PDCD6

Gene Summary

Gene:PDCD6; programmed cell death 6
Aliases: ALG2, ALG-2, PEF1B
Location:5p15.33
Summary:This gene encodes a calcium-binding protein belonging to the penta-EF-hand protein family. Calcium binding is important for homodimerization and for conformational changes required for binding to other protein partners. This gene product participates in T cell receptor-, Fas-, and glucocorticoid-induced programmed cell death. In mice deficient for this gene product, however, apoptosis was not blocked suggesting this gene product is functionally redundant. Alternatively spliced transcript variants encoding multiple isoforms have been observed for this gene, and a pseudogene of this gene is also located on the short arm of chromosome 5. [provided by RefSeq, May 2012]
Databases:OMIM, VEGA, HGNC, Ensembl, GeneCard, Gene
Protein:programmed cell death protein 6
HPRD
Source:NCBIAccessed: 06 August, 2015

Ontology:

What does this gene/protein do?
Show (16)

Cancer Overview

Research Indicators

Publications Per Year (1990-2015)
Graph generated 06 August 2015 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 06 August, 2015 using data from PubMed, MeSH and CancerIndex

Specific Cancers (8)

Latest Publications: PDCD6 (cancer-related)

Liu SG, Yuan SH, Wu HY, et al.
The programmed cell death 6 interacting protein insertion/deletion polymorphism is associated with non-small cell lung cancer risk in a Chinese Han population.
Tumour Biol. 2014; 35(9):8679-83 [PubMed] Related Publications
It has been proposed that genetic factors contribute to the susceptibility of non-small cell lung cancer (NSCLC). The programmed cell death 6 interacting protein (PDCD6IP) encodes for a protein that has been known to bind to the products of the PDCD6 gene, a required protein in apoptosis. The aim of this study is to investigate the relationship between PDCD6IP insertion/deletion (I/D) polymorphism (rs28381975) and NSCLC risk in a Chinese population. A population-based case-control study was conducted in 449 NSCLC patients and 512 cancer-free controls. The genotype of the PDCD6IP gene was determined by using a polymerase chain reaction assay. The promoter activity was analyzed by luciferase reporter assay in A549 and H1299 cells. Statistically significant difference was observed when the patients and controls were compared according to ID + II versus DD (OR = 1.72, 95 % CI 1.29-2.31, P < 0.01). The I allele was significantly associated with NSCLC risk (OR = 1.41, 95 % CI 1.18-1.69, P < 0.01). Compared to TNM stage I + II, PDCD6IP I/D polymorphism significantly increased advanced NSCLC risk (OR = 2.06, 95 % CI 1.30-3.26, P < 0.01). Promoter reporter structures carrying the I allele displayed significantly higher promoter activity than the D allele in A549 and H1299 cells (P = 0.001). The results from this study suggested that PDCD6IP I/D polymorphism was potentially related to NSCLC susceptibility in Chinese Han population.

Zhou B, Zhang P, Tang T, et al.
Prognostic value of PDCD6 polymorphisms and the susceptibility to bladder cancer.
Tumour Biol. 2014; 35(8):7547-54 [PubMed] Related Publications
Programmed cell death 6 (PDCD6) has recently been found dysregulated in tumors of various origin. The aim of this study is to explore the association between PDCD6 genetic polymorphisms and susceptibility to bladder cancer and survival of patients with bladder cancer. Two tag SNPs of PDCD6, rs3756712 and rs4957014, were genotyped in 332 patients with bladder cancer and 509 controls by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method and correlated with patients' survival. The frequencies of G allele and GG genotype of rs3756712 in patients were significantly lower than that of controls (P = 0.001, odds ratio [OR] = 0.68 for G allele; P = 0.024, OR = 0.53 for GG genotype in the recessive genetic model, respectively). The GT genotype of rs4957014 was associated with decreased susceptibility to bladder cancer in the overdominant genetic model (P = 0.023, OR = 0.72). Kaplan-Meier curves revealed a significant higher risk for death in superficial bladder cancer patients harboring GG homozygous of rs3756712 (P < 0.001), and an increased risk for recurrence in invasive bladder cancer patients carrying GT heterozygous of rs4957014 (P = 0.04). Multiple Cox regression analysis identified rs3756712 GG genotype as an independent prognostic factor for death in superficial bladder cancer patients (hazard ratio [HR] = 5.11, P = 0.01), and rs4957014 GT genotype as an independent prognostic factor for recurrence in invasive bladder cancer patients (HR = 1.93, P = 0.03). PDCD6 may represent a biomarker candidate gene that could help to identify a group of patients at high risk for recurrence and death.

