Gene Summary

Gene:PIK3CB; phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit beta
Aliases: PI3K, PIK3C1, P110BETA, PI3KBETA
Summary:This gene encodes an isoform of the catalytic subunit of phosphoinositide 3-kinase (PI3K). These kinases are important in signaling pathways involving receptors on the outer membrane of eukaryotic cells and are named for their catalytic subunit. The encoded protein is the catalytic subunit for PI3Kbeta (PI3KB). PI3KB has been shown to be part of the activation pathway in neutrophils which have bound immune complexes at sites of injury or infection. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Dec 2011]
Databases:OMIM, VEGA, HGNC, Ensembl, GeneCard, Gene
Protein:phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit beta isoform
Source:NCBIAccessed: 25 June, 2015


What does this gene/protein do?
Show (39)
Pathways:What pathways are this gene/protein implicaed in?
Show (17)

Cancer Overview

Research Indicators

Publications Per Year (1990-2015)
Graph generated 25 June 2015 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Phosphatidylinositol 3-Kinases
  • Phosphorylation
  • Immunohistochemistry
  • Protein Conformation
  • Catalytic Domain
  • Cancer Gene Expression Regulation
  • Apoptosis
  • Protein Kinase Inhibitors
  • Structure-Activity Relationship
  • Transforming Growth Factor beta
  • Stromal Cells
  • Cell Proliferation
  • PTEN
  • Up-Regulation
  • RB1
  • beta Catenin
  • Thyroid Cancer
  • ras Proteins
  • Isoenzymes
  • Tumor Suppressor Proteins
  • Signal Transduction
  • TOR Serine-Threonine Kinases
  • Receptor, erbB-2
  • Thyroid Nodule
  • Transfection
  • Neoplastic Cell Transformation
  • Breast Cancer
  • Neoplasm Invasiveness
  • Mutation
  • Cell Movement
  • Cell Line
  • Enzyme Activation
  • Class Ia Phosphatidylinositol 3-Kinase
  • Endometrial Cancer
  • AKT1
  • HEK293 Cells
  • Chromosome 3
  • siRNA
  • Western Blotting
  • Poly(ADP-ribose) Polymerases
Tag cloud generated 25 June, 2015 using data from PubMed, MeSH and CancerIndex

Specific Cancers (3)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: PIK3CB (cancer-related)

Zhang L, Zhou Y, Cheng C, et al.
Genomic analyses reveal mutational signatures and frequently altered genes in esophageal squamous cell carcinoma.
Am J Hum Genet. 2015; 96(4):597-611 [PubMed] Article available free on PMC after 02/10/2015 Related Publications
Esophageal squamous cell carcinoma (ESCC) is one of the most common cancers worldwide and the fourth most lethal cancer in China. However, although genomic studies have identified some mutations associated with ESCC, we know little of the mutational processes responsible. To identify genome-wide mutational signatures, we performed either whole-genome sequencing (WGS) or whole-exome sequencing (WES) on 104 ESCC individuals and combined our data with those of 88 previously reported samples. An APOBEC-mediated mutational signature in 47% of 192 tumors suggests that APOBEC-catalyzed deamination provides a source of DNA damage in ESCC. Moreover, PIK3CA hotspot mutations (c.1624G>A [p.Glu542Lys] and c.1633G>A [p.Glu545Lys]) were enriched in APOBEC-signature tumors, and no smoking-associated signature was observed in ESCC. In the samples analyzed by WGS, we identified focal (<100 kb) amplifications of CBX4 and CBX8. In our combined cohort, we identified frequent inactivating mutations in AJUBA, ZNF750, and PTCH1 and the chromatin-remodeling genes CREBBP and BAP1, in addition to known mutations. Functional analyses suggest roles for several genes (CBX4, CBX8, AJUBA, and ZNF750) in ESCC. Notably, high activity of hedgehog signaling and the PI3K pathway in approximately 60% of 104 ESCC tumors indicates that therapies targeting these pathways might be particularly promising strategies for ESCC. Collectively, our data provide comprehensive insights into the mutational signatures of ESCC and identify markers for early diagnosis and potential therapeutic targets.

Guo B, Gao J, Zhan J, Zhang H
Kindlin-2 interacts with and stabilizes EGFR and is required for EGF-induced breast cancer cell migration.
Cancer Lett. 2015; 361(2):271-81 [PubMed] Related Publications
Epidermal growth factor receptor (EGFR) mediates multiple signaling pathways that regulate cell proliferation, migration and tumor invasion. Kindlin-2 has been known as a focal adhesion molecule that binds to integrin to control cell migration and invasion. However, molecular mechanisms underlying the role of Kindlin-2 in breast cancer progression remain elusive. Here we report that Kindlin-2 interacts with EGFR and mediates EGF-induced breast cancer cell migration. We found that EGF treatment dramatically increases Kindlin-2 expression at both mRNA and protein levels in a variety of cancer cells. Inhibitors specific for EGFR or PI3K blocked Kindlin-2 induction by EGF. Importantly, Kindlin-2 interacted with EGFR kinase domain, which was independent of Kindlin-2 binding to integrin cytoplasmic domain. Intriguingly, Kindlin-2 stabilized EGFR protein by blocking its ubiquitination and degradation. Depletion of Kindlin-2 impaired EGF-induced cell migration. Our results demonstrated that Kindlin-2 participates in EGFR signaling and regulates breast cancer progression.

Choi MR, Yoo NJ, An CH, Lee SH
Frameshift mutations in mammalian target of rapamycin pathway genes and their regional heterogeneity in sporadic colorectal cancers.
Hum Pathol. 2015; 46(5):753-60 [PubMed] Related Publications
Mammalian target of rapamycin (mTOR) pathway is known to be involved in cancer pathogenesis. The aim of our study was to find whether mTOR-related genes were mutated and expressionally altered in colorectal cancers (CRCs). Through public database searching, we found that PIK3CB, insulin receptor substrate 1/2 (IRS1), RPS6, EIF4B, RPS6KA5, and PRKAA2 that were known as mTOR-related genes possessed mononucleotide repeats in DNA coding sequences that could be mutated in cancers with microsatellite instability (MSI). We analyzed 124 CRCs by single-strand conformation polymorphism analysis and DNA sequencing and found 7 (8.9%), 8 (10.1%), and 3 (3.8%) of 79 CRCs with high MSI that harbored IRS1, EIF4B, and RPS6KA5 frameshift mutations, respectively. These mutations were not identified in stable MSI/low MSI (0/45). In addition, we analyzed intratumoral heterogeneity (ITH) of PIK3CB, IRS1, RPS6, EIF4B, RPS6KA5, and PRKAA2 frameshift mutations in 16 CRCs and found that IRS1, EIF4B, and RPS6KA5 mutations had regional ITH in 2, 2, and 1 CRCs, respectively. We also analyzed IRS1 expression in the CRCs by immunohistochemistry. Loss of IRS1 expression was identified in 31% of the CRCs. The loss of expression was more common in those with IRS1 mutation than those with wild-type IRS1. Our data indicate mTOR-related genes harbored not only somatic mutations but also mutational ITH and loss of expression, which together might play a role in tumorigenesis of CRC, especially with high MSI. Our data also suggest that mutation analysis in multiregional areas is needed for a precise evaluation of mutation status in CRC with MSI-H.

