoding the mismatch repair (MMR) proteins MLH1, MSH2, MSH6, and PMS2; when the second allele becomes mutated, cancer can develop. Increased screening for Lynch syndrome has identified patients with tumors that have deficiency in MMR, but no germline mutations in genes encoding MMR proteins. We investigated whether tumors with deficient MMR had acquired somatic mutations in patients without germline mutations in MMR genes using next-generation sequencing.
METHODS: We analyzed blood and tumor samples from 32 patients with colorectal or endometrial cancer who participated in Lynch syndrome screening studies in Ohio and were found to have tumors with MMR deficiency (based on microsatellite instability and/or absence of MMR proteins in immunohistochemical analysis, without hypermethylation of MLH1), but no germline mutations in MMR genes. Tumor DNA was sequenced for MLH1, MSH2, MSH6, PMS2, EPCAM, POLE, and POLD1 with ColoSeq and mutation frequencies were established.
RESULTS: Twenty-two of 32 patients (69%) were found to have 2 somatic (tumor) mutations in MMR genes encoding proteins that were lost from tumor samples, based on immunohistochemistry. Of the 10 remaining tumors 3 had one somatic mutation in a MMR gene, with possible loss of heterozygosity that could lead to MMR deficiency, 6 were found to be false-positive results (19%), and 1 had only one mutation in a MMR gene and remained unexplained. All of the tumors found to have somatic MMR mutations were of the hypermutated phenotype (>12 mutations/megabase); 6 had mutation frequencies >200/megabase, and 5 of these had somatic mutations in POLE, which encodes a DNA polymerase.
CONCLUSIONS: Some patients are found to have tumors with MMR defects during screening for Lynch syndrome, yet have no identifiable germline mutations in MMR genes. We found that almost 70% of these patients acquire somatic mutations in MMR genes, leading to a hypermutated phenotype of tumor cells. Patients with colon or endometrial cancers with MMR deficiency not explained by germline mutations might undergo analysis for tumor mutations in MMR genes to guide future surveillance guidelines.

Loconte DC, Patruno M, Lastella P, et al.
A rare MSH2 mutation causes defective binding to hMSH6, normal hMSH2 staining, and loss of hMSH6 at advanced cancer stage.
Hum Pathol. 2014; 45(10):2162-7 [PubMed] Related Publications
Lynch syndrome is caused by germline mutations in 1 of the 4 DNA mismatch repair genes (MLH1, MSH2, MSH6, and PMS2). Mutations in MSH2 cause concomitant loss of hMSH6, whereas MLH1 mutations lead to concurrent loss of PMS2. Much less frequent mutations in MSH6 or PMS2 are associated with the isolated loss of the corresponding proteins. We here demonstrate the causative role of the first germline mutation of MSH2, c.1249-1251 dupGTT (p.417V-418I dupV), associated with normal hMSH2 expression and lack of hMSH6 protein despite a normal MSH6 gene sequence. hMSH6 protein was completely lost only in advanced cancer stages due to 2 different "second hits": a whole MSH2 gene deletion and a frame-shifting insertion in the MSH6 (C)8 repeat in the coding sequence.

Vierkoetter KR, Ayabe AR, VanDrunen M, et al.
Lynch Syndrome in patients with clear cell and endometrioid cancers of the ovary.
Gynecol Oncol. 2014; 135(1):81-4 [PubMed] Related Publications
OBJECTIVE: Patients with Lynch Syndrome are at an increased risk for a variety of malignancies, including ovarian cancer. Ovarian cancers associated with Lynch Syndrome are predominantly clear cell or endometrioid in histology. Lynch Syndrome is characterized by germline mutations in mismatch repair (MMR) genes. The current study aims to assess the prevalence of loss of MMR expression in patients with endometrioid and clear cell ovarian carcinoma.
METHODS: A retrospective review identified 90 patients with endometrioid and/or clear cell carcinomas. Slides made from tumor tissue microarray blocks were evaluated using immunohistochemical stains with antibodies against MLH1, PMS2, MSH2, and MSH6. Statistical analysis was performed.
RESULTS: Seven of the 90 cases (7.8%) had loss of MMR expression. The mean age of patients with loss of MMR expression (47 years) was significantly younger than those with retained MMR expression (p=0.014). Loss of MMR expression was present in 20% of patients under the age of 53 with clear cell or endometrioid cancers. Genetic studies found that 3 of the 5 patients with loss of MMR expression carried mutations consistent with Lynch Syndrome; acquired hypermethylation of MLH1 was noted in one patient. Six of 7 patients (86%) whose tumors lacked MMR expression had synchronous or metachronous primary malignancies, a significantly greater prevalence than those with retained MMR expression (p<0.001).
CONCLUSION: Patients under the age of 53 with clear cell or endometrioid ovarian carcinomas are at a clinically significant risk for loss of MMR expression and Lynch Syndrome; routine screening with immunohistochemical staining should be considered.

Joost P, Veurink N, Holck S, et al.
Heterogenous mismatch-repair status in colorectal cancer.
Diagn Pathol. 2014; 9:126 [PubMed] Article available free on PMC after 01/12/2015 Related Publications
BACKGROUND: Immunohistochemical staining for mismatch repair proteins is efficient and widely used to identify mismatch repair defective tumors. The tumors typically show uniform and widespread loss of MMR protein staining. We identified and characterized colorectal cancers with alternative, heterogenous mismatch repair protein staining in order to delineate expression patterns and underlying mechanisms.
METHODS: Heterogenous staining patterns that affected at least one of the mismatch repair proteins MLH1, PMS2, MSH2 and MSH6 were identified in 14 colorectal cancers. Based on alternative expression patterns macro-dissected and micro-dissected tumor areas were separately analyzed for microsatellite instability and MLH1 promoter methylation.
RESULTS: Heterogenous retained/lost mismatch repair protein expression could be classified as intraglandular (within or in-between glandular formations), clonal (in whole glands or groups of glands) and compartmental (in larger tumor areas/compartments or in between different tumor blocks). These patterns coexisted in 9/14 tumors and in the majority of the tumors correlated with differences in microsatellite instability/MLH1 methylation status.
CONCLUSIONS: Heterogenous mismatch repair status can be demonstrated in colorectal cancer. Though rare, attention to this phenomenon is recommended since it corresponds to differences in mismatch repair status that are relevant for correct classification.
VIRTUAL SLIDES: The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1771940323126788.