Wang J, Guo C, Liu S, et al.
Annexin A11 in disease.
Clin Chim Acta. 2014; 431:164-8 [PubMed] Related Publications
Ubiquitously expressed in many cell types, annexin A11 (Anxa11) is a member of the multigene family of Ca(2+)-regulated phospholipid-dependent and membrane-binding annexin proteins. Studies have shown that Anxa11 plays an important role in cell division, Ca(2+) signaling, vesicle trafficking and apoptosis. The deregulation and mutation of Anxa11 are involved in systemic autoimmune diseases, sarcoidosis and the development, chemoresistance and recurrence of cancers. Malfunction of Anxa11 may lead to or enhance the metastasis, invasion and drug resistance of cancers through the platelet-derived growth factor receptor (PDGFR) pathway and/or the mitogen-activated protein kinase (MAPK)/p53 pathway. In a variety of diseases, Anxa11 is most commonly reported to function through interactions with apoptosis-linked gene-2 protein (ALG-2) and/or calcyclin (S100A6). Although it has been little studied, Anxa11 is a promising biomarker for the diagnosis, treatment and prognosis of certain diseases. In this review, the associations of Anxa11 with Ca(2+)-regulated exocytosis, cytokinesis, sex differentiation, autoimmune diseases, thrombolysis and cancers are summarized and interpreted.

Zhang K, Zhou B, Shi S, et al.
Variations in the PDCD6 gene are associated with increased uterine leiomyoma risk in the Chinese.
Genet Test Mol Biomarkers. 2013; 17(7):524-8 [PubMed] Free Access to Full Article Related Publications
Programmed cell death 6 (PDCD6) participates in T cell receptor, Fas, and glucocorticoid-induced programmed cell death. To test the relationship between PDCD6 polymorphisms and uterine leiomyomas (UL) risk, we investigated the association of two SNPs (rs4957014 and rs3756712) in PDCD6 with UL risk in a case-control study of 295 unrelated premenopausal UL patients and 436 healthy postmenopausal control subjects in a population of China. Genotypes of the two SNPs were determined with the use of PCR-restriction fragment length polymorphism assay. Significantly increased UL risks were found to be associated with the T allele of rs4957014 and the T allele of rs3756712 (p=0.016, odds ratio [OR]=1.325, 95% confidence intervals [CI]=1.053-1.668 for rs4957014; p<0.0001, OR=1.898, 95% CI=1.457-2.474 for rs3756712, respectively). Increased UL risks were associated with them in different genetic models. The present study provided evidence that rs4957014 and rs3756712 are associated with UL risk, the results indicated that genetic polymorphisms in PDCD6 may contribute to the development of UL.

He YQ, Zhou B, Shi SQ, et al.
Genetic variation in PDCD6 and susceptibility to lung cancer.
Asian Pac J Cancer Prev. 2012; 13(9):4689-93 [PubMed] Related Publications
Lung cancer is the most common type of cancer and one of the leading causes of death in the world. Genetic factors play an important role in its development. PDCD6, the encoding gene for programmed cell death protein 6, may function as a tumor suppressor gene. Non-small cell lung cancer (NSCLC) contributes about 80% to newly histologically diagnosed lung cancer patients. To explore the relationship between PDCD6 and NSCLC, we examined two single nucleotide polymorphisms(rs3756712 G/T andrs4957014 G/T, both in the intron region) of the PDCD6gene.A hospital-based case-control study was carried out including 302 unrelated NSCLC patients and 306 healthy unrelated subjects. Significantly increased NSCLC risk was found to be associated with the T allele of rs4957014 (P=0.027, OR=0.760, 95%CI=0.596-0.970). The genotype and allele frequencies of rs3756712 did not shown any significant difference between NSCLC group and controls (P=0.327, OR=0.879, 95%CI=0.679- 1.137). In conclusion, we firstly demonstrated the association between the PDCD6 gene and risk of NSCLC in a Chinese Han population.