Zhang QY, Cheng WX, Li WM, et al.
Occurrence of low frequency PIK3CA and AKT2 mutations in gastric cancer.
Mutat Res. 2014; 769:108-12 [PubMed] Related Publications
The PI3K/AKT signal transduction pathway has distinct functional roles in tumor progression. PIK3CA was reported to harbor the hot-spot in many types of tumor. Akt, the downstream of PI3K, its family members especially AKT2 activation in human cancer has been extensively studied, but its activation by mutation was less reported. The occurrence of PIK3CA and AKT2 mutations in a variety of cancers indicates their important involvement in carcinogenesis. Therefore, we investigated their mutation frequencies in gastric cancer (GC) in China. In our study, we selected hot-spot related exons 9, 18 and 20 of PIK3CA and kinase domain exons 6-14 of AKT2 genes were screened in 10 GC cell lines, 100 advanced primary GC and matched normal tissues. Denaturing high performance liquid chromatography (DHPLC) and DNA sequencing were used to analyze the mutations in the two genes. Two point mutations in the PIK3CA gene were identified in 4 of 10 GC cell lines and in 4 of 100 GC primary tumors. Two polymorphisms in AKT2 were detected in 19 of 100 GC primary tumors. One point mutation in AKT2 was detected in 1 of 10 GC cell lines and 3 of 100 GC primary tumors but no hot spot variation was detected. Our results indicate that PIK3CA and AKT2 mutations occurred at low frequency in GC, and suggest that the PIK3CA/AKT2 pathway might engage other events during gastric carcinogenesis.

Zuo M, Rashid A, Churi C, et al.
Novel therapeutic strategy targeting the Hedgehog signalling and mTOR pathways in biliary tract cancer.
Br J Cancer. 2015; 112(6):1042-51 [PubMed] Article available free on PMC after 17/03/2016 Related Publications
BACKGROUND: Activation of the PI3K/mTOR and Hedgehog (Hh) signalling pathways occurs frequently in biliary tract cancer (BTC). Crosstalk between these pathways occurs in other gastrointestinal cancers. The respective signalling inhibitors rapamycin and vismodegib may inhibit BTC synergistically and suppress cancer stem cells (CSCs).
METHODS: Gene expression profiling for p70S6k and Gli1 was performed with BTC cell lines. Tumour and pathway inhibitory effects of rapamycin and vismodegib were investigated in BTC preclinical models and CSCs.
RESULTS: Rapamycin and vismodegib synergistically reduced BTC cell viability and proliferation. This drug combination arrested BTC Mz-ChA-1 cells in the G1 phase but had no significant effect on the cell cycle of BTC Sk-ChA-1 cells. Combined treatment inhibited the proliferation of CSCs and ALDH-positive cells. Nanog and Oct-4 expression in CSCs was decreased by the combination treatment. Western blotting results showed the p-p70S6K, p-Gli1, p-mTOR, and p-AKT protein expression were inhibited by the combination treatment in BTC cells. In an Mz-ChA-1 xenograft model, combination treatment resulted in 80% inhibition of tumour growth and prolonged tumour doubling time. In 4 of 10 human BTC specimens, tumour p-p70S6K and Gli1 protein expression levels were decreased with the combination treatment.
CONCLUSIONS: Targeted inhibition of the PI3K/mTOR and Hhpathways indicates a new avenue for BTC treatment with combination therapy.

Kannan K, Coarfa C, Chao PW, et al.
Recurrent BCAM-AKT2 fusion gene leads to a constitutively activated AKT2 fusion kinase in high-grade serous ovarian carcinoma.
Proc Natl Acad Sci U S A. 2015; 112(11):E1272-7 [PubMed] Article available free on PMC after 17/09/2015 Related Publications
High-grade serous ovarian cancer (HGSC) is among the most lethal forms of cancer in women. Excessive genomic rearrangements, which are expected to create fusion oncogenes, are the hallmark of this cancer. Here we report a cancer-specific gene fusion between BCAM, a membrane adhesion molecule, and AKT2, a key kinase in the PI3K signaling pathway. This fusion is present in 7% of the 60 patient cancers tested, a significant frequency considering the highly heterogeneous nature of this malignancy. Further, we provide direct evidence that BCAM-AKT2 is translated into an in-frame fusion protein in the patient's tumor. The resulting AKT2 fusion kinase is membrane-associated, constitutively phosphorylated, and activated as a functional kinase in cells. Unlike endogenous AKT2, whose activity is tightly regulated by external stimuli, BCAM-AKT2 escapes the regulation from external stimuli. Moreover, a BCAM-AKT2 fusion gene generated via chromosomal translocation using the CRISPR/Cas9 system leads to focus formation in both OVCAR8 and HEK-293T cell lines, suggesting that BCAM-AKT2 is oncogenic. Together, the results indicate that BCAM-AKT2 expression is a new mechanism of AKT2 kinase activation in HGSC. BCAM-AKT2 is the only fusion gene in HGSC that is proven to translate an aberrant yet functional kinase fusion protein with oncogenic properties. This recurrent genomic alteration is a potential therapeutic target and marker of a clinically relevant subtype for tailored therapy of HGSC.