Clay MR, Allison KH, Folkins AK, Longacre TA
Risk of secondary malignancy (including breast) in patients with mismatch-repair protein deficiency.
Am J Surg Pathol. 2014; 38(11):1494-500 [PubMed] Related Publications
Lynch syndrome (LS) is an autosomal dominant inherited disease that is associated with an increased risk for colorectal and endometrial cancer due to germline mutations in mismatch-repair (MMR) genes. Whereas primary tumors in this syndrome are widely recognized, the relative risk(s) of secondary malignancies, particularly breast cancer, in LS patients are still poorly characterized. To provide an improved assessment of these risks, MMR status was evaluated in secondary tumors from a series of patients with index tumors of known MMR status (both proficient and deficient). A total of 1252 tumors (index tumors) and all secondary malignancies were tested for MMR by immunohistochemistry (MSH2, MSH6, MLH1, PMS2) between 1992 and 2013. Tumors with MLH1/PMS2 deficiency were tested for hypermethylation or BRAF mutation, when appropriate. Of the 1252 index tumors, 162 were MMR deficient (dMMR), and, of that subset, 32 secondary tumors were identified (19.7%). In contrast, 80 secondary tumors were identified in the proficient (intact) group (7.3%). Although secondary malignancies were more common in the dMMR group (P=0.0001), there was no trend in tumor type. Specifically, breast cancer was not overly represented in the dMMR group. When secondary tumors had dMMR, they were more likely to have deficiency in MSH2/MSH6 than in MLH1/PMS2 (P=0.01). Of the patients with tumors exhibiting dMMR, women were more likely to have a dMMR secondary tumor in this series (P=0.0001); however, breast cancer was not overly represented, and our study provides no evidence that it is more frequent in LS. MSH2/MSH6 deficiency is more commonly associated with a secondary tumor compared with MLH1/PMS2 deficiency, when methylation/BRAF status is taken into account.

Bregenhorn S, Jiricny J
Biochemical characterization of a cancer-associated E109K missense variant of human exonuclease 1.
Nucleic Acids Res. 2014; 42(11):7096-103 [PubMed] Article available free on PMC after 01/12/2015 Related Publications
Mutations in the mismatch repair (MMR) genes MSH2, MSH6, MLH1 and PMS2 are associated with Lynch Syndrome (LS), a familial predisposition to early-onset cancer of the colon and other organs. Because not all LS families carry mutations in these four genes, the search for cancer-associated mutations was extended to genes encoding other members of the mismatch repairosome. This effort identified mutations in EXO1, which encodes the sole exonuclease implicated in MMR. One of these mutations, E109K, was reported to abrogate the catalytic activity of the enzyme, yet, in the crystal structure of the EXO1/DNA complex, this glutamate is far away from both DNA and the catalytic site of the enzyme. In an attempt to elucidate the reason underlying the putative loss of function of this variant, we expressed it in Escherichia coli, and tested its activity in a series of biochemical assays. We now report that, contrary to earlier reports, and unlike the catalytic site mutant D173A, the EXO1 E109K variant resembled the wild-type (wt) enzyme on all tested substrates. In the light of our findings, we attempt here to reinterpret the results of the phenotypic characterization of a knock-in mouse carrying the E109K mutation and cells derived from it.

Ruiz I, Martín-Arruti M, Lopez-Lopez E, Garcia-Orad A
Lack of association between deficient mismatch repair expression and outcome in endometrial carcinomas of the endometrioid type.
Gynecol Oncol. 2014; 134(1):20-3 [PubMed] Related Publications
OBJECTIVE: Endometrial carcinomas of the endometrioid type (EEC) are associated with a good prognosis. However, about 20% of them recur and new prognostic markers are needed. Microsatellite instability (MSI), associated with mismatch repair (MMR) deficiency, is a frequent alteration in EECs that has been associated with prognosis. However, its prognostic impact on EECs remains unclear. The aim of the present study was to clarify the relationship between MMR deficiency and outcome in a large cohort of well classified EECs.
METHODS: A total of 212 EEC samples were analyzed by immunohistochemistry for the MMR genes MLH-1, MSH-2, MSH-6 and PMS-2. Kaplan-Meier survival analysis and log-rank tests were performed to study the prognostic significance of dMMR taking into account clinical and pathological parameters.
RESULTS: We observed no association between MMR deficiency and OS or PFS in our 212 EEC patients (p-value=0.6565 and 0.4380, respectively). When we performed the analysis in different FIGO-stage groups, we did not find association between MMR and OS or PFS in stages I, I/II or III/IV. When we analyzed the specific group of patients with lymphatic invasion separately, MMR expression was not associated with OS or PFS either.
CONCLUSIONS: MMR deficiency does not seem to be a good prognostic marker in endometrioid type endometrial carcinomas.

