Cancer Overview
Research Indicators
Graph generated 31 August 2019 using data from PubMed using criteria.Literature Analysis
Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.
Tag cloud generated 31 August, 2019 using data from PubMed, MeSH and CancerIndex
Specific Cancers (12)
Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.
Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).
Useful Links
PAPPA
OMIM, Johns Hopkin University
Referenced article focusing on the relationship between phenotype and genotype.
PAPPA
International Cancer Genome Consortium.
Summary of gene and mutations by cancer type from ICGC
PAPPA
Cancer Genome Anatomy Project, NCI
Gene Summary
PAPPA
COSMIC, Sanger Institute
Somatic mutation information and related details
PAPPA
GEO Profiles, NCBI
Search the gene expression profiles from curated DataSets in the Gene Expression Omnibus (GEO) repository.
Latest Publications: PAPPA (cancer-related)
Mantso T, Vasileiadis S, Lampri E, et al.
Hyperthermia Suppresses Post - Anticancer Res. 2019; 39(5):2307-2315 [
PubMed]
Related Publications
BACKGROUND: Several studies have highlighted hyperthermia's ability to enhance the effectiveness of radiation and chemotherapy in various in vitro and in vivo cancer models.
MATERIALS AND METHODS: In vivo murine models of malignant melanoma and colon carcinoma were utilized for demonstrating hyperthermia's therapeutic effectiveness by examining levels of caspase 3, COX-2 and phospho-H2A.X (Ser139) as endpoints of apoptosis, proliferation and DNA damage respectively.
RESULTS: Hyperthermia induced in vitro cytotoxicity in malignant melanoma (B16-F10) and colon carcinoma (CT26) cell lines. In addition, it reduced post-in vitro proliferation and suppression of tumor growth by inducing the expression of caspase-3 and phospho-H2A.X (Ser139) while reducing the expression of COX-2 in both murine cancer models.
CONCLUSION: Hyperthermia can exert therapeutic effectiveness against melanoma and colon carcinoma by inhibiting a number of critical cellular cascades including apoptosis, proliferation and DNA damage.
Toffalori C, Zito L, Gambacorta V, et al.
Immune signature drives leukemia escape and relapse after hematopoietic cell transplantation.Nat Med. 2019; 25(4):603-611 [
PubMed]
Related Publications
Transplantation of hematopoietic cells from a healthy individual (allogeneic hematopoietic cell transplantation (allo-HCT)) demonstrates that adoptive immunotherapy can cure blood cancers: still, post-transplantation relapses remain frequent. To explain their drivers, we analyzed the genomic and gene expression profiles of acute myeloid leukemia (AML) blasts purified from patients at serial time-points during their disease history. We identified a transcriptional signature specific for post-transplantation relapses and highly enriched in immune-related processes, including T cell costimulation and antigen presentation. In two independent patient cohorts we confirmed the deregulation of multiple costimulatory ligands on AML blasts at post-transplantation relapse (PD-L1, B7-H3, CD80, PVRL2), mirrored by concomitant changes in circulating donor T cells. Likewise, we documented the frequent loss of surface expression of HLA-DR, -DQ and -DP on leukemia cells, due to downregulation of the HLA class II regulator CIITA. We show that loss of HLA class II expression and upregulation of inhibitory checkpoint molecules represent alternative modalities to abolish AML recognition from donor-derived T cells, and can be counteracted by interferon-γ or checkpoint blockade, respectively. Our results demonstrate that the deregulation of pathways involved in T cell-mediated allorecognition is a distinctive feature and driver of AML relapses after allo-HCT, which can be rapidly translated into personalized therapies.
Recent genomic studies have identified chromosomal rearrangements defining new subtypes of B-progenitor acute lymphoblastic leukemia (B-ALL), however many cases lack a known initiating genetic alteration. Using integrated genomic analysis of 1,988 childhood and adult cases, we describe a revised taxonomy of B-ALL incorporating 23 subtypes defined by chromosomal rearrangements, sequence mutations or heterogeneous genomic alterations, many of which show marked variation in prevalence according to age. Two subtypes have frequent alterations of the B lymphoid transcription-factor gene PAX5. One, PAX5alt (7.4%), has diverse PAX5 alterations (rearrangements, intragenic amplifications or mutations); a second subtype is defined by PAX5 p.Pro80Arg and biallelic PAX5 alterations. We show that p.Pro80Arg impairs B lymphoid development and promotes the development of B-ALL with biallelic Pax5 alteration in vivo. These results demonstrate the utility of transcriptome sequencing to classify B-ALL and reinforce the central role of PAX5 as a checkpoint in B lymphoid maturation and leukemogenesis.