Vazquez-Mena O, Medina-Martinez I, Juárez-Torres E, et al.
Amplified genes may be overexpressed, unchanged, or downregulated in cervical cancer cell lines.
PLoS One. 2012; 7(3):e32667 [PubMed] Free Access to Full Article Related Publications
Several copy number-altered regions (CNAs) have been identified in the genome of cervical cancer, notably, amplifications of 3q and 5p. However, the contribution of copy-number alterations to cervical carcinogenesis is unresolved because genome-wide there exists a lack of correlation between copy-number alterations and gene expression. In this study, we investigated whether CNAs in the cell lines CaLo, CaSki, HeLa, and SiHa were associated with changes in gene expression. On average, 19.2% of the cell-line genomes had CNAs. However, only 2.4% comprised minimal recurrent regions (MRRs) common to all the cell lines. Whereas 3q had limited common gains (13%), 5p was entirely duplicated recurrently. Genome-wide, only 15.6% of genes located in CNAs changed gene expression; in contrast, the rate in MRRs was up to 3 times this. Chr 5p was confirmed entirely amplified by FISH; however, maximum 33.5% of the explored genes in 5p were deregulated. In 3q, this rate was 13.4%. Even in 3q26, which had 5 MRRs and 38.7% recurrently gained SNPs, the rate was only 15.1%. Interestingly, up to 19% of deregulated genes in 5p and 73% in 3q26 were downregulated, suggesting additional factors were involved in gene repression. The deregulated genes in 3q and 5p occurred in clusters, suggesting local chromatin factors may also influence gene expression. In regions amplified discontinuously, downregulated genes increased steadily as the number of amplified SNPs increased (p<0.01, Spearman's correlation). Therefore, partial gene amplification may function in silencing gene expression. Additional genes in 1q, 3q and 5p could be involved in cervical carcinogenesis, specifically in apoptosis. These include PARP1 in 1q, TNFSF10 and ECT2 in 3q and CLPTM1L, AHRR, PDCD6, and DAP in 5p. Overall, gene expression and copy-number profiles reveal factors other than gene dosage, like epigenetic or chromatin domains, may influence gene expression within the entirely amplified genome segments.

Su D, Xu H, Feng J, et al.
PDCD6 is an independent predictor of progression free survival in epithelial ovarian cancer.
J Transl Med. 2012; 10:31 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Programmed cell death 6 (PDCD6) beside its known proapoptotic functions may be a player in survival pathways in cancer. The purpose of this study is to further explore the roles of PDCD6 in epithelial ovarian cancer.
METHODS: Lentiviral vector with shRNA for PDCD6 was used to investigate the effects of PDCD6 knockdown on cell growth, cell cycle, apoptosis and motility in ovarian cancer cells. Two hundred twelve epithelial ovarian cancer tissues were analyzed for mRNA expression of PDCD6 using RT-PCR. Associations of its expression with clinical pathological factors, progression free and overall survival were evaluated.
RESULTS: PDCD6 is highly expressed in metastatic ovarian cancer cells and positively regulates cell migration and invasion. Significantly, the level of PDCD6 expression in epithelial ovarian cancer correlates with clinical progression. Patients with medium or high levels of PDCD6 mRNA were at higher risk for disease progression, compared to those with low levels (HR, 1.29; P = 0.024 for medium levels; and HR, 1.57; P = 0.045 for high levels) after adjusting for age, disease stage, tumor grade, histologic type and residual tumor size. Kaplan-Meier survival analysis demonstrated similar results. However, no association was found between PDCD6 expression and overall survival.
CONCLUSIONS: PDCD6 seems to play an important role in ovarian cancer progression and it may be an independent predictor of progression free survival in epithelial ovarian cancer. Further studies are needed to more completely elucidate the molecular mechanisms of PDCD6 involve in ovarian cancer progression.