Cornejo KM, Hutchinson L, Deng A, et al.
BRAF/KRAS gene sequencing of sebaceous neoplasms after mismatch repair protein analysis.
Hum Pathol. 2014; 45(6):1213-20 [PubMed] Related Publications
Sebaceous neoplasms are cutaneous markers for the autosomal-dominant Muir-Torre syndrome (MTS). This phenotypic variant of Lynch syndrome (LS) is caused by germline mutations in DNA mismatch repair (MMR) genes. Microsatellite instability or loss of protein expression suggests a mutation or promoter hypermethylation in 1 of the MMR genes. BRAF gene sequencing may help to distinguish between patients with sporadic and LS-associated colorectal carcinomas with loss of MLH1 expression. LS-associated carcinomas are virtually negative for BRAF mutations, but a subset harbors KRAS mutations. The aim of our study was to test sebaceous neoplasms for V600E BRAF or KRAS mutations to determine if these mutations are associated with somatic or germline MMR defects, analogous to colorectal carcinomas. Over a 4-year period, 32 cases comprising 21 sebaceous adenomas, 3 sebaceomas, and 8 sebaceous carcinomas with sufficient material for testing were collected. MMR immunohistochemistry showed that 7 neoplasms had combined loss of MLH1-PMS2, 16 neoplasms had combined loss of MSH2-MSH6, 2 neoplasms had solitary loss of MSH6, and 7 sebaceous neoplasms had intact protein expression. BRAF/KRAS testing revealed all sebaceous neoplasms contained a wild-type BRAF gene. Two (15%) of 13 patients with MTS were found to harbor a KRAS mutation and loss of MLH1 expression. We conclude that a V600E BRAF mutation may not be helpful in distinguishing sporadic from MTS-associated sebaceous neoplasms. Further studies are needed to determine if KRAS mutations are restricted to patients with MTS or are also present in sporadic sebaceous neoplasms.

Abulí A, Bujanda L, Muñoz J, et al.
The MLH1 c.1852_1853delinsGC (p.K618A) variant in colorectal cancer: genetic association study in 18,723 individuals.
PLoS One. 2014; 9(4):e95022 [PubMed] Article available free on PMC after 01/12/2015 Related Publications
Colorectal cancer is one of the most frequent neoplasms and an important cause of mortality in the developed world. Mendelian syndromes account for about 5% of the total burden of CRC, being Lynch syndrome and familial adenomatous polyposis the most common forms. Lynch syndrome tumors develop mainly as a consequence of defective DNA mismatch repair associated with germline mutations in MLH1, MSH2, MSH6 and PMS2. A significant proportion of variants identified by screening these genes correspond to missense or noncoding changes without a clear pathogenic consequence, and they are designated as "variants of uncertain significance", being the c.1852_1853delinsGC (p.K618A) variant in the MLH1 gene a clear example. The implication of this variant as a low-penetrance risk variant for CRC was assessed in the present study by performing a case-control study within a large cohort from the COGENT consortium-COST Action BM1206 including 18,723 individuals (8,055 colorectal cancer cases and 10,668 controls) and a case-only genotype-phenotype correlation with several clinical and pathological characteristics restricted to the Epicolon cohort. Our results showed no involvement of this variant as a low-penetrance variant for colorectal cancer genetic susceptibility and no association with any clinical and pathological characteristics including family history for this neoplasm or Lynch syndrome.

Wimmer K, Kratz CP, Vasen HF, et al.
Diagnostic criteria for constitutional mismatch repair deficiency syndrome: suggestions of the European consortium 'care for CMMRD' (C4CMMRD).
J Med Genet. 2014; 51(6):355-65 [PubMed] Related Publications
Constitutional mismatch repair deficiency (CMMRD) syndrome is a distinct childhood cancer predisposition syndrome that results from biallelic germline mutations in one of the four MMR genes, MLH1, MSH2, MSH6 or PMS2. The tumour spectrum is very broad, including mainly haematological, brain and intestinal tract tumours. Patients show a variety of non-malignant features that are indicative of CMMRD. However, currently no criteria that should entail diagnostic evaluation of CMMRD exist. We present a three-point scoring system for the suspected diagnosis CMMRD in a paediatric/young adult cancer patient. Tumours highly specific for CMMRD syndrome are assigned three points, malignancies overrepresented in CMMRD two points and all other malignancies one point. According to their specificity for CMMRD and their frequency in the general population, additional features are weighted with 1-2 points. They include multiple hyperpigmented and hypopigmented skin areas, brain malformations, pilomatricomas, a second childhood malignancy, a Lynch syndrome (LS)-associated tumour in a relative and parental consanguinity. According to the scoring system, CMMRD should be suspected in any cancer patient who reaches a minimum of three points by adding the points of the malignancy and the additional features. The diagnostic steps to confirm or refute the suspected diagnosis are outlined. We expect that application of the suggested strategy for CMMRD diagnosis will increase the number of patients being identified at the time when they develop their first tumour. This will allow adjustment of the treatment modalities, offering surveillance strategies for second malignancies and appropriate counselling of the entire family.

Liu Y, Chew MH, Goh XW, et al.
Systematic study on genetic and epimutational profile of a cohort of Amsterdam criteria-defined Lynch Syndrome in Singapore.
PLoS One. 2014; 9(4):e94170 [PubMed] Article available free on PMC after 01/12/2015 Related Publications
BACKGROUND: Germline defects of mismatch repair (MMR) genes underlie Lynch Syndrome (LS). We aimed to gain comprehensive genetic and epigenetic profiles of LS families in Singapore, which will facilitate efficient molecular diagnosis of LS in Singapore and the region.
METHODS: Fifty nine unrelated families were studied. Mutations in exons, splice-site junctions and promoters of five MMR genes were scanned by high resolution melting assay followed by DNA sequencing, large fragment deletions/duplications and promoter methylation in MLH1, MSH2, MSH6 and PMS2 were evaluated by multiplex ligation-dependent probe amplification. Tumor microsatellite instability (MSI) was assessed with five mononucleotide markers and immunohistochemical staining (IHC) was also performed.
RESULTS: Pathogenic defects, all confined to MLH1 and MSH2, were identified in 17 out of 59 (28.8%) families. The mutational spectrum was highly heterogeneous and 28 novel variants were identified. One recurrent mutation in MLH1 (c.793C>T) was also observed. 92.9% sensitivity for indication of germline mutations conferred by IHC surpassed 64.3% sensitivity by MSI. Furthermore, 15.6% patients with MSS tumors harbored pathogenic mutations.
CONCLUSIONS: Among major ethnic groups in Singapore, all pathogenic germline defects were confined to MLH1 and MSH2. Caution should be applied when the Amsterdam criteria and consensus microsatellite marker panel recommended in the revised Bethesda guidelines are applied to the local context. We recommend a screening strategy for the local LS by starting with tumor IHC and the hotspot mutation testing at MLH1 c.793C>T followed by comprehensive mutation scanning in MLH1 and MSH2 prior to proceeding to other MMR genes.