Yang P, Li Z, Wang Y, et al.
Secreted pyruvate kinase M2 facilitates cell migration via PI3K/Akt and Wnt/β-catenin pathway in colon cancer cells.
Biochem Biophys Res Commun. 2015; 459(2):327-32 [PubMed] Related Publications
Pyruvate Kinase M2 (PKM2) is a key glycolytic enzyme, which highly expressed in tumor cells, and plays a pivotal role in the growth, survival and metabolism reprogramming of cancer cells. Besides the location of cytoplasm as a glycolytic enzyme and the location of nucleus as a protein kinase, extracellular PKM2 is present in serum and feces of tumor patients. However, little is known about the secretion of PKM2 and its significance in the progression of colon cancer. Here we demonstrated that PKM2 could be secreted from colon cancer cells, and purified PKM2 protein mimicing the secreted PKM2 was able to promote colon cancer cell migration. Moreover, PI3K/Akt and Wnt/β-catenin signaling were involved in secreted PKM2 induced colon cancer cell migration. The results reveal critical roles of secreted PKM2 in the progression of colon cancer, and indicate that PKM2 may be a therapeutic target for colon cancer.

Andersson AK, Ma J, Wang J, et al.
The landscape of somatic mutations in infant MLL-rearranged acute lymphoblastic leukemias.
Nat Genet. 2015; 47(4):330-7 [PubMed] Related Publications
Infant acute lymphoblastic leukemia (ALL) with MLL rearrangements (MLL-R) represents a distinct leukemia with a poor prognosis. To define its mutational landscape, we performed whole-genome, exome, RNA and targeted DNA sequencing on 65 infants (47 MLL-R and 18 non-MLL-R cases) and 20 older children (MLL-R cases) with leukemia. Our data show that infant MLL-R ALL has one of the lowest frequencies of somatic mutations of any sequenced cancer, with the predominant leukemic clone carrying a mean of 1.3 non-silent mutations. Despite this paucity of mutations, we detected activating mutations in kinase-PI3K-RAS signaling pathway components in 47% of cases. Surprisingly, these mutations were often subclonal and were frequently lost at relapse. In contrast to infant cases, MLL-R leukemia in older children had more somatic mutations (mean of 6.5 mutations/case versus 1.3 mutations/case, P = 7.15 × 10(-5)) and had frequent mutations (45%) in epigenetic regulators, a category of genes that, with the exception of MLL, was rarely mutated in infant MLL-R ALL.

Hao NB, Tang B, Wang GZ, et al.
Hepatocyte growth factor (HGF) upregulates heparanase expression via the PI3K/Akt/NF-κB signaling pathway for gastric cancer metastasis.
Cancer Lett. 2015; 361(1):57-66 [PubMed] Related Publications
Heparanase (HPA) is an endoglucuronidase that can promote the shedding of associated cytokines in several types of tumors. However, little is known about what controls the expression of HPA or its role in gastric cancer. In this study, we report for the first time that HGF regulates HPA expression to promote gastric cancer metastasis. In this study, HGF and HPA were found to be significantly expressed in 58 gastric cancer patients. High expression of both HGF and HPA was positively associated with TNM stage, invasion depth and poor prognosis. In MKN74 cells, exogenous HGF significantly increased HPA expression at both the mRNA and protein levels. Further study revealed that HGF first activated PI3K/Akt signaling. NF-κB signaling was activated downstream of PI3K/Akt and promoted HPA expression. However, when c-met, PI3K/Akt or NF-κB signal inhibitors were used, HPA expression was significantly decreased. All of these results indicate that HGF regulates HPA expression by PI3K/Akt and downstream NF-κB signaling. Using bioinformatics and the ChIP assay, p65 was observed to bind to the HPA promoter. Furthermore, HGF significantly induced tumor cell migration, whereas treatment with an NF-κB inhibitor decreased migration. Moreover, when HPA was overexpressed in MKN74 cells, migration was significantly enhanced, and the HGF concentration was increased. However, when HPA was down-regulated in MKN45 cells, migration and HGF levels decreased. Together, these results demonstrate that HGF/c-met can activate PI3K/Akt and downstream NF-κB signaling to promote HPA expression and subsequent tumor metastasis.

Matano M, Date S, Shimokawa M, et al.
Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids.
Nat Med. 2015; 21(3):256-62 [PubMed] Related Publications
Human colorectal tumors bear recurrent mutations in genes encoding proteins operative in the WNT, MAPK, TGF-β, TP53 and PI3K pathways. Although these pathways influence intestinal stem cell niche signaling, the extent to which mutations in these pathways contribute to human colorectal carcinogenesis remains unclear. Here we use the CRISPR-Cas9 genome-editing system to introduce multiple such mutations into organoids derived from normal human intestinal epithelium. By modulating the culture conditions to mimic that of the intestinal niche, we selected isogenic organoids harboring mutations in the tumor suppressor genes APC, SMAD4 and TP53, and in the oncogenes KRAS and/or PIK3CA. Organoids engineered to express all five mutations grew independently of niche factors in vitro, and they formed tumors after implantation under the kidney subcapsule in mice. Although they formed micrometastases containing dormant tumor-initiating cells after injection into the spleen of mice, they failed to colonize in the liver. In contrast, engineered organoids derived from chromosome-instable human adenomas formed macrometastatic colonies. These results suggest that 'driver' pathway mutations enable stem cell maintenance in the hostile tumor microenvironment, but that additional molecular lesions are required for invasive behavior.

Guest ST, Kratche ZR, Bollig-Fischer A, et al.
Two members of the TRiC chaperonin complex, CCT2 and TCP1 are essential for survival of breast cancer cells and are linked to driving oncogenes.
Exp Cell Res. 2015; 332(2):223-35 [PubMed] Related Publications
Gene amplification is a common mechanism of oncogene activation in cancer. Several large-scale efforts aimed at identifying the comprehensive set of genomic regions that are recurrently amplified in cancer have been completed. In breast cancer, these studies have identified recurrently amplified regions containing known drivers such as HER2 and CCND1 as well as regions where the driver oncogene is unknown. In this study, we integrated RNAi-based functional genetic data with copy number and expression data to identify genes that are recurrently amplified, overexpressed and also necessary for the growth/survival of breast cancer cells. Further analysis using clinical data from The Cancer Genome Atlas specifically identified candidate genes that play a role in determining patient outcomes. Using this approach, we identified two genes, TCP1 and CCT2, as being recurrently altered in breast cancer, necessary for growth/survival of breast cancer cells in vitro, and determinants of overall survival in breast cancer patients. We also show that expression of TCP1 is regulated by driver oncogene activation of PI3K signaling in breast cancer. Interestingly, the TCP1 and CCT2 genes both encode for components of a multi-protein chaperone complex in the cell known as the TCP1 Containing Ring Complex (TRiC). Our results demonstrate a role for the TRiC subunits TCP1 and CCT2, and potentially the entire TRiC complex, in breast cancer and provide rationale for TRiC as a novel therapeutic target in breast cancer.