Yoon JH, Choi YJ, Kim SG, et al.
Programmed cell death 6 (PDCD6) as a prognostic marker for gastric cancers.
Tumour Biol. 2012; 33(2):485-94 [PubMed] Related Publications
Programmed cell death 6 (PDCD6) plays an important role in apoptotic cell death and tumorigenesis. In this study, we investigated whether PDCD6 contributes to the development and/or progression of gastric cancers. PDCD6 protein expression was examined in 169 advanced gastric cancer specimens by immunohistochemistry and then correlated with clinicopathologic parameters. We also analyzed mutations, methylation status, and alterations in DNA copy number and mRNA transcripts, and protein expression of PDCD6 in gastric cancers. The effect of PDCD6 on cell viability and death was further examined in wild- and mutant-type PDCD6 transfected AGS and HEK293T cell lines. Increased expression of PDCD6 expression was detected in 124 (73.4%) out of 169 gastric cancer specimens. Statistically, altered expression of PDCD6 was closely associated with survival rates (P = 0.0069). One non-sense mutation was found at codon 175 of PDCD6, and no hypermethylation was found in gastric cancers. Decreased copy numbers and mRNA expression of PDCD6 were found in 7 (16.7%) and 10 (23.8%) of 42 gastric cancer specimens, respectively. AGS and HEK293T cells transfected with wild-type PDCD6 showed marked inhibition of cell viability and induction of cell death via activation of mitochondrial cell death pathways, whereas mutant-type PDCD6 showed partial ablation of tumor suppressor activity. In addition, AGS cells transfected with wild-type PDCD6 and treated with 5-FU showed synergistic inhibition of cell viability (P < 0.001). These data provide evidence that the PDCD6 gene is a significant prognostic biomarker for advanced gastric cancer patients.

Huang Y, Jin H, Liu Y, et al.
FSH inhibits ovarian cancer cell apoptosis by up-regulating survivin and down-regulating PDCD6 and DR5.
Endocr Relat Cancer. 2011; 18(1):13-26 [PubMed] Related Publications
Ovarian epithelial cancer is the leading cause of death among gynecological malignancies. FSH may increase the risk of ovarian malignancy and play an important role in ovarian carcinogenesis. Our previous studies showed that FSH increases the expression of VEGF through survivin. In this study, the function and mechanism of FSH in ovarian cancer were further explored. We found that FSH promoted proliferation and prevented apoptosis of ovarian cancer cells by activating survivin through the SAPK/JNK and PI3K/AKT pathways. FSH also down-regulated the expression of programmed cell death gene 6 (PDCD6) and death receptor 5 (DR5), two molecules required for induction of apoptosis. RNA interference was applied to knock down survivin and PDCD6 expression, and we found that the blockage of survivin reversed the effects of FSH on apoptosis and proliferation, whereas knock down of PDCD6 enhanced these effects. The expression of DR5, cyclin D1, and cyclin E correlated with survivin expression, but PDCD6 did not. Using immunohistochemical staining, we further showed that ovarian serous cystadenocarcinoma samples had higher expression of survivin than did benign ovarian cystadenoma and borderline cystadenoma samples (P<0.01). Furthermore, survivin expression in the ovarian serous cystadenocarcinoma specimens was correlated with disease stage (P<0.05). Our results suggest that FSH promotes ovarian cancer development by regulating the expression of survivin, PDCD6, and DR5. Greater understanding of the molecular mechanisms of FSH in ovarian epithelial carcinogenesis and development will ultimately help in the development of a novel targeted therapy for ovarian cancer.

Zhang L, Gough J, Christmas D, et al.
Microbial infections in eight genomic subtypes of chronic fatigue syndrome/myalgic encephalomyelitis.
J Clin Pathol. 2010; 63(2):156-64 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The authors have previously reported genomic subtypes of chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) based on expression of 88 human genes.
AIM: To attempt to reproduce these findings, determine the specificity of this signature to CFS/ME, and test for associations between CFS/ME subtype and infection.
METHODS: Expression levels of 88 human genes were determined in blood of 62 new patients with idiopathic CFS/ME (according to Fukuda criteria), six patients with Q-fever-associated CFS/ME from the Birmingham Q-fever outbreak (according to Fukuda criteria), 14 patients with endogenous depression (according to DSM-IV criteria) and 29 normal blood donors.
RESULTS: In patients with CFS/ME, differential expression was confirmed for all 88 genes. Q-CFS/ME had similar patterns of gene expression to idiopathic CFS/ME. Gene expression in patients with endogenous depression was similar to that in the normal controls, except for upregulation of five genes (APP, CREBBP, GNAS, PDCD2 and PDCD6). Clustering of combined gene data in CFS/ME patients for this and the authors' previous study (117 CFS/ME patients) revealed genomic subtypes with distinct differences in SF36 scores, clinical phenotypes, severity and geographical distribution. Antibody testing for Epstein-Barr virus, enterovirus, Coxiella burnetii and parvovirus B19 revealed evidence of subtype-specific relationships for Epstein-Barr virus and enterovirus, the two most common infectious triggers of CFS/ME.
CONCLUSIONS: This study confirms the involvement of these genes in CFS/ME.