Mandalà M, Rutkowski P
Rational combination of cancer immunotherapy in melanoma.Virchows Arch. 2019; 474(4):433-447 [
PubMed]
Related Publications
The recent advances in cancer immunotherapy with unprecedented success in therapy of advanced melanoma represent a turning point in the landscape of melanoma treatment. Given the complexity of activation of immunological system and the physiologic multifactorial homeostatic mechanisms controlling immune responses, combinatorial strategies are eagerly needed in melanoma therapy. Nevertheless, rational selection of immunotherapy combinations should be more biomarker-guided, including not only the cancer immunogram, PD-L1 expression, interferon gene expression signature, mutational burden, and tumor infiltration by CD8+ T cells but also intratumoral T cell exhaustion and microbiota composition. In this review, we summarize the rationale to develop combination treatment strategies in melanoma and discuss biological background that could help to design new combinations in order to improve patients' outcome.
Pappa KI, Christou P, Xholi A, et al.
Membrane proteomics of cervical cancer cell lines reveal insights on the process of cervical carcinogenesis.Int J Oncol. 2018; 53(5):2111-2122 [
PubMed]
Related Publications
The available therapeutic approaches for cervical cancer can seriously affect the fertility potential of patient; thus, there is a pressing requirement for less toxic and targeted therapies. The membrane proteome is a potential source of therapeutic targets; however, despite the significance of membrane proteins in cancer, proteomic analysis has been a challenging task due to their unique biochemical properties. The aim of the present study was to develop an efficient membrane protein enrichment protocol, and to the best of our knowledge, to compare for the first time the expression pattern of membrane proteins of one normal cell line, HCK1T, and three cervical cancer cell lines, C33A, a human papilloma virus (HPV)-negative cell line, and two HPV-positive cell lines, SiHa (HPV16+) and HeLa (HPV18+). The study aimed to identify the proteins that are involved in cervical carcinogenesis and may constitute novel drug targets. Membrane protein isolation, liquid chromatography coupled with tandem mass spectrometry proteomics and bioinformatics analysis were performed in the membrane fraction of the informative cervical cell lines following a novel enrichment protocol. The percentages of membrane and transmembrane proteins in the enrichment protocol were higher compared with those of the corresponding data derived from total cell extract analysis. Differentially expressed proteins were detected by the comparison of the cervical cancer cell lines with the normal cell line. These proteins constitute molecular features of cancer pathology and participate in biological pathways relevant to malignancy, including 'HIPPO signaling', 'PI3K/Akt signaling', 'cell cycle: G2/M DNA damage checkpoint regulation' and 'EIF2 signaling'. These unique membrane protein identifications offer insights on a previously inaccessible region of the cervical cancer proteome, and may represent putative diagnostic and prognostic markers, and eventually therapeutic targets.
Mitsiogianni M, Amery T, Franco R, et al.
From chemo-prevention to epigenetic regulation: The role of isothiocyanates in skin cancer prevention.Pharmacol Ther. 2018; 190:187-201 [
PubMed]
Related Publications
Skin cancer incidence is rapidly growing over the last decades and is generally divided into malignant melanoma and non-melanoma (NMSC) with the latter being subdivided into squamous (SCC) and basal cell carcinoma (BCC). Among them, melanoma is the most aggressive type with high mortality rates. On the other hand, aberrant gene expression is a critical step towards malignant transformation. To this end, epigenetic modifications like changes in DNA methylation patterns and miRNA expression profile as well as histone modifications are all capable of inducing an altered gene expression profile involved in various cellular cascades including cell cycle, proliferation and apoptosis. In general, there is an interest about the beneficiary effect of various phytochemicals in the prevention and treatment of skin malignancies. Among them, glucosinolates are an important type of compounds, abundant in cruciferous vegetables, which are hydrolysed by an endogenous enzyme called myrosinase to a range of bioactive compounds including isothiocyanates (ITCs). These are the major biologically active products capable of mediating the anti-cancer effect of cruciferous vegetables. Their chemo-preventive action is mainly attributed to a plurality of anti-cancer properties including regulation of the epigenetic machinery. Current evidence supports the view that ITCs are potent compounds in interacting with the epigenome in order to restore the normal epigenetic landscape in malignant cells. This review article summarizes the current state of knowledge on the epigenetic modifications that lead to malignant transformation and the role of ITCs with respect to their ability to restore the epigenetic landscape that contributes to skin carcinogenesis.
Papageorgiou SG, Kontos CK, Tsiakanikas P, et al.
Elevated miR-20b-5p expression in peripheral blood mononuclear cells: A novel, independent molecular biomarker of favorable prognosis in chronic lymphocytic leukemia.Leuk Res. 2018; 70:1-7 [
PubMed]
Related Publications
MicroRNA-20b-5p (miR-20b-5p) is part of the miR-106a/363 cluster and a member of the cancer-related miR-17 family. miR-20b-5p regulates important transcription factors, including hypoxia-inducible factor 1 (HIF1) and signal transducer and activator of transcription 3 (STAT3). Recently, the dysregulation of miR-20b-5p expression has been observed in many B-cell lymphomas and T-cell leukemias. In this research study, we examined the putative prognostic value of miR-20b-5p in CLL. Therefore, total RNA was isolated from peripheral blood mononuclear cells (PBMCs) collected from 88 CLL patients; next, total RNA was polyadenylated and first-strand cDNA was synthesized, using an oligo-dT-adapter primer. miR-20b-5p expression was quantified using an in-house-developed real-time quantitative PCR assay. Kaplan-Meier OS analysis and bootstrap univariate Cox regression showed that high miR-20b-5p expression predicts better OS for CLL patients (p < 0.001). Interestingly, miR-20b-5p overexpression retains its favorable prognostic role in CLL patients of intermediate risk or stratified according to established prognostic factors [CD38 expression and mutational status of the immunoglobulin heavy chain variable (IGHV) region]. In conclusion, miR-20b-5p is a potential independent molecular biomarker of favorable prognosis in CLL.