Al-Kaabi MM, Alshareeda AT, Jerjees DA, et al.
Checkpoint kinase1 (CHK1) is an important biomarker in breast cancer having a role in chemotherapy response.
Br J Cancer. 2015; 112(5):901-11 [PubMed] Article available free on PMC after 03/03/2016 Related Publications
BACKGROUND: Checkpoint kinase1 (CHK1), which is a key component of DNA-damage-activated checkpoint signalling response, may have a role in breast cancer (BC) pathogenesis and influence response to chemotherapy. This study investigated the clinicopathological significance of phosphorylated CHK1 (pCHK1) protein in BC.
METHOD: pCHK1 protein expression was assessed using immunohistochemistry in a large, well-characterized annotated series of early-stage primary operable invasive BC prepared as tissue microarray (n=1200).
RESULT: pCHK1 showed nuclear and/or cytoplasmic expression. Tumours with nuclear expression showed positive associations with favourable prognostic features such as lower grade, lower mitotic activity, expression of hormone receptor and lack of expression of KI67 and PI3K (P<0.001). On the other hand, cytoplasmic expression was associated with features of poor prognosis such as higher grade, triple-negative phenotype and expression of KI67, p53, AKT and PI3K. pCHK1 expression showed an association with DNA damage response (ATM, RAD51, BRCA1, KU70/KU80, DNA-PKCα and BARD1) and sumoylation (UBC9 and PIASγ) biomarkers. Subcellular localisation of pCHK1 was associated with the expression of the nuclear transport protein KPNA2. Positive nuclear expression predicted better survival outcome in patients who did not receive chemotherapy in the whole series and in ER-positive tumours. In ER-negative and triple-negative subgroups, nuclear pCHK1 predicted shorter survival in patients who received cyclophosphamide, methotrexate and 5-florouracil chemotherapy.
CONCLUSIONS: Our data suggest that pCHK1 may have prognostic and predictive significance in BC. Subcellular localisation of pCHK1 protein is related to its function.

Lai K, Killingsworth MC, Lee CS
Gene of the month: PIK3CA.
J Clin Pathol. 2015; 68(4):253-7 [PubMed] Related Publications
PIK3CA encodes the p110α catalytic subunit of phosphatidylinositol 3-kinase (PI3K) which through its role in the PI3K/Akt pathway is important for the regulation of important cellular functions such as proliferation, metabolism and protein synthesis, angiogenesis and apoptosis. Mutations in PIK3CA are known to be involved in a wide range of human cancers and mutant PIK3CA is thought to act as an oncogene. The specific PIK3CA inhibitor, NVP-BYL719, has displayed promising results in cancer therapy and is currently under clinical trials. Furthermore, PI3K regulates autophagy, a cellular process that recycles proteins and organelles through lysosomal degradation and has recently been recognised as an attractive therapeutic target due to its pro- and anti-cancer properties. Several studies have attempted to investigate the effects of combining the inhibition of both PI3K and autophagy in cancer therapy, and an in vivo model has demonstrated that the combined use of a concomitant PI3K and autophagy inhibitor induced apoptosis in glioma cells.

Bitler BG, Aird KM, Garipov A, et al.
Synthetic lethality by targeting EZH2 methyltransferase activity in ARID1A-mutated cancers.
Nat Med. 2015; 21(3):231-8 [PubMed] Article available free on PMC after 01/09/2015 Related Publications
The gene encoding ARID1A, a chromatin remodeler, shows one of the highest mutation rates across many cancer types. Notably, ARID1A is mutated in over 50% of ovarian clear cell carcinomas, which currently have no effective therapy. To date, clinically applicable targeted cancer therapy based on ARID1A mutational status has not been described. Here we show that inhibition of the EZH2 methyltransferase acts in a synthetic lethal manner in ARID1A-mutated ovarian cancer cells and that ARID1A mutational status correlated with response to the EZH2 inhibitor. We identified PIK3IP1 as a direct target of ARID1A and EZH2 that is upregulated by EZH2 inhibition and contributed to the observed synthetic lethality by inhibiting PI3K-AKT signaling. Importantly, EZH2 inhibition caused regression of ARID1A-mutated ovarian tumors in vivo. To our knowledge, this is the first data set to demonstrate a synthetic lethality between ARID1A mutation and EZH2 inhibition. Our data indicate that pharmacological inhibition of EZH2 represents a novel treatment strategy for cancers involving ARID1A mutations.

Yacqub-Usman K, Pickard MR, Williams GT
Reciprocal regulation of GAS5 lncRNA levels and mTOR inhibitor action in prostate cancer cells.
Prostate. 2015; 75(7):693-705 [PubMed] Related Publications
BACKGROUND: New therapies are required for castrate-resistant prostate cancer (CRPC), and growth-arrest specific 5 (GAS5) lncRNA, which riborepresses androgen receptor action, may offer novel opportunities in this regard. This lncRNA promotes the apoptosis of prostate cancer cells and its levels decline as prostate cancer cells acquire castrate-resistance, so that enhancing GAS5 expression may improve the effectiveness of chemotherapies. Since GAS5 is a member of the 5' terminal oligopyrimidine gene family, we have examined mTOR inhibition as a strategy to increase GAS5 expression. Furthermore, we have determined if GAS5 itself mediates the action of mTOR inhibitors, as demonstrated for other chemotherapeutic agents in prostate cancer cells.
METHODS: The effects of mTOR inhibitors on GAS5 lncRNA levels and cell growth were determined in a range of prostate cancer cell lines. Transfection of cells with GAS5 siRNAs and plasmid constructs was performed to determine the involvement of GAS5 lncRNA in mTOR inhibitor action.
RESULTS: First generation mTORC1, combined mTORC1/mTORC2 and dual PI3K/mTOR inhibitors all increased cellular GAS5 levels and inhibited culture growth in androgen-dependent (LNCaP) and androgen-sensitive (22Rv1) cell lines, but not in androgen-independent (PC-3 and DU 145) cell lines. The latter exhibited low endogenous GAS5 expression, and GAS5 silencing in LNCaP and 22Rv1 cells decreased the sensitivity to mTOR inhibitors, whereas transfection of GAS5 lncRNA sensitized PC-3 and DU 145 cells to these agents.
CONCLUSION: mTOR inhibition enhances GAS5 transcript levels in certain prostate cancer cell lines. This selectivity is likely to be related to endogenous GAS5 expression levels, since GAS5 lncRNA is itself required for mTOR inhibitor action in prostate cancer cells.