la Cour JM, Høj BR, Mollerup J, et al.
The apoptosis linked gene ALG-2 is dysregulated in tumors of various origin and contributes to cancer cell viability.
Mol Oncol. 2008; 1(4):431-9 [PubMed] Related Publications
The apoptosis linked gene-2 (ALG-2), discovered as a proapoptotic calcium binding protein, has recently been found upregulated in lung cancer tissue indicating that this protein may play a role in the pathology of cancer cells and/or may be a tumor marker. Using immunohistochemistry on tissue microarrays we analysed the expression of ALG-2 in 7371 tumor tissue samples of various origin as well as in 749 normal tissue samples. Most notably, ALG-2 was upregulated in mesenchymal tumors. No correlation was found between ALG-2 staining intensity and survival of patients with lung, breast or colon cancer. siRNA mediated ALG-2 downregulation led to a significant reduction in viability of HeLa cells indicating that ALG-2 may contribute to tumor development and expansion.

Høj BR, la Cour JM, Mollerup J, Berchtold MW
ALG-2 knockdown in HeLa cells results in G2/M cell cycle phase accumulation and cell death.
Biochem Biophys Res Commun. 2009; 378(1):145-8 [PubMed] Related Publications
ALG-2 (apoptosis-linked gene-2 encoded protein) has been shown to be upregulated in a variety of human tumors questioning its previously assumed pro-apoptotic function. The aim of the present study was to obtain insights into the role of ALG-2 in human cancer cells. We show that ALG-2 downregulation induces accumulation of HeLa cells in the G2/M cell cycle phase and increases the amount of early apoptotic and dead cells. Caspase inhibition by the pan-caspase inhibitor zVAD-fmk attenuated the increase in the amount of dead cells following ALG-2 downregulation. Thus, our results indicate that ALG-2 has an anti-apoptotic function in HeLa cells by facilitating the passage through checkpoints in the G2/M cell cycle phase.

Yamada Y, Arao T, Gotoda T, et al.
Identification of prognostic biomarkers in gastric cancer using endoscopic biopsy samples.
Cancer Sci. 2008; 99(11):2193-9 [PubMed] Related Publications
Endoscopic biopsy prior to chemotherapy provides an opportunity for studying biomarkers to predict the overall survival in gastric cancer patients. This prospective study was performed to identify prognostic biomarkers in patients with unresected gastric cancer. Fifty-nine cases of chemotherapy-naive metastatic gastric cancer were enrolled in this study. A microarray analysis was performed using 40 biopsy samples to identify candidate genes whose expressions might be correlated with the overall survival. After adjusting for clinical covariates based on a multivariate analysis, the identified genes were validated using real-time reverse transcription polymerase chain reaction (RT-PCR) analysis in 19 independent validation samples. Ninety-eight candidate genes whose expression levels were significantly correlated with the overall survival were identified using a microarray analysis based on a proportional hazards model (P < 0.005). Multivariate analysis was performed to assess 10 of these genes, and the results yielded a statistical significance level for DACH1 and PDCD6. We further evaluated these two genes in independent samples using real-time RT-PCR and found that lower mRNA expression levels of PDCD6 were correlated significantly with a poor overall survival. We identified PDCD6 as a prognostic biomarker in patients with unresected gastric cancer using endoscopic biopsy samples. Our PCR-based single gene prediction strategy successfully predicted the overall survival and may lead to a better understanding of this disease subgroup.