Dysregulated NOTCH1 signaling, by either gene mutations or microenvironment interactions, has been increasingly linked to chronic lymphocytic leukemia (CLL). Thus, inhibiting NOTCH1 activity represents a potential therapeutic opportunity for this disease. Using gene expression-based screening, we identified the calcium channel modulator bepridil as a new NOTCH1 pathway inhibitor. In primary CLL cells, bepridil induced selective apoptosis even in the presence of the protective stroma. Cytotoxic effects of bepridil were independent of NOTCH1 mutation and other prognostic markers. The antitumor efficacy of bepridil was associated with inhibition of NOTCH1 activity through a decrement in trans-membrane and activated NOTCH1 protein levels with unchanged NOTCH2 protein levels. In a CLL xenotransplant model, bepridil significantly reduced the percentage of leukemic cells infiltrating the spleen via enhanced apoptosis and decreased NOTCH1 activation. In conclusion, we report in vitro and in vivo anti-leukemic activity of bepridil associated with inhibition of the NOTCH1 pathway in CLL. These data provide a rationale for the clinical development of bepridil as anti-NOTCH1 targeted therapy for CLL patients.
Papageorgiou SG, Kontos CK, Diamantopoulos MA, et al.
MicroRNA-155-5p Overexpression in Peripheral Blood Mononuclear Cells of Chronic Lymphocytic Leukemia Patients Is a Novel, Independent Molecular Biomarker of Poor Prognosis.Dis Markers. 2017; 2017:2046545 [
PubMed]
Free Access to Full Article Related Publications
MicroRNA-155-5p (miR-155-5p) is a proinflammatory, oncogenic miRNA, involved in various physiological processes, including hematopoiesis, immunity, inflammation, and cell lineage differentiation. It regulates important transcription factors, such as E2F2, hypoxia-inducible factor 1 (HIF1), and FOXO3. Recently, the dysregulation of miR-155-5p expression has been linked to chronic lymphocytic leukemia (CLL) pathogenesis. In this research study, we investigated the potential diagnostic and prognostic value of miR-155-5p in CLL. To achieve our goal, we isolated total RNA from peripheral blood mononuclear cells (PBMCs) collected from 88 CLL patients and 36 nonleukemic blood donors and performed polyadenylation of total RNA and reverse transcription. Next, we quantified miR-155-5p levels using an in-house-developed real-time quantitative PCR method, before proceeding to extensive biostatistical analysis. Thus, it appears that miR-155-5p is significantly overexpressed in PBMCs of CLL patients and can distinguish them from nonleukemic population. Kaplan-Meier OS analysis and bootstrap univariate Cox regression showed that high miR-155-5p expression predicts inferior OS for CLL patients (
Pappa KI, Kontostathi G, Lygirou V, et al.
Novel structural approaches concerning HPV proteins: Insight into targeted therapies for cervical cancer (Review).Oncol Rep. 2018; 39(4):1547-1554 [
PubMed]
Related Publications
Cervical cancer incidence is tightly linked to HPV infection, and particularly virus types 16 and 18 cause the majority of cases presenting with pre-cancerous stages of cervical intraepithelial neoplasia (CIN). Structural and functional information concerning HPV proteins can offer novel insight into the mechanism(s) of cancer progression in the cervical epithelium. Recently, novel structural determinants of the interactions of viral proteins with their targets in keratinocytes have been elucidated. These exciting findings open the way for the development of targeted anti-oncogenic therapies, and may eventually allow the introduction of novel approaches for a rational cervical cancer treatment.
Manka P, Coombes JD, Boosman R, et al.
Thyroid hormone in the regulation of hepatocellular carcinoma and its microenvironment.Cancer Lett. 2018; 419:175-186 [
PubMed]
Related Publications
Hepatocellular carcinoma (HCC) commonly arises from a liver damaged by extensive inflammation and fibrosis. Various factors including cytokines, morphogens, and growth factors are involved in the crosstalk between HCC cells and the stromal microenvironment. Increasing our understanding of how stromal components interact with HCC and the signaling pathways involved could help identify new therapeutic and/or chemopreventive targets. It has become increasingly clear that the cross-talk between tumor cells and host stroma plays a key role in modulating tumor growth. Emerging reports suggest a relationship between HCC and thyroid hormone signaling (dysfunction), raising the possibility that perturbed thyroid hormone (TH) regulation influences the cancer microenvironment and cancer phenotype. This review provides an overview of the role of thyroid hormone and its related pathways in HCC and, specifically, its role in regulating the tumor microenvironment.