Slomovitz BM, Jiang Y, Yates MS, et al.
Phase II study of everolimus and letrozole in patients with recurrent endometrial carcinoma.
J Clin Oncol. 2015; 33(8):930-6 [PubMed] Article available free on PMC after 10/03/2016 Related Publications
PURPOSE: The phosphoinositol-3 kinase (PI3K) pathway is frequently dysregulated in endometrial cancer (EC). Hormonal manipulation leads to response in some patients with EC, but resistance derived from PI3K pathway activation has been documented. Targeting mammalian target of rapamycin (mTOR) may overcome endocrine resistance. We conducted a two-institution phase II trial of everolimus and letrozole in women with recurrent EC.
PATIENTS AND METHODS: Patients were considered incurable, had measurable disease, and were treated with up to two prior cytotoxic regimens. Everolimus was administered orally at 10 mg daily and letrozole was administered orally at 2.5 mg daily. Each cycle consisted of 4 weeks of therapy. Patients were treated until progression, toxicity, or complete response (CR). The primary end point was the clinical benefit rate (CBR), which was defined as CR, partial response, or stable disease (≥ 16 weeks) by RECIST 1.0 criteria. Translational studies were performed to correlate biomarkers with response.
RESULTS: Thirty-eight patients were enrolled (median age, 62 years; range, 24 to 82 years). Thirty-five patients were evaluable for response. The CBR was 40% (14 of 35 patients); the median number of cycles among responders was 15 (range, seven to 29 cycles). The confirmed objective response rate (RR) was 32% (11 of 35 patients; nine CRs and two partial responses; median, 15 cycles; range, eight to 29 cycles). Twenty percent of patients (seven of 35 patients) were taken off treatment after a prolonged CR and at the discretion of the treating clinician. None of the patients discontinued treatment as a result of toxicity. Serous histology was the best predictor of lack of response. Patients with endometrioid histology and CTNNB1 mutations responded well to everolimus and letrozole.
CONCLUSION: Everolimus plus letrozole results in a high CBR and RR in patients with recurrent EC. Further development of this combination in recurrent endometrioid EC is under way.

Russo A, Okur MN, Bosland M, O'Bryan JP
Phosphatidylinositol 3-kinase, class 2 beta (PI3KC2β) isoform contributes to neuroblastoma tumorigenesis.
Cancer Lett. 2015; 359(2):262-8 [PubMed] Article available free on PMC after 10/04/2016 Related Publications
Phosphatidylinositol 3-kinases (PI3Ks) play important roles in human tumorigenesis. Activation of the PI3K target AKT is frequent in neuroblastoma (NB) and correlates with poor prognosis. PI3K pan-inhibitors reduce NB tumor formation but present severe toxicity, which limits their therapeutic potential. Therefore, defining the importance of specific PI3K isoforms may aid in developing more effective therapeutic strategies. We previously demonstrated that PI3K Class IIβ (PI3KC2β) and its regulator intersectin 1 (ITSN1) are highly expressed in primary NB tumors and cell lines. Silencing ITSN1 dramatically reduced the tumorigenic potential of NB cells. Interestingly, overexpression of PI3KC2β rescued the anchorage-independent growth of ITSN1-silenced cells suggesting that PI3KC2β mediates ITSN1's function in NB cells. To address the importance of PI3KC2β in NBs, we generated PI3KC2β-silenced lines and examined their biologic activity. Herein, we demonstrate that PI3KC2β-silencing inhibits early stages of NB tumorigenic growth. We also show that loss of endogenous PI3KC2β or ITSN1 reduces AKT activation but does not impact ERK-MAPK activation. These data reveal a novel role for PI3KC2β in human NB tumorigenesis.

Chen R, Zhao Y, Huang Y, et al.
Nanomicellar TGX221 blocks xenograft tumor growth of prostate cancer in nude mice.
Prostate. 2015; 75(6):593-602 [PubMed] Article available free on PMC after 01/05/2016 Related Publications
BACKGROUND: Combination of androgen ablation along with early detection and surgery has made prostate cancer highly treatable at the initial stage. However, this cancer remains the second leading cause of cancer death among American men due to castration-resistant progression, suggesting that novel therapeutic agents are urgently needed for this life-threatening condition. Phosphatidylinositol 3-kinase p110β is a major cellular signaling molecule and has been identified as a critical factor in prostate cancer progression. In a recent report, we established a nanomicelle-based strategy to deliver p110β-specific inhibitor TGX221 to prostate cancer cells by conjugating the surface of nanomicelles with a RNA aptamer against prostate specific membrane antigen (PSMA) present in all clinical prostate cancers. In this study, we tested this nanomicellar TGX221 for its in vivo anti-tumor effect in mouse xenograft models.
METHODS: Prostate cancer cell lines LAPC-4, LNCaP, C4-2 and 22RV1 were used to establish subcutaneous xenograft tumors in nude mice. Paraffin sections from xenograft tumor specimens were used in immunohistochemistry assays to detect AKT phosphorylation, cell proliferation marker Ki67 and proliferating cell nuclear antigen (PCNA), as well as 5-bromo-2-deoxyuridine (BrdU) incorporation. Quantitative PCR assay was conducted to determine prostate-specific antigen (PSA) gene expression in xenograft tumors.
RESULTS: Although systemic delivery of unconjugated TGX221 significantly reduced xenograft tumor growth in nude mice compared to solvent control, the nanomicellar TGX221 conjugates completely blocked tumor growth of xenografts derived from multiple prostate cancer cell lines. Further analyses revealed that AKT phosphorylation and cell proliferation indexes were dramatically reduced in xenograft tumors received nanomicellar TGX221 compared to xenograft tumors received unconjugated TGX221 treatment. There was no noticeable side effect by gross observation or at microscopic level of organ tissue section.
CONCLUSION: These data strongly suggest that prostate cancer cell-targeted nanomicellar TGX221 is an effective anti-cancer agent for prostate cancer.