Aviel-Ronen S, Coe BP, Lau SK, et al.
Genomic markers for malignant progression in pulmonary adenocarcinoma with bronchioloalveolar features.
Proc Natl Acad Sci U S A. 2008; 105(29):10155-60 [PubMed] Free Access to Full Article Related Publications
Bronchioloalveolar carcinoma (BAC), a subtype of lung adenocarcinoma (ADC) without stromal, vascular, or pleural invasion, is considered an in situ tumor with a 100% survival rate. However, the histological criteria for invasion remain controversial. BAC-like areas may accompany otherwise invasive adenocarcinoma, referred to as mixed type adenocarcinoma with BAC features (AWBF). AWBF are considered to evolve from BAC, representing a paradigm for malignant progression in ADC. However, the supporting molecular evidence remains forthcoming. Here, we have studied the genomic changes of BAC and AWBF by array comparative genomic hybridization (CGH). We used submegabase-resolution tiling set array CGH to compare the genomic profiles of 14 BAC or BAC with focal area suspicious for invasion with those of 15 AWBF. Threshold-filtering and frequency-scoring analysis found that genomic profiles of noninvasive and focally invasive BAC are indistinguishable and show fewer aberrations than tumor cells in BAC-like areas of AWBF. These aberrations occurred mainly at the subtelomeric chromosomal regions. Increased genomic alterations were noted between BAC-like and invasive areas of AWBF. We identified 113 genes that best differentiated BAC from AWBF and were considered candidate marker genes for tumor invasion and progression. Correlative gene expression analyses demonstrated a high percentage of them to be poor prognosis markers in early stage ADC. Quantitative PCR also validated the amplification and overexpression of PDCD6 and TERT on chromosome 5p and the prognostic significance of PDCD6 in early stage ADC patients. We identified candidate genes that may be responsible for and are potential markers for malignant progression in AWBF.

Subramanian L, Crabb JW, Cox J, et al.
Ca2+ binding to EF hands 1 and 3 is essential for the interaction of apoptosis-linked gene-2 with Alix/AIP1 in ocular melanoma.
Biochemistry. 2004; 43(35):11175-86 [PubMed] Free Access to Full Article Related Publications
Apoptosis-linked gene-2 (ALG-2) encodes a 22 kDa Ca(2+)-binding protein of the penta EF-hand family that is required for programmed cell death in response to various apoptotic agents. Here, we demonstrate that ALG-2 mRNA and protein are down-regulated in human uveal melanoma cells compared to their progenitor cells, normal melanocytes. The down regulation of ALG-2 may provide melanoma cells with a selective advantage. ALG-2 and its putative target molecule, Alix/AIP1, are localized primarily in the cytoplasm of melanocytes and melanoma cells independent of the intracellular Ca(2+) concentration or the activation of apoptosis. Cross-linking and analytical centrifugation studies support a single-species dimer conformation of ALG-2, also independent of Ca(2+) concentration. However, binding of Ca(2+) to both EF-1 and EF-3 is necessary for ALG-2 interaction with Alix/AIP1 as demonstrated using surface plasmon resonance spectroscopy. Mutations in EF-5 result in reduced target interaction without alteration in Ca(2+) affinity. The addition of N-terminal ALG-2 peptides, residues 1-22 or residues 7-17, does not alter the interaction of ALG-2 or an N-terminal deletion mutant of ALG-2 with Alix/AIP1, as might be expected from a model derived from the crystal structure of ALG-2. Fluorescence studies of ALG-2 demonstrate that an increase in surface hydrophobicity is primarily due to Ca(2+) binding to EF-3, while Ca(2+) binding to EF-1 has little effect on surface exposure of hydrophobic residues. Together, these data indicate that gross surface hydrophobicity changes are insufficient for target recognition.

Krebs J, Saremaslani P, Caduff R
ALG-2: a Ca2+ -binding modulator protein involved in cell proliferation and in cell death.
Biochim Biophys Acta. 2002; 1600(1-2):68-73 [PubMed] Related Publications
During the development of an organism, cell proliferation, differentiation and cell death are tightly balanced, and are controlled by a number of different regulators. Alterations in this balance are often observed in a variety of human diseases. The role of Ca(2+) as one of the key regulators of the cell is discussed with respect to a recently discovered Ca(2+)-binding protein, ALG-2, which is highly upregulated in cancerous tissues of different origins. The role of ALG-2 as a possible clinical marker and, molecularly, as a possible modulator at the interface between cell proliferation and cell death is discussed.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. PDCD6, Cancer Genetics Web: http://www.cancer-genetics.org/PDCD6.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 06 August, 2015     Cancer Genetics Web, Established 1999