Audrito V, Managò A, La Vecchia S, et al.
Nicotinamide Phosphoribosyltransferase (NAMPT) as a Therapeutic Target in BRAF-Mutated Metastatic Melanoma.J Natl Cancer Inst. 2018; 110(3) [
PubMed]
Related Publications
Background: One of the effects of oncogenic signaling is metabolic reprogramming of tumor cells to support anabolic growth, opening the way to therapeutic targeting of metabolic pathways.
Methods: We studied NAD biosynthesis in BRAF inhibitor (BRAFi)-resistant (BiR) melanoma cell lines. Data in cell lines were confirmed by immunohistochemistry in biopsies from 17 patients with metastatic melanoma (MM) before and after the acquisition of resistance to BRAFi. Therapeutic potential of NAD biosynthesis inhibitors was determined by invitro monitoring cell growth and death and in mouse xenograft models. Mice (n = 6-10 mice/group) were treated with nicotinamide phosphoribosyltranferase inhibitor (NAMPTi), BRAFi, or their combination, and tumor growth and survival were analyzed. All statistical tests were two-sided.
Results: BiR cells had higher NAD levels compared with their BRAFi-sensitive counterparts (P < .001 and P = .001 for M14 and A375, respectively) and with normal melanocytes (P < .001), achieved through transcriptional upregulation of the enzyme NAMPT, which became the master regulator of NAD synthesis. Conversely, treatment with BRAFi or MEK inhibitors decreased NAMPT expression and cellular NAD levels. Robust NAMPT upregulation was documented in tissue biopsies from MM patients after development of resistance to BRAFi (P < .001). Treatment of melanoma cells with NAMPTi depleted NAD and ATP, depolarized mitochondrial membrane, and led to reactive oxygen species production, blocking cells in the G2/M phase and inducing apoptosis. Treatment of BiR xenografts with NAMPTi improved mouse survival (median survival of vehicle-treated mice was 52 days vs 100 days for NAMPTi-treated ones in M14/BiR, while in A375/BiR median survival of vehicle-treated mice was 23.5 days vs 43 days for NAMPTi-treated ones, P < .001).
Conclusions: BiR melanoma cells overexpress NAMPT, which acts as a connecting element between BRAF oncogenic signaling and metabolism, becoming an actionable target for this subset of MM patients.
Healthy tissue growth depends on a well-controlled and context-appropriate balance of cellular proliferation, cell cycle arrest, and programmed cell death (apoptosis). Disturbance of this balance by activation of oncogenes, inactivation/mutation of tumor suppressor genes, or inhibition of apoptosis can promote tumorigenesis. This mini-review will focus on evidence for the contribution of insulin-like growth factor (IGF) signaling and its regulation by the transcription factor, p53, to tumor development and progression.
Multiple target inhibition has gained considerable interest in combating drug resistance in glioblastoma, however, understanding the molecular mechanisms of crosstalk between signaling pathways and predicting responses of cancer cells to targeted interventions has remained challenging. Despite the significant role attributed to transforming growth factor (TGF)-β family and hepatocyte growth factor (HGF)/c-MET signaling in glioblastoma pathogenesis, their functional interactions have not been well characterized. Using genetic and pharmacological approaches to stimulate or antagonize the TGF-β pathway in human glioma-initiating cells (GIC), we observed that TGF-β exerts an inhibitory effect on c-MET phosphorylation. Inhibition of either mitogen-activated protein kinase (MAPK)/ extracellular signal-regulated kinase (ERK) or phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB/AKT) signaling pathway attenuated this effect. A comparison of c-MET-driven and c-MET independent GIC models revealed that TGF-β inhibits stemness in GIC at least in part via its negative regulation of c-MET activity, suggesting that stem cell (SC) maintenance may be controlled by the balance between these two oncogenic pathways. Importantly, immunohistochemical analyses of human glioblastoma and ex vivo single-cell gene expression profiling of TGF-β and HGF confirm the negative interaction between both pathways. These novel insights into the crosstalk of two major pathogenic pathways in glioblastoma may explain some of the disappointing results when targeting either pathway alone in human glioblastoma patients and inform on potential future designs on targeted pharmacological or genetic intervention.
Pappa KI, Kontostathi G, Makridakis M, et al.
High Resolution Proteomic Analysis of the Cervical Cancer Cell Lines Secretome Documents Deregulation of Multiple Proteases.Cancer Genomics Proteomics. 2017 Nov-Dec; 14(6):507-521 [
PubMed]
Free Access to Full Article Related Publications
BACKGROUND: Oncogenic infection by HPV, eventually leads to cervical carcinogenesis, associated by deregulation of specific pathways and protein expression at the intracellular and secretome level. Thus, secretome analysis can elucidate the biological mechanisms contributing to cervical cancer. In the present study we systematically analyzed its constitution in four cervical cell lines employing a highly sensitive proteomic technology coupled with bioinformatics analysis.