Richter JM, Pino MS, Austin TR, et al.
Genetic mechanisms in interval colon cancers.
Dig Dis Sci. 2014; 59(9):2255-63 [PubMed] Related Publications
BACKGROUND AND AIM: The factors underlying the development of interval colon cancers are not well defined and are likely heterogeneous. We sought to determine whether there are distinct molecular properties associated with interval colon cancers.
METHODS: Colon cancers diagnosed within 5 years of a complete and well-prepped colonoscopic examination were identified over a 7-year period at a single institution. The clinical and pathological features of the tumors were defined. Analysis of DNA mismatch repair (MMR) and genotyping of a panel of oncogenes associated with colon cancer were performed.
RESULTS: Forty-two interval colon cancers were diagnosed at an average age of 70 years. 69 % of tumors were located in the right colon. 41 % of tumors exhibited DNA microsatellite instability (MSI). Loss of staining of DNA MMR proteins by immunohistochemistry (IHC) was confirmed in 82 % of the MSI-positive tumors. Among tumors with abnormal MSI and IHC, 54 % exhibited somatic methylation of the MLH1 promoter, but the remaining 43 % exhibited molecular features indicative of underlying Lynch syndrome (LS). The frequency of somatic mutations in the KRAS, BRAF, NRAS, and PIK3CA oncogenes was similar between interval cancer cases and controls.
CONCLUSIONS: Interval colon cancers are not distinguished by the activation of the KRAS, NRAS, BRAF, or PIK3CA oncogenic pathways. However, MSI pathway defects are present in a significant proportion of interval colon cancers. Underlying LS may explain nearly half of these MSI-positive cases, and the remaining cases appear to represent sporadic serrated pathway tumors.

Amira AT, Mouna T, Ahlem B, et al.
Immunohistochemical expression pattern of MMR protein can specifically identify patients with colorectal cancer microsatellite instability.
Tumour Biol. 2014; 35(7):6283-91 [PubMed] Related Publications
The microsatellite instability (MSI) pathway is found in most cases of hereditary nonpolyposis colorectal cancer (HNPCC) and in 12 % of sporadic colorectal cancer (CRC). It involves inactivation of deoxyribonucleic acid mismatch repair (MMR) genes MLH1, MSH2, PMS2, and MSH6. MMR germline mutation detections are an important supplement to HNPCC clinical diagnosis. It enables at-risk and mutation-positive relatives to be informed about their cancer risks and to benefit from intensive surveillance programs that have been proven to reduce the incidence of CRC. In this study, we analyzed for the first time in Tunisia the potential value of immunohistochemical assessment of MMR protein to identify microsatellite instability in CRC. We evaluate by immunohistochemistry MMR protein expression loss in tumoral tissue compared to positive expression in normal mucosa. Immunohistochemistry revealed loss of expression for MLH1, MSH2, MSH6, and PMS2 in 15, 21, 13, and 15 % of cases, respectively. Here, we report a more elevated frequency of MSI compared to data of the literature. In fact, by immunohistochemistry, 70 % of cases were shown to be MSS phenotype, whereas 30 % of cases, in our set, were instable. Moreover, according to molecular investigation, 71 % of cases were instable (MSI-H) and remaining cases were stable (29 %). Thus, we found a perfect association between MMR immunohistochemical analyses and MSI molecular investigation. Immunohistochemical analysis of MMR gene product expression may allow one to specifically identify MSI phenotype of patients with colorectal carcinomas.

Sameer AS, Nissar S, Fatima K
Mismatch repair pathway: molecules, functions, and role in colorectal carcinogenesis.
Eur J Cancer Prev. 2014; 23(4):246-57 [PubMed] Related Publications
The microsatellite instability (MSI) pathway is one of the important mutational pathways that play a critical role in colorectal carcinogenesis. About 15% of colorectal cancers (CRCs) are characterized by MSI. MSI tumors usually arise because of a genetic defect in mismatch repair (MMR) genes, one of the main DNA-repairing systems. MMR is a highly conserved biological pathway that plays a key role in maintaining genomic stability by correcting the base-base mismatches and insertion/deletion mispairs generated during DNA replication and recombination. Escherichia coli MutS and MutL and their eukaryotic homologs, MutSα and MutLα, respectively, are key players in MMR-associated genome maintenance. Mutations in at least five pivotal genes of MMR, namely, in those encoding mutS homolog 2 (MSH2), mutL homolog 1 (MLH1), mutS homolog 6 (MSH6), postmeiotic segregation increased 1 (PMS1), and postmeiotic segregation, increased 2 (PMS2) have been found in CRC, highlighting the importance of understanding the basic structure and functions of the essential molecules that make up the MMR system. In this review, we have attempted to focus on this aspect, that is, the role that MMR molecules play in CRC carcinogenesis.