Song C, Chen H, Wang T, et al.
Expression profile analysis of microRNAs in prostate cancer by next-generation sequencing.
Prostate. 2015; 75(5):500-16 [PubMed] Related Publications
BACKGROUND: Prostate cancer (PCa) is the second leading cause of tumor mortality among males in western societies. In China, the diagnostic and fatality rate of PCa is increasing yearly.
METHODS: To characterize underlying molecular mechanisms, the microRNA (miRNA) profile of high-grade PCa, low-grade PCa, and benign prostate hyperplasia (BPH) were compared using high-throughput Illumina sequencing and quantitative real-time PCR (qRT-PCR) methods. Moreover, a variety of biological information softwares and databases were applied to predict the target genes of miRNA, molecular functions, and signal pathways.
RESULTS: Eighteen miRNAs were differentially expressed (fold change ≥ 2, P < 0.05), of which thirteen were upregulated and five were downregulated by sequencing. This was confirmed by qRT-PCR in more clinical tissue samples. In the tumors, miRNAs (miR-125b-5p, miR-126-5p, miR-151a-5p, miR-221-3p, and miR-222-3p) were significantly upregulated with downregulation of miR-486-5p. In addition, 13 novel miRNAs were identified from three prostate tissue libraries, with 12 of them assayed in 21 human normal tissues by qRT-PCR. Multiple databases indicated target genes for these differentially expressed miRNAs. Function annotation of target genes indicated that most of them tend to target genes involved in signal transduction and cell communication, especially cancer-related PI3K-Akt and p53 signaling pathway.
CONCLUSIONS: The small RNA transcriptomes obtained in this study uncovers six differentially expressed miRNAs and 12 novel miRNAs, and provides a better understanding of the expression and function of miRNAs in the development of PCa and reveals several miRNAs in PCa that may have biomarker and therapeutic potentials.

Abdel-Latif MM, Kelleher D, Reynolds JV
Molecular mechanisms of constitutive and inducible NF-kappaB activation in oesophageal adenocarcinoma.
Eur J Cancer. 2015; 51(4):464-72 [PubMed] Related Publications
BACKGROUND: Nuclear factor-kappaB (NF-κB) regulates the expression of a large number of genes involved in the immune and inflammatory response. NF-κB is constitutively activated in oesophageal tumour tissues and induced in oesophageal cells by bile and acid. The aim of the present study was to define the mechanisms underlying NF-κB activation in oesophageal adenocarcinoma.
PATIENTS AND METHODS: Fresh biopsy specimens were obtained from 20 patients with oesophageal adenocarcinoma. The activation of NF-κB in oesophageal tumour specimens and oesophageal SKGT-4 cells was assessed by gel mobility shift and Western blotting. Phosphorylation of protein kinase B (AKT/PKB), Ikappa kinase-alpha/beta (IKK-α/β) and extracellular signal-regulated kinase 1/2 (ERK1/2) was examined by Western blotting. High content analysis was used to quantify NF-κB translocation in oesophageal cells.
RESULTS: Oesophageal tumour tissues had higher levels of NF-κB. Increased levels of phosphorylated AKT and IKK-α/β and ERK1/2 were detected in tumour tissues compared with normal oesophageal mucosa. Exposure of SKGT-4 cells to deoxycholic acid (DCA) or acid resulted in NF-κB activation and phosphorylation of AKT, IKK-α/β and ERK1/2. Specific inhibitors for phosphoinositide 3-kinase; PI3K (LY294002 and worhmannin) and ERK1/2 inhibitors (PD98059 and U0126) suppressed DCA- and acid-induced NF-κB activation. The proteasome inhibitor MG-132 and the antioxidants vitamin C and pyrrolidine dithiocarbamate (PDTC) also inhibited NF-κB activation.
CONCLUSIONS: Our data demonstrate a major role for PI3K/AKT-IKK-α/β-ERK1/2 signalling pathway in NF-κB activation in oesophageal adenocarcinoma. These results suggest that NF-κB may be a prognostic marker for oesophageal adenocarcinoma, and modulating of NF-κB may uncover new therapeutic strategies.

Yuan L, Zhou C, Lu Y, et al.
IFN-γ-mediated IRF1/miR-29b feedback loop suppresses colorectal cancer cell growth and metastasis by repressing IGF1.
Cancer Lett. 2015; 359(1):136-47 [PubMed] Related Publications
To investigate the clinicopathological significance and underlying mechanism of microRNA-29b (miR-29b) in colorectal cancer (CRC), the role of miR-29b was investigated using in vivo and in vitro assays. Luciferase reporter assays were conducted to determine the association between miR-29b and the insulin-like growth factor 1 (IGF1) 3' untranslated region (3'UTR). Chromatin immunoprecipitation (ChIP) assays were employed to assess the direct binding of interferon regulatory factor 1 (IRF1) to miR-29b. We found that interferon (IFN)-γ could induce miR-29b by recruiting IRF1 to binding sites in the miR-29b promoter. A low level of miR-29b was significantly associated with an aggressive phenotype. MiR-29b inhibited CRC cell growth and invasion. IGF1, an activator of PI3K/Akt signaling, was confirmed as a novel target of miR-29b. Moreover, miR-29b increased IRF1 expression, and the inhibition of miR-29b suppressed IFN-γ-induced apoptosis. We elucidated the potential signaling pathway, IFN-γ/IRF1/miR-29b/IGF1, and its implication for CRC tumorigenesis. A positive feedback loop between IRF1 and miR-29b may contribute to the sensitivity of CRC cells to IFN-γ. Targeting miR-29b may provide a strategy for blocking CRC growth and metastasis.

Manson-Bahr D, Ball R, Gundem G, et al.
Mutation detection in formalin-fixed prostate cancer biopsies taken at the time of diagnosis using next-generation DNA sequencing.
J Clin Pathol. 2015; 68(3):212-7 [PubMed] Related Publications
AIMS: Assessing whether next-generation DNA sequencing (NGS) can be used to screen prostate cancer for multiple gene alterations in men routinely diagnosed with this disease and/or who are entered into clinical trials. Previous studies are limited and have reported only low success rates.
METHODS: We marked areas of cancer on H&E-stained sections from formalin-fixed needle biopsies, and used these as templates to dissect cancer-rich tissue from adjacent unstained sections. DNA was prepared using a Qiagen protocol modified to maximise DNA yield. The DNA was screened simultaneously for mutations in 365 cancer-related genes using an Illumina HiSeq 2000 NGS platform.
RESULTS: From 63 prostate cancers examined, 59(94%) of the samples yielded at least 30 ng of DNA, the minimum amount of DNA considered suitable for NGS analysis. Patients in the D'Amico high-risk group yielded an average of 1033 ng, intermediate-risk patients 401 ng, and low-risk patients 97 ng. NGS of eight samples selected from high-risk and intermediate-risk groups gave a median exon read depth of 962 and detected TMPRRS2-ERG fusions, as well as a variety of mutations including those in the SPOP, TP53, ATM, MEN1, NBPF10, NCOR2, PIK3CB and MAP2K5 (MEK5) genes.
CONCLUSIONS: Using the methods presented here, NGS technologies can be used to screen a high proportion of patients with prostate cancer for mutations in cancer-related genes in tissue samples opening up its general use in the context of clinical trials or routine diagnosis.