MATERIALS AND METHODS: LC/MS-MS proteomics and bioinformatics analysis were performed in the secretome of four informative cervical cell lines SiHa (HPV16
RESULTS: The proteomic pattern of each cancer cell line compared to HCK1T was identified and a detailed bioinformatics analysis disclosed inhibition of matrix metalloproteases in cancer cell lines. This prediction was further confirmed via zymography for MMP-2 and MMP-9, western blot analysis for ADAM10 and by MRM for TIMP1. The differential expression of important secreted proteins such as CATD, FUCA1 and SOD2 was also confirmed by western blot analysis. MRM-targeted proteomics analysis confirmed the differential expression of CATD, CATB, SOD2, QPCT and NEU1.
CONCLUSION: High resolution proteomics analysis of cervical cancer secretome revealed significantly deregulated biological processes and proteins implicated in cervical carcinogenesis.
Ruzzo A, Graziano F, Galli F, et al.
Dihydropyrimidine dehydrogenase pharmacogenetics for predicting fluoropyrimidine-related toxicity in the randomised, phase III adjuvant TOSCA trial in high-risk colon cancer patients.Br J Cancer. 2017; 117(9):1269-1277 [
PubMed]
Free Access to Full Article Related Publications
BACKGROUND: Dihydropyrimidine dehydrogenase (DPD) catabolises ∼85% of the administered dose of fluoropyrimidines. Functional DPYD gene variants cause reduced/abrogated DPD activity. DPYD variants analysis may help for defining individual patients' risk of fluoropyrimidine-related severe toxicity.
METHODS: The TOSCA Italian randomised trial enrolled colon cancer patients for 3 or 6 months of either FOLFOX-4 or XELOX adjuvant chemotherapy. In an ancillary pharmacogenetic study, 10 DPYD variants (*2A rs3918290 G>A, *13 rs55886062 T>G, rs67376798 A>T, *4 rs1801158 G>A, *5 rs1801159 A>G, *6 rs1801160 G>A, *9A rs1801265 T>C, rs2297595 A>G, rs17376848 T>C, and rs75017182 C>G), were retrospectively tested for associations with ⩾grade 3 fluoropyrimidine-related adverse events (FAEs). An association analysis and a time-to-toxicity (TTT) analysis were planned. To adjust for multiple testing, the Benjamini and Hochberg's False Discovery Rate (FDR) procedure was used.
RESULTS: FAEs occurred in 194 out of 508 assessable patients (38.2%). In the association analysis, FAEs occurred more frequently in *6 rs1801160 A allele carriers (FDR=0.0083). At multivariate TTT analysis, significant associations were found for *6 rs1801160 A allele carriers (FDR<0.0001), *2A rs3918290 A allele carriers (FDR<0.0001), and rs2297595 GG genotype carriers (FDR=0.0014). Neutropenia was the most common FAEs (28.5%). *6 rs1801160 (FDR<0.0001), and *2A rs3918290 (FDR=0.0004) variant alleles were significantly associated with time to neutropenia.
CONCLUSIONS: This study adds evidence on the role of DPYD pharmacogenetics for safety of patients undergoing fluoropyrimidine-based chemotherapy.
Aberrant regulation of miRNA genes contributes to pathogenesis of a wide range of human diseases, including cancer. The TAR DNA binding protein 43 (TDP-43), a RNA/DNA binding protein associated with neurodegeneration, is involved in miRNA biogenesis. Here, we systematically examined miRNAs regulated by TDP-43 using RNA-Seq coupled with an siRNA-mediated knockdown approach. TDP-43 knockdown affected the expression of a number of miRNAs. In addition, TDP-43 down-regulation led to alterations in the patterns of different isoforms of miRNAs (isomiRs) and miRNA arm selection, suggesting a previously unknown role of TDP-43 in miRNA processing. A number of TDP-43 associated miRNAs, and their candidate target genes, are associated with human cancers. Our data reveal highly complex roles of TDP-43 in regulating different miRNAs and their target genes. Our results suggest that TDP-43 may promote migration of lung cancer cells by regulating miR-423-3p. In contrast, TDP-43 increases miR-500a-3p expression and binds to the mature miR-500a-3p sequence. Reduced expression of miR-500a-3p is associated with poor survival of lung cancer patients, suggesting that TDP-43 may have a suppressive role in cancer by regulating miR-500a-3p. Cancer-associated genes LIF and PAPPA are possible targets of miR-500a-3p. Our work suggests that TDP-43-regulated miRNAs may play multifaceted roles in the pathogenesis of cancer.