Lee SE, Kang SY, Cho J, et al.
Pyloric gland adenoma in Lynch syndrome.
Am J Surg Pathol. 2014; 38(6):784-92 [PubMed] Article available free on PMC after 01/12/2015 Related Publications
The prevalence of gastric cancer associated with Lynch syndrome (LS) is highly variable, and the underlying histologic pathway or molecular mechanisms remain unclear. From 1995 to 2012, 15 patients had been treated for both gastric and colonic adenocarcinomas and diagnosed as LS. In all cases, pathologic review, immunohistochemical analysis for mismatch-repair proteins, and microsatellite instability (MSI) tests were performed. To confirm LS, germline mutation tests and multiplex ligation-dependent probe amplification were performed. All gastric and colonic carcinomas were MSI-high and lost expressions of MLH1/PMS2 in 11 (73%) cases and MSH2/MSH6 in 4 (27%) cases. Remarkably, in a patient with LS and germline mutation of MLH1 gene, pyloric gland adenoma (PGA) transformed to adenocarcinoma during follow-up. In 2 additional cases, PGA was found adjacent to advanced gastric cancers. All PGAs in LS patients were MSI-high and lost expression of mismatch-repair proteins (MLH1/PMS2 in 2 cases and MSH2/MSH6 in 1 case), whereas none of the 14 sporadic PGAs was MSI-high or had lost expression of mismatch-repair proteins. On the basis of these observations, although very rare, we suggest the possibility that PGA may be a precursor lesion to gastric adenocarcinoma in LS and that the mismatch-repair deficient pathway of carcinogenesis is involved early in the gastric carcinogenesis pathway.

Rabban JT, Calkins SM, Karnezis AN, et al.
Association of tumor morphology with mismatch-repair protein status in older endometrial cancer patients: implications for universal versus selective screening strategies for Lynch syndrome.
Am J Surg Pathol. 2014; 38(6):793-800 [PubMed] Related Publications
Although there is consensus on the cost-effectiveness of a universal approach of screening all colorectal cancer patients for Lynch syndrome (LS) using mismatch-repair (MMR) protein immunohistochemistry (IHC) and/or microsatellite instability (MSI) testing, the question of universal versus selective screening of endometrial cancer patients remains to be resolved. We have prospectively implemented a selective screening algorithm for newly diagnosed endometrial cancer patients, triggered by patient age 50 years or younger, personal/family cancer pedigree that meets Bethesda guideline criteria, and/or presence of MMR-associated tumor morphology. Four-protein MMR IHC and MSI testing were performed if any of the criteria were met. This algorithm excluded screening of older patients without a cancer pedigree and whose tumors lacked MMR morphology. The aim of this study was to retrospectively determine whether these exclusion criteria missed any tumors with abnormal MMR. Among 273 consecutive patients with newly diagnosed endometrial cancers, 181 (66%) lacked criteria for screening. Retrospective MMR IHC confirmed intact MMR in 177 (97.8%) of these 181 unscreened patients, loss of MSH6 in 1 patient (0.5%), and loss of MSH1/PMS2 due to MLH1 promoter hypermethylation in 3 patients (1.7%). In comparison, 41% of patients fulfilling 1 or more criteria for screening had abnormal MMR IHC/MSI, mostly consisting of loss of MLH1/PMS2. MMR morphology contributed to detection of 92% of the abnormal MMR cases while cancer pedigree contributed to detection of the remainder. All of the abnormalities due to MSH2 and PMS2 were detected by the screening algorithm, but 1 of the 4 MSH6 cases was not. The latter finding is consistent with the literature that MSH6 endometrial cancers exhibit a phenotype different than those of the other MMR genes. We conclude that a genotype-specific approach to screening endometrial cancer for LS could consist of universal testing by MSH6 IHC and selective testing by MLH1, PMS2, and MSH2 IHC on the basis of age, cancer pedigree, and MMR morphology. Cost-effectiveness of this hybrid selective strategy deserves further study, particularly in comparison with a universal strategy. Further work to identify phenotypic features of endometrial cancers with methylated MLH1 that would allow them to be excluded from LS screening would also contribute to cost-effectiveness.

Haghighi MM, Aghagolzadeh P, Zadeh SM, et al.
Telomere shortening: a biological marker of sporadic colorectal cancer with normal expression of p53 and mismatch repair proteins.
Genet Test Mol Biomarkers. 2014; 18(4):236-44 [PubMed] Related Publications
Uncontrolled growth of cells, a main criterion of cancer, is merged with pathologic telomere length alteration. Thereby, measurement of telomere length could provide important information on cell proliferation and senescence in cancer tissues. Telomere shortening and its potential correlation with clinicopathological predictive markers in sporadic colorectal cancer (CRC) with normal expression of mismatch repair (MMR) proteins (including Mlh1, Msh2, Pms2, and Msh6) and normal p53 expression was completely explored. Relative telomere length (RTL) was quantitatively measured in a cohort of 164 samples (68 patients with sporadic CRC and 96 healthy unrelated controls). Our results demonstrated a significant shortening of RTL in the tumor-derived tissue of patients compared with the control group (p<0.001). Interestingly, significant telomere shortening was observed in tumors from an ascending and sigmoid colon in comparison with tumors located in a descending colon. Additionally, the telomere length was significantly shorter in those with lymph node metastasis (p<0.05). The results suggest that pathological telomere shortening, leading to genome instability and lymphatic transformation, could serve as a potential sensitive detection and also as a classification marker for facilitating diagnosis and management of CRC.

Steinke V, Holzapfel S, Loeffler M, et al.
Evaluating the performance of clinical criteria for predicting mismatch repair gene mutations in Lynch syndrome: a comprehensive analysis of 3,671 families.
Int J Cancer. 2014; 135(1):69-77 [PubMed] Related Publications
Carriers of mismatch repair (MMR) gene mutations have a high lifetime risk for colorectal and endometrial cancers, as well as other malignancies. As mutation analysis to detect these patients is expensive and time-consuming, clinical criteria and tumor-tissue analysis are widely used as pre-screening methods. The aim of our study was to evaluate the performance of commonly applied clinical criteria (the Amsterdam I and II Criteria, and the original and revised Bethesda Guidelines) and the results of tumor-tissue analysis in predicting MMR gene mutations. We analyzed 3,671 families from the German HNPCC Registry and divided them into nine mutually exclusive groups with different clinical criteria. A total of 680 families (18.5%) were found to have a pathogenic MMR gene mutation. Among all 1,284 families with microsatellite instability-high (MSI-H) colorectal cancer, the overall mutation detection rate was 53.0%. Mutation frequencies and their distribution between the four MMR genes differed significantly between clinical groups (p < 0.001). The highest frequencies were found in families fulfilling the Amsterdam Criteria (46.4%). Families with loss of MSH2 expression had higher mutation detection rates (69.5%) than families with loss of MLH1 expression (43.1%). MMR mutations were found significantly more often in families with at least one MSI-H small-bowel cancer (p < 0.001). No MMR mutations were found among patients under 40-years-old with only colorectal adenoma. Familial clustering of Lynch syndrome-related tumors, early age of onset, and familial occurrence of small-bowel cancer were clinically relevant predictors for Lynch syndrome.