Chen K, Yang D, Li X, et al.
Mutational landscape of gastric adenocarcinoma in Chinese: implications for prognosis and therapy.
Proc Natl Acad Sci U S A. 2015; 112(4):1107-12 [PubMed] Article available free on PMC after 27/07/2015 Related Publications
Gastric cancer (GC) is a highly heterogeneous disease. To identify potential clinically actionable therapeutic targets that may inform individualized treatment strategies, we performed whole-exome sequencing on 78 GCs of differing histologies and anatomic locations, as well as whole-genome sequencing on two GC cases, each with three primary tumors and two matching lymph node metastases. The data showed two distinct GC subtypes with either high-clonality (HiC) or low-clonality (LoC). The HiC subtype of intratumoral heterogeneity was associated with older age, TP53 (tumor protein P53) mutation, enriched C > G transition, and significantly shorter survival, whereas the LoC subtype was associated with younger age, ARID1A (AT rich interactive domain 1A) mutation, and significantly longer survival. Phylogenetic tree analysis of whole-genome sequencing data from multiple samples of two patients supported the clonal evolution of GC metastasis and revealed the accumulation of genetic defects that necessitate combination therapeutics. The most recurrently mutated genes, which were validated in a separate cohort of 216 cases by targeted sequencing, were members of the homologous recombination DNA repair, Wnt, and PI3K-ERBB pathways. Notably, the drugable NRG1 (neuregulin-1) and ERBB4 (V-Erb-B2 avian erythroblastic leukemia viral oncogene homolog 4) ligand-receptor pair were mutated in 10% of GC cases. Mutations of the BRCA2 (breast cancer 2, early onset) gene, found in 8% of our cohort and validated in The Cancer Genome Atlas GC cohort, were associated with significantly longer survivals. These data define distinct clinicogenetic forms of GC in the Chinese population that are characterized by specific mutation sets that can be investigated for efficacy of single and combination therapies.

Hart JR, Zhang Y, Liao L, et al.
The butterfly effect in cancer: a single base mutation can remodel the cell.
Proc Natl Acad Sci U S A. 2015; 112(4):1131-6 [PubMed] Article available free on PMC after 27/07/2015 Related Publications
We have compared the proteome, transcriptome, and metabolome of two cell lines: the human breast epithelial line MCF-10A and its mutant descendant MCF-10A-H1047R. These cell lines are derived from the same parental stock and differ by a single amino acid substitution (H1047R) caused by a single nucleotide change in one allele of the PIK3CA gene, which encodes the catalytic subunit p110α of PI3K (phosphatidylinositol 3-kinase). They are considered isogenic. The H1047R mutation of PIK3CA is one of the most frequently encountered somatic cancer-specific mutations. In MCF-10A, this mutation induces an extensive cellular reorganization that far exceeds the known signaling activities of PI3K. The changes are highly diverse, with examples in structural protein levels, the DNA repair machinery, and sterol synthesis. Gene set enrichment analysis reveals a highly significant concordance of the genes differentially expressed in MCF-10A-H1047R cells and the established protein and RNA signatures of basal breast cancer. No such concordance was found with the specific gene signatures of other histological types of breast cancer. Our data document the power of a single base mutation, inducing an extensive remodeling of the cell toward the phenotype of a specific cancer.

Majewski IJ, Nuciforo P, Mittempergher L, et al.
PIK3CA mutations are associated with decreased benefit to neoadjuvant human epidermal growth factor receptor 2-targeted therapies in breast cancer.
J Clin Oncol. 2015; 33(12):1334-9 [PubMed] Related Publications
PURPOSE: We investigated whether mutations in the gene encoding the phosphatidylinositol 3-kinase (PI3K) catalytic subunit (PIK3CA) correlates with response to neoadjuvant human epidermal growth factor receptor 2 (HER2) -targeted therapies in patients with breast cancer.
PATIENTS AND METHODS: Baseline tissue biopsies were available from patients with HER2-positive early breast cancer who were enrolled onto the Neoadjuvant Lapatinib and/or Trastuzumab Treatment Optimization trial (NeoALTTO). Activating mutations in PIK3CA were identified using mass spectrometry-based genotyping.
RESULTS: PIK3CA mutations were identified in 23% of HER2-positive breast tumors, and these mutations were associated with poorer outcome in all of the treatment arms. Patients treated with a combination of trastuzumab and lapatinib who had wild-type PIK3CA obtained a total pathologic complete response (pCR) rate of 53.1%, which decreased to 28.6% in patients with tumors that carried PIK3CA activating mutations (P = .012).
CONCLUSION: Activating mutations in PIK3CA predicted poor pCR in patients with HER2-positive breast cancer treated with neoadjuvant therapies that target HER2. Consequently, the combination of anti-HER2 agents and PI3K inhibitors is being investigated.