Cytokine Induced Killer (CIK) cells are ex vivo expanded and activated T lymphocytes obtained by sequential incubation of Peripheral Blood Mononuclear cells (PBMNC) with Interferon γ (IFNG), anti CD3 monoclonal antibody OKT3 and IL2. These cells, while retaining few characteristics of the Effector memory T cells subpopulation, acquired during culture CD56 expression, as well as non specific, Natural Killer like, anti tumoral cytotoxicity. CIK cells from human are equivalent to expanded NKT cells in mouse. More interestingly, CIK cells show a potent intratumoral homing in several experimental models, followed by anti tumoral clinical activity in mice and humans. In spite of extensive in vivo permanence and proliferation, CIK cells do not show cytotoxicity against normal targets and, particularly important, do not show Graft versus host disease when tested in allogeneic combinations (donor versus host) even in the haploidentical matching. For the easiness of the laboratory preparations, the availability of clinical grade reagents, the production of Good Manufacturing Practice compliant methods, CIK cells have been extensively used for the treatment of cancer patients, in both hematologic and solid tumors, in both autologous and allogeneic combinations. Several clinical protocol will be here discussed and summarised to show the feasibility of these passive transfer approaches, and also their very limited toxicity. Finally, preliminary indications on clinical efficacy, particularly in hematologic malignancies and against minimal residual disease, will be shown and discussed, as well as the future perspectives to optimize this adoptive passive cell immunotherapy strategy by gene transfer technology or bispecific monoclonal antibodies addition.
Salmoiraghi S, Rambaldi A, Spinelli O
TP53 in adult acute lymphoblastic leukemia.Leuk Lymphoma. 2018; 59(4):778-789 [
PubMed]
Related Publications
Acute lymphoblastic leukemia (ALL) is characterized by a great biological and clinical heterogeneity. Despite most adult patients enter complete hematologic remission after induction therapy only 40% survive five or more years. Over the last 20 years, the definition of an accurate biologic leukemia profile and the minimal residual disease evaluation in addition to conventional risk criteria led to a significant improvement for the risk stratification. The alterations of the oncosuppressor gene TP53, including deletions, sequence mutations and defect in its expression due to regulatory defects, define a new important predictor of adverse outcome. More recently, new drugs have been developed with the aim of targeting p53 protein itself or its regulatory molecules, such as Mdm2, and restoring the pathway functionality. Therefore, TP53 alterations should be considered in the diagnostic work-up to identify high risk ALL patients in need of intensive treatment strategies or eligible for new innovative targeted therapies.
Pappa KI, Lygirou V, Kontostathi G, et al.
Proteomic Analysis of Normal and Cancer Cervical Cell Lines Reveals Deregulation of Cytoskeleton-associated Proteins.Cancer Genomics Proteomics. 2017 Jul-Aug; 14(4):253-266 [
PubMed]
Free Access to Full Article Related Publications
BACKGROUND: Both HPV-positive and -negative cervical cancers are primarily associated with features of cell cycle and cytoskeletal disruption; however, the actual biological processes affected remain elusive. To this end, we systematically characterized the intracellular proteomic profiles of four distinct and informative cervical cell lines.
MATERIALS AND METHODS: Cell extracts from a normal cervical (HCK1T) and three cervical cancer cell lines, one HPV-negative (C33A), and two HPV-positive, SiHa (HPV16+) and HeLa (HPV18+), were analyzed by 2-dimensional electrophoresis and differentially expressed proteins were identified by MALDI-TOF mass spectrometry, while differential expression was confirmed by western blot analysis.
RESULTS: In total, 113 proteins were found differentially expressed between the normal and the cervical cancer lines. Bioinformatics analysis revealed the actin cytoskeleton signaling pathway to be significantly affected, while up-regulation of cofilin-1, an actin depolymerizing factor, was documented and further validated by western blotting. Furthermore, two-way comparisons among the four cell lines, revealed a set of 18 informative differentially expressed proteins.
CONCLUSION: These novel identified proteins provide the impetus for further functional studies to dissect the mechanisms operating in the two distinct pathways of cervical carcinogenesis.
Lucchetti D, Calapà F, Palmieri V, et al.
Differentiation Affects the Release of Exosomes from Colon Cancer Cells and Their Ability to Modulate the Behavior of Recipient Cells.Am J Pathol. 2017; 187(7):1633-1647 [
PubMed]
Related Publications
Exosomes are involved in intercellular communication. We previously reported that sodium butyrate-induced differentiation of HT29 colon cancer cells is associated with a reduced CD133 expression. Herein, we analyzed the role of exosomes in the differentiation of HT29 cells. Exosomes were prepared using ultracentrifugation. Gene expression levels were evaluated by real-time PCR. The cell proliferation rate was assessed by MTT assay and with the electric cell-substrate impedance sensing system, whereas cell motility was assessed using the scratch test and confocal microscopy. Sodium butyrate-induced differentiation of HT29 and Caco-2 cells increased the levels of released exosomes and their expression of CD133. Cell differentiation and the decrease of cellular CD133 expression levels were prevented by blocking multivesicular body maturation. Exosomes released by HT29 differentiating cells carried increased levels of miRNAs, induced an increased proliferation and motility of both colon cancer cells and normal fibroblasts, increased the colony-forming efficiency of cancer cells, and reduced the sodium butyrate-induced differentiation of HT29 cells. Such effects were associated with an increased phosphorylation level of both Src and extracellular signal regulated kinase proteins and with an increased expression of epithelial-to-mesenchymal transition-related genes. Release of exosomes is affected by differentiation of colon cancer cells; exosomes might be used by differentiating cells to get rid of components that are no longer necessary but might continue to exert their effects on recipient cells.