Vymetalkova VP, Slyskova J, Korenkova V, et al.
Molecular characteristics of mismatch repair genes in sporadic colorectal tumors in Czech patients.
BMC Med Genet. 2014; 15:17 [PubMed] Article available free on PMC after 01/12/2015 Related Publications
BACKGROUND: Mismatch repair (MMR) genes are known to be frequently altered in colorectal cancer (CRC). Both genetics and epigenetics modifications seems to be relevant in this phenomenon, however it is still not clear how these two aspects are interconnected. The present study aimed at characterizing of epigenetic and gene expression profiles of MMR genes in sporadic CRC patients from the Czech Republic, a country with one of the highest incidences of this cancer all over Europe.
METHODS: Expression levels and CpG promoter methylation status of all MMR genes were evaluated in DNA from tumor and adjacent mucosal samples of 53 incident CRC patients.
RESULTS: We have found significantly increased transcription levels in EXO1 gene in tumor tissues (P = 0.05) and significant over-expression of MSH3 gene in colon tumors when compared to adjacent mucosal tissues (P = 0.02). Interestingly, almost all MMR genes were differently expressed when localization of tumors was compared. In particular, colon tumors showed an up-regulation of EXO1, MSH2, MSH3, MSH6, and PMS2 genes in comparison to rectal tumors (P = 0.02). Expression levels of all MMR genes positively correlated between each other. The promoter methylation of MLH1 gene was observed in 9% of CRC tissues only.
CONCLUSIONS: In our study, we have observed different pattern of MMR genes expression according to tumor localization. However, a lack of association between methylation in MMR genes and their corresponding expressions was noticed in this study, the relationship between these two aspects is worthy to be analyzed in larger population studies and in pre-malignant stages.

Much M, Buza N, Hui P
Tissue identity testing of cancer by short tandem repeat polymorphism: pitfalls of interpretation in the presence of microsatellite instability.
Hum Pathol. 2014; 45(3):549-55 [PubMed] Related Publications
Tissue identity testing by short tandem repeat (STR) polymorphism offers discriminating power in resolving tissue mix-up or contamination. However, one caveat is the presence of microsatellite unstable tumors, in which genetic alterations may drastically change the STR wild-type polymorphism leading to unexpected allelic discordance. We examined how tissue identity testing results can be altered by the presence of microsatellite instability (MSI). Eleven cases of MSI-unstable (9 intestinal and 2 endometrial adenocarcinomas) and 10 cases of MSI-stable tumors (all colorectal adenocarcinomas) were included. All had been previously tested by polymerase chain reaction testing at 5 National Cancer Institute (NCI) recommended MSI loci and/or immunohistochemistry for DNA mismatch repair proteins (MLH1, MSH2, MSH6, and PMS2). Tissue identity testing targeting 15 STR loci was performed using AmpF/STR Identifiler Amplification. Ten of 11 MSI-unstable tumors demonstrated novel alleles at 5 to 12 STR loci per case and frequently with 3 or more allelic peaks. However, all affected loci showed identifiable germline allele(s) in MSI-high tumors. A wild-type allelic profile was seen in 7 of 10 MSI-stable tumors. In the remaining 3 cases, isolated novel alleles were present at a unique single locus in addition to germline alleles. Loss of heterozygosity was observed frequently in both MSI-stable (6/11 cases) and MSI-unstable tumors (8/10 cases). In conclusion, MSI may significantly alter the wild-type allelic polymorphism, leading to potential interpretation errors of STR genotyping. Careful examination of the STR allelic pattern, high index of suspicion, and follow-up MSI testing are crucial to avoid erroneous conclusions and subsequent clinical and legal consequences.

Peltomäki P
Epigenetic mechanisms in the pathogenesis of Lynch syndrome.
Clin Genet. 2014; 85(5):403-12 [PubMed] Related Publications
Inherited defects in the DNA mismatch repair (MMR) system, MLH1, MSH2, MSH6, and PMS2 genes, underlie Lynch syndrome, one of the most prevalent cancer syndromes in man. The syndrome offers a model for cancers arising through MMR defects and microsatellite instability, which applies to ~ 15% of all colorectal, endometrial, and other cancers. Lynch syndrome also illustrates the significance of the epigenetic component in cancer development. Inactivation of tumor suppressor genes by epigenetic mechanisms is an acquired property of many tumors developing in Lynch syndrome. Furthermore, constitutional epimutations of MMR genes may explain a proportion of mutation-negative families lacking MLH1 or MSH2 protein expression in tumor tissue. This review provides an update of the molecular basis of Lynch syndrome by focusing on the role of epigenetic mechanisms in the pathogenesis of the disease.