Qazi AK, Hussain A, Khan S, et al.
Quinazoline based small molecule exerts potent tumour suppressive properties by inhibiting PI3K/Akt/FoxO3a signalling in experimental colon cancer.
Cancer Lett. 2015; 359(1):47-56 [PubMed] Related Publications
Deregulation of PI3K signalling pathway is strongly involved in pathology of cancer and development of resistance in tumour cells. Here, we report that pharmacologically active vasicinone analogue, RLX (7, 8, 9, 10-Tetrahydroazepino [2, 1-b] quinazolin-12-(6H)-on), exhibited potent anticancer activities both in vitro and in vivo. In this study, RLX treatment displayed strong inhibition of proliferation against various cancer cell lines. However, colon cancer cells were found to be the most sensitive towards RLX mediated inhibition of proliferation. The result showed that RLX treatment followed strong concentration dependent inhibition of HCT-116 cell proliferation and colony formation. RLX treatment to HCT-116 was observed to be associated with down-regulation of p110α and p85 subunits of PI3K thereby decreasing the expression of subsequent downstream effector proteins. Interestingly, silencing of PI3K gene by siRNA in combination with RLX confirmed the anti-proliferation effect of RLX against HCT-116 cells and is mediated by the PI3K pathway. We also found that RLX induced sub-G1 arrest and mitochondrial potential loss followed by pFoxO3a(Thr32) nuclear-cytoplasmic translocation inhibition. Moreover, RLX treatment in in vivo models substantially resulted in a tumour growth inhibition. Overall, our findings reveal the functional role of the PI3K/Akt/FoxO3a pathway that gets deregulated in cancer and suggests its simultaneous targeting by RLX thereby further identifying the compound as a potent inhibitor of the PI3K/Akt/FoxO3a pathway under in vitro and tumour regression in vivo.

Costa C, Ebi H, Martini M, et al.
Measurement of PIP3 levels reveals an unexpected role for p110β in early adaptive responses to p110α-specific inhibitors in luminal breast cancer.
Cancer Cell. 2015; 27(1):97-108 [PubMed] Related Publications
BYL719, which selectively inhibits the alpha isoform of the phosphatidylinositol 3-kinase (PI3K) catalytic subunit (p110a), is currently in clinical trials for the treatment of solid tumors, especially luminal breast cancers with PIK3CA mutations and/or HER2 amplification. This study reveals that, even among these sensitive cancers, the initial efficacy of p110α inhibition is mitigated by rapid re-accumulation of the PI3K product PIP3 produced by the p110β isoform. Importantly, the reactivation of PI3K mediated by p110β does not invariably restore AKT phosphorylation, demonstrating the limitations of using phospho-AKT as a surrogate to measure PI3K activation. Consistently, we show that the addition of the p110β inhibitor to BYL719 prevents the PIP3 rebound and induces greater antitumor efficacy in HER2-amplified and PIK3CA mutant cancers.

Schwartz S, Wongvipat J, Trigwell CB, et al.
Feedback suppression of PI3Kα signaling in PTEN-mutated tumors is relieved by selective inhibition of PI3Kβ.
Cancer Cell. 2015; 27(1):109-22 [PubMed] Article available free on PMC after 12/01/2016 Related Publications
In PTEN-mutated tumors, we show that PI3Kα activity is suppressed and PI3K signaling is driven by PI3Kβ. A selective inhibitor of PI3Kβ inhibits the Akt/mTOR pathway in these tumors but not in those driven by receptor tyrosine kinases. However, inhibition of PI3Kβ only transiently inhibits Akt/mTOR signaling because it relieves feedback inhibition of IGF1R and other receptors and thus causes activation of PI3Kα and a rebound in downstream signaling. This rebound is suppressed and tumor growth inhibition enhanced with combined inhibition of PI3Kα and PI3Kβ. In PTEN-deficient models of prostate cancer, this effective inhibition of PI3K causes marked activation of androgen receptor activity. Combined inhibition of both PI3K isoforms and androgen receptor results in major tumor regressions.

Sharifnia T, Rusu V, Piccioni F, et al.
Genetic modifiers of EGFR dependence in non-small cell lung cancer.
Proc Natl Acad Sci U S A. 2014; 111(52):18661-6 [PubMed] Article available free on PMC after 30/06/2015 Related Publications
Lung adenocarcinomas harboring activating mutations in the epidermal growth factor receptor (EGFR) represent a common molecular subset of non-small cell lung cancer (NSCLC) cases. EGFR mutations predict sensitivity to EGFR tyrosine kinase inhibitors (TKIs) and thus represent a dependency in NSCLCs harboring these alterations, but the genetic basis of EGFR dependence is not fully understood. Here, we applied an unbiased, ORF-based screen to identify genetic modifiers of EGFR dependence in EGFR-mutant NSCLC cells. This approach identified 18 kinase and kinase-related genes whose overexpression can substitute for EGFR in EGFR-dependent PC9 cells, and these genes include seven of nine Src family kinase genes, FGFR1, FGFR2, ITK, NTRK1, NTRK2, MOS, MST1R, and RAF1. A subset of these genes can complement loss of EGFR activity across multiple EGFR-dependent models. Unbiased gene-expression profiling of cells overexpressing EGFR bypass genes, together with targeted validation studies, reveals EGFR-independent activation of the MEK-ERK and phosphoinositide 3-kinase (PI3K)-AKT pathways. Combined inhibition of PI3K-mTOR and MEK restores EGFR dependence in cells expressing each of the 18 EGFR bypass genes. Together, these data uncover a broad spectrum of kinases capable of overcoming dependence on EGFR and underscore their convergence on the PI3K-AKT and MEK-ERK signaling axes in sustaining EGFR-independent survival.

Perry JA, Kiezun A, Tonzi P, et al.
Complementary genomic approaches highlight the PI3K/mTOR pathway as a common vulnerability in osteosarcoma.
Proc Natl Acad Sci U S A. 2014; 111(51):E5564-73 [PubMed] Article available free on PMC after 30/06/2015 Related Publications
Osteosarcoma is the most common primary bone tumor, yet there have been no substantial advances in treatment or survival in three decades. We examined 59 tumor/normal pairs by whole-exome, whole-genome, and RNA-sequencing. Only the TP53 gene was mutated at significant frequency across all samples. The mean nonsilent somatic mutation rate was 1.2 mutations per megabase, and there was a median of 230 somatic rearrangements per tumor. Complex chains of rearrangements and localized hypermutation were detected in almost all cases. Given the intertumor heterogeneity, the extent of genomic instability, and the difficulty in acquiring a large sample size in a rare tumor, we used several methods to identify genomic events contributing to osteosarcoma survival. Pathway analysis, a heuristic analytic algorithm, a comparative oncology approach, and an shRNA screen converged on the phosphatidylinositol 3-kinase/mammalian target of rapamycin (PI3K/mTOR) pathway as a central vulnerability for therapeutic exploitation in osteosarcoma. Osteosarcoma cell lines are responsive to pharmacologic and genetic inhibition of the PI3K/mTOR pathway both in vitro and in vivo.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. PIK3CB, Cancer Genetics Web: http://www.cancer-genetics.org/PIK3CB.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 25 June, 2015     Cancer Genetics Web, Established 1999