Massi D, Romano E, Rulli E, et al.
Baseline β-catenin, programmed death-ligand 1 expression and tumour-infiltrating lymphocytes predict response and poor prognosis in BRAF inhibitor-treated melanoma patients.Eur J Cancer. 2017; 78:70-81 [
PubMed]
Related Publications
BACKGROUND: The activation of oncogenic Wnt/β-catenin pathway in melanoma contributes to a lack of T-cell infiltration. Whether baseline β-catenin expression in the context of tumour-infiltrating lymphocytes (TILs) and programmed death ligand-1 (PD-L1) overexpression correlates with prognosis of metastatic melanoma patients (MMPs) treated with mitogen-activated protein kinase, MAPK inhibitor (MAPKi) monotherapy, however, has not been fully clarified.
PATIENTS AND METHODS: Sixty-four pre-treatment formalin-fixed and paraffin embedded melanoma samples from MMP treated with a BRAF inhibitor (n = 39) or BRAF and MEK inhibitors (n = 25) were assessed for presence of β-catenin, PD-L1, cluster of differentiation (CD)8, CD103 and forkhead box protein P3 (FOXP3) expression by immunohistochemistry, and results were correlated with clinical outcome. Quantitative assessment of mRNA transcripts associated with Wnt/β-catenin pathway and immune response was performed in 51 patients.
RESULTS: We found an inverse correlation between tumoural β-catenin expression and the level of CD8, CD103 or forkhead box protein P3 (FOXP3) positivity in the tumour microenvironment (TME). By multivariate analysis, PD-L1 <5% (odds ratio, OR 0.12, 95% confidence interval, CI 0.03-0.53, p = 0.005) and the presence of CD8+ T cells (OR 18.27, 95%CI 2.54-131.52, p = 0.004) were significantly associated with a higher probability of response to MAPKi monotherapy. Responding patients showed a significantly increased expression of mRNA transcripts associated with adaptive immunity and antigen presentation. By multivariate analysis, progression-free survival (PFS) (hazards ratio (HR) = 0.25 95%CI 0.10-0.61, p = 0.002) and overall survival (OS) (HR = 0.24 95%CI 0.09-0.67, p = 0.006) were longer in patients with high density of CD8+ T cells and β-catenin <10% than those without CD8+ T cells infiltration and β-catenin ≥10%.
CONCLUSION: Our findings provide evidence that in the context of MAPKi monotherapy, immune subsets in the (TME) and gene signature predict prognosis in MMPs.
Kontostathi G, Zoidakis J, Makridakis M, et al.
Cervical Cancer Cell Line Secretome Highlights the Roles of Transforming Growth Factor-Beta-Induced Protein ig-h3, Peroxiredoxin-2, and NRF2 on Cervical Carcinogenesis.Biomed Res Int. 2017; 2017:4180703 [
PubMed]
Free Access to Full Article Related Publications
Cancer cells acquire unique secretome compositions that contribute to tumor development and metastasis. The aim of our study was to elucidate the biological processes involved in cervical cancer, by performing a proteomic analysis of the secretome from the following informative cervical cell lines: SiHa (HPV16+), HeLa (HPV18+), C33A (HPV-), and HCK1T (normal). Proteins were analyzed by 2D gel electrophoresis coupled to MALDI-TOF-MS. Enrichment of secreted proteins with characteristic profiles for each cell line was followed by the identification of differentially expressed proteins. Particularly, transforming growth factor-beta-induced protein ig-h3 (Beta ig-h3) and peroxiredoxin-2 (PRDX2) overexpression in the secretome of cancer cell lines was detected and confirmed by Western blot. Bioinformatics analysis identified the transcription factor NRF2 as a regulator of differentially expressed proteins in the cervical cancer secretome. NRF2 levels were measured by both Western blot and Multiple Reaction Monitoring (MRM) in the total cell extract of the four cell lines. NRF2 was upregulated in SiHa and C33A compared to HCK1T. In conclusion, the secreted proteins identified in cervical cancer cell lines indicate that aberrant NRF2-mediated oxidative stress response (OSR) is a prominent feature of cervical carcinogenesis.
Moccia F, Fotia V, Tancredi R, et al.
Breast and renal cancer-Derived endothelial colony forming cells share a common gene signature.Eur J Cancer. 2017; 77:155-164 [
PubMed]
Related Publications
BACKGROUND: Neovascularisation supports the metastatic switch in many aggressive solid cancers. Tumour neovessels are mostly lined by endothelial cells sprouting from nearby capillaries, but they could also be contributed by circulating endothelial progenitor cells (EPCs). However, scant information is available about tumour-derived EPCs.