Liau JY, Liao SL, Hsiao CH, et al.
Hypermethylation of the CDKN2A gene promoter is a frequent epigenetic change in periocular sebaceous carcinoma and is associated with younger patient age.
Hum Pathol. 2014; 45(3):533-9 [PubMed] Related Publications
Periocular sebaceous carcinoma is an aggressive neoplasm with significant morbidity and mortality. Its pathogenesis is poorly understood. It is only rarely associated with Muir-Torre syndrome. Previous studies from Asian countries, have suggested that human papillomavirus (HPV) infection plays a role in the pathogenesis and overexpression of p16(INK4a), a surrogate marker of HPV infection, have also been reported. However, data from western countries seem contradictory. In order to clarify and explore the molecular and epigenetic basis of HPV, CDKN2A status and role of microsatellite instability in the development of periocular sebaceous carcinoma, 24 cases of periocular sebaceous carcinoma were analyzed for the expression of p16(INK4a) and mismatch repair proteins (MLH1, MSH2, MSH6 and PMS2) via immunohistochemistry. Nested polymerase chain reaction (PCR) and genechip HPV typing were used to detect HPV infection and decide its genotype when present. PCR amplification using a consensus primer pair was also performed to detect β-HPV. The methylation status of CDKN2A promoter region was studied by methylation-specific polymerase chain reaction. HPV-positivity was demonstrated in only one of our cases (HPV 16), while another case showed p16(INK4a) overexpression. All cases showed preserved expression of mismatch repair proteins. CDKN2A promoter hypermethylation was noted in nearly half of our cases (11/24) and was associated with younger patient age (P = .013). Our results showed that periocular sebaceous carcinoma is rarely associated with HPV and microsatellite instability. Higher frequency of CDKN2A promoter hypermethylation in younger patients implies a significant epigenetic role in tumor development in this age group.

Bakry D, Aronson M, Durno C, et al.
Genetic and clinical determinants of constitutional mismatch repair deficiency syndrome: report from the constitutional mismatch repair deficiency consortium.
Eur J Cancer. 2014; 50(5):987-96 [PubMed] Related Publications
BACKGROUND: Constitutional mismatch repair deficiency (CMMRD) is a devastating cancer predisposition syndrome for which data regarding clinical manifestations, molecular screening tools and management are limited.
METHODS: We established an international CMMRD consortium and collected comprehensive clinical and genetic data. Molecular diagnosis of tumour and germline biospecimens was performed. A surveillance protocol was developed and implemented.
RESULTS: Overall, 22/23 (96%) of children with CMMRD developed 40 different tumours. While childhood CMMRD related tumours were observed in all families, Lynch related tumours in adults were observed in only 2/14 families (p=0.0007). All children with CMMRD had café-au-lait spots and 11/14 came from consanguineous families. Brain tumours were the most common cancers reported (48%) followed by gastrointestinal (32%) and haematological malignancies (15%). Importantly, 12 (30%) of these were low grade and resectable cancers. Tumour immunohistochemistry was 100% sensitive and specific in diagnosing mismatch repair (MMR) deficiency of the corresponding gene while microsatellite instability was neither sensitive nor specific as a diagnostic tool (p<0.0001). Furthermore, screening of normal tissue by immunohistochemistry correlated with genetic confirmation of CMMRD. The surveillance protocol detected 39 lesions which included asymptomatic malignant gliomas and gastrointestinal carcinomas. All tumours were amenable to complete resection and all patients undergoing surveillance are alive.
DISCUSSION: CMMRD is a highly penetrant syndrome where family history of cancer may not be contributory. Screening tumours and normal tissues using immunohistochemistry for abnormal expression of MMR gene products may help in diagnosis and early implementation of surveillance for these children.

Hinrichsen I, Kemp M, Peveling-Oberhag J, et al.
Promoter methylation of MLH1, PMS2, MSH2 and p16 is a phenomenon of advanced-stage HCCs.
PLoS One. 2014; 9(1):e84453 [PubMed] Article available free on PMC after 01/12/2015 Related Publications
Epigenetic silencing of tumour suppressor genes has been observed in various cancers. Looking at hepatocellular carcinoma (HCC) specific protein silencing was previously demonstrated to be associated with the Hepatitis C virus (HCV). However, the proposed HCV dependent promoter methylation of DNA mismatch repair (MMR) genes and thereby enhanced progression of hepatocarcinogenesis has been the subject of controversial discussion. We investigated promoter methylation pattern of the MMR genes MLH1, MSH2 and PMS2 as well as the cyclin-dependent kinase inhibitor 2A gene (p16) in 61 well characterized patients with HCCs associated with HCV, Hepatitis B virus infection or alcoholic liver disease. DNA was isolated from formalin-fixed, paraffin-embedded tumour and non-tumour adjacent tissue and analysed by methylation-specific PCR. Moreover, microsatellite analysis was performed in tissues showing methylation in MMR gene promoters. Our data demonstrated that promoter methylation of MLH1, MSH2, PMS2 and p16 is present among all considered HCCs. Hereby, promoter silencing was detectable more frequently in advanced-stage HCCs than in low-stage ones. However, there was no significant correlation between aberrant DNA methylation of MMR genes or p16 and HCV infection in related HCC specimens. In summary, we show that promoter methylation of essential MMR genes and p16 is detectable in HCCs most dominantly in pT3 stage tumour cases. Since loss of MMR proteins was previously described to be not only responsible for tumour development but also for chemotherapy resistance, the knowledge of mechanisms jointly responsible for HCC progression might enable significant improvement of individual HCC therapy in the future.

Thompson BA, Spurdle AB, Plazzer JP, et al.
Application of a 5-tiered scheme for standardized classification of 2,360 unique mismatch repair gene variants in the InSiGHT locus-specific database.
Nat Genet. 2014; 46(2):107-15 [PubMed] Article available free on PMC after 01/12/2015 Related Publications
The clinical classification of hereditary sequence variants identified in disease-related genes directly affects clinical management of patients and their relatives. The International Society for Gastrointestinal Hereditary Tumours (InSiGHT) undertook a collaborative effort to develop, test and apply a standardized classification scheme to constitutional variants in the Lynch syndrome-associated genes MLH1, MSH2, MSH6 and PMS2. Unpublished data submission was encouraged to assist in variant classification and was recognized through microattribution. The scheme was refined by multidisciplinary expert committee review of the clinical and functional data available for variants, applied to 2,360 sequence alterations, and disseminated online. Assessment using validated criteria altered classifications for 66% of 12,006 database entries. Clinical recommendations based on transparent evaluation are now possible for 1,370 variants that were not obviously protein truncating from nomenclature. This large-scale endeavor will facilitate the consistent management of families suspected to have Lynch syndrome and demonstrates the value of multidisciplinary collaboration in the curation and classification of variants in public locus-specific databases.

Xiao X, Melton DW, Gourley C
Mismatch repair deficiency in ovarian cancer -- molecular characteristics and clinical implications.
Gynecol Oncol. 2014; 132(2):506-12 [PubMed] Related Publications
DNA mismatch repair (MMR) deficiency is associated with increased risk of developing several types of cancer and is the most common cause of hereditary ovarian cancer after BRCA1 and BRCA2 mutations. While there has been extensive investigation of MMR deficiency in colorectal cancer, MMR in ovarian cancer is relatively under-investigated. This review summarizes the mechanism of MMR, the ways in which MMR deficiency can promote carcinogenesis in general and then assesses the available studies regarding MMR deficiency in ovarian cancers with specific emphasis on implications for disease incidence and therapy. The incidence of germline MMR gene mutations in ovarian cancer is only 2% but other mechanisms of gene inactivation mean that loss of expression of one of the seven main genes (MSH2, MSH3, MSH6, MLH1, MLH3, PMS1 and PMS2) occurs in up to 29% of cases. Both mutational and expression data suggest that MMR deficiency is more common in non-serous ovarian cancer. Some studies suggest an improved survival for patients with MMR deficiency compared to historical controls but these do not account for the preponderance of non-serous tumors. A number of in vitro studies have suggested that MMR deficiency is a cause of platinum resistance. To date this has not been categorically demonstrated in the clinic. Larger studies that account for stage of presentation and immunohistochemical subtype are required to assess the effect of MMR deficiency on survival and chemosensitivity. Investigation of MMR related synthetic lethality in colorectal cancer has identified dihydrofolate reductase, DNA polymerase β and DNA polymerase γ and PTEN-induced putative kinase 1 as synthetic lethal to certain MMR defects by causing accumulation of oxidative DNA damage. These synthetic lethal targets require tested and others should be sought within the context of MMR deficient ovarian cancer in an attempt to provide novel therapeutic strategies for these patients.

Buchanan DD, Tan YY, Walsh MD, et al.
Tumor mismatch repair immunohistochemistry and DNA MLH1 methylation testing of patients with endometrial cancer diagnosed at age younger than 60 years optimizes triage for population-level germline mismatch repair gene mutation testing.
J Clin Oncol. 2014; 32(2):90-100 [PubMed] Related Publications
PURPOSE: Clinicopathologic data from a population-based endometrial cancer cohort, unselected for age or family history, were analyzed to determine the optimal scheme for identification of patients with germline mismatch repair (MMR) gene mutations.
PATIENTS AND METHODS: Endometrial cancers from 702 patients recruited into the Australian National Endometrial Cancer Study (ANECS) were tested for MMR protein expression using immunohistochemistry (IHC) and for MLH1 gene promoter methylation in MLH1-deficient cases. MMR mutation testing was performed on germline DNA of patients with MMR-protein deficient tumors. Prediction of germline mutation status was compared for combinations of tumor characteristics, age at diagnosis, and various clinical criteria (Amsterdam, Bethesda, Society of Gynecologic Oncology, ANECS).
RESULTS: Tumor MMR-protein deficiency was detected in 170 (24%) of 702 cases. Germline testing of 158 MMR-deficient cases identified 22 truncating mutations (3% of all cases) and four unclassified variants. Tumor MLH1 methylation was detected in 99 (89%) of 111 cases demonstrating MLH1/PMS2 IHC loss; all were germline MLH1 mutation negative. A combination of MMR IHC plus MLH1 methylation testing in women younger than 60 years of age at diagnosis provided the highest positive predictive value for the identification of mutation carriers at 46% versus ≤ 41% for any other criteria considered.
CONCLUSION: Population-level identification of patients with MMR mutation-positive endometrial cancer is optimized by stepwise testing for tumor MMR IHC loss in patients younger than 60 years, tumor MLH1 methylation in individuals with MLH1 IHC loss, and germline mutations in patients exhibiting loss of MSH6, MSH2, or PMS2 or loss of MLH1/PMS2 with absence of MLH1 methylation.

Rajan Kd A, Burris C, Iliff N, et al.
DNA mismatch repair defects and microsatellite instability status in periocular sebaceous carcinoma.
Am J Ophthalmol. 2014; 157(3):640-7.e1-2 [PubMed] Related Publications
PURPOSE: To characterize mismatch repair protein expression and the role of DNA repair abnormalities in sebaceous carcinomas of the ocular adnexa.
DESIGN: Retrospective case-series study.
METHODS: We reviewed 10 cases of sporadic sebaceous carcinoma and 1 case involving a patient with a family history consistent with Muir-Torre syndrome. Immunohistochemistry was used to analyze the presence of 4 mismatch repair proteins (MLH1, MSH2, MSH6, and PMS2) in these tumors. DNA was extracted from 7 of the larger tumors as well as from adjacent normal control tissue and microsatellite instability (MSI) analysis using 5 highly sensitive mononucleotides and 2 pentanucleotides was performed.
RESULTS: All 10 sporadic periocular sebaceous carcinomas maintained strong staining of the 4 mismatch repair genes, while tumor from the patient with Muir-Torre syndrome showed loss of staining for the mismatch repair genes MSH2 and MSH6. MSI testing of 7 tumors identified no changes in sporadic cases and yielded results supporting presence of repeat sequence instability in the Muir-Torre-associated case.
CONCLUSIONS: Sporadic sebaceous carcinoma of the ocular adnexa is not commonly associated with a loss of mismatch repair genes or microsatellite instability.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. PMS2, Cancer Genetics Web: http://www.cancer-genetics.org/PMS2.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 27 February, 2015     Cancer Genetics Web, Established 1999