METHODS: We carried out the first thorough, unbiased comparison of phenotype, function and genotype of normal versus tumour-derived endothelial colony forming cells (ECFCs), a truly endothelial EPC subtype. We used healthy donors-derived ECFCs (N-ECFCs) as control for breast cancer (BC)- and renal cell carcinoma (RCC)-derived ECFCs.
RESULTS: We found that both BC- and RCC-ECFCs belong to the endothelial lineage. Normal and tumour-derived ECFCs did not differ in terms of proliferative and tubulogenic rates. However, RCC-ECFCs were more resistant to rapamycin-induced apoptosis, whereas BC-ECFCs were more sensitive as compared with N-ECFCs. Gene expression profiling revealed 382 differentially expressed genes (DEGs; 192 upregulated and 150 downregulated) and 71 DEGs (33 upregulated, 38 downregulated) when comparing, respectively, BC- and RCC-ECFCs with N-ECFCs. Nonetheless, BC- and RCC-derived ECFCs shared 35 DEGs, 10 of which were validated by qRT-PCR; such 35 DEGs are organised in a gene network centred on FOS.
CONCLUSION: These results provide the first clear-cut evidence that BC- and RCC-derived ECFCs exhibit an altered gene expression profile as compared with N-ECFCs; yet, they share a common gene signature that could highlight novel and more specific targets to suppress tumour vascularisation.
PD-L1 is expressed by a subset of patients with metastatic melanoma (MM) with an unfavorable outcome. Its expression is increased in cells resistant to BRAF or MEK inhibitors (BRAFi or MEKi). However, the function and regulation of expression of PD-L1 remain incompletely understood.After generating BRAFi- and MEKi-resistant cell lines, we observed marked up-regulation of PD-L1 expression. These cells were characterized by a common gene expression profile with up-regulation of genes involved in cell movement. Consistently, in vitro they showed significantly increased invasive properties. This phenotype was controlled in part by PD-L1, as determined after silencing the molecule. Up-regulation of PD-L1 was due to post-transcriptional events controlled by miR-17-5p, which showed an inverse correlation with PD-L1 mRNA. Direct binding between miR-17-5p and the 3'-UTR of PD-L1 mRNA was demonstrated using luciferase reporter assays.In a cohort of 80 BRAF-mutated MM patients treated with BRAFi or MEKi, constitutive expression of PD-L1 in the absence of immune infiltrate, defined the patient subset with the worst prognosis. Furthermore, PD-L1 expression increased in tissue biopsies after the metastatic lesions became resistant to BRAFi or MEKi. Lastly, plasmatic miR-17-5p levels were higher in patients with PD-L1+ than PD-L1- lesions.In conclusion, our findings indicate that PD-L1 expression induces a more aggressive behavior in melanoma cells. We also show that PD-L1 up-regulation in BRAFi or MEKi-resistant cells is partly due to post-transcriptional mechanisms that involve miR-17-5p, suggesting that miR-17-5p may be used as a marker of PD-L1 expression by metastatic lesions and ultimately a predictor of responses to BRAFi or MEKi.
Mpakou V, Papadavid E, Kontsioti F, et al.
Apoptosis Induction and Gene Expression Profile Alterations of Cutaneous T-Cell Lymphoma Cells following Their Exposure to Bortezomib and Methotrexate.PLoS One. 2017; 12(1):e0170186 [
PubMed]
Free Access to Full Article Related Publications
Mycosis fungoides (MF) and its leukemic variant Sézary syndrome (SS) comprise the majority of CTCL, a heterogenous group of non-Hodgkins lymphomas involving the skin. The CTCL's resistance to chemotherapy and the lack of full understanding of their pathogenesis request further investigation. With the view of a more targeted therapy, we evaluated in vitro the effectiveness of bortezomib and methotrexate, as well as their combination in CTCL cell lines, regarding apoptosis induction. Our data are of clinical value and indicate that the bortezomib/methotrexate combinational therapy has an inferior impact on the apoptosis of CTCL compared to monotherapy, with bortezomib presenting as the most efficient treatment option for SS and methotrexate for MF. Using PCR arrays technology, we also investigated the alterations in the expression profile of genes related to DNA repair pathways in CTCL cell lines after treatment with bortezomib or methotrexate. We found that both agents, but mostly bortezomib, significantly deregulate a large number of genes in SS and MF cell lines, suggesting another pathway through which these agents could induce apoptosis in CTCL. Finally, we show that SS and MF respond differently to treatment, verifying their distinct nature and further emphasizing the need for discrete treatment approaches.
BACKGROUND: Juvenile myelomonocytic leukaemia (JMML) and chronic myelomonocytic leukaemia (CMML) are myelodysplastic myeloproliferative (MDS/MPN) neoplasms with unfavourable prognosis and without effective chemotherapy treatment. Trabectedin is a DNA minor groove binder acting as a modulator of transcription and interfering with DNA repair mechanisms; it causes selective depletion of cells of the myelomonocytic lineage. We hypothesised that trabectedin might have an antitumour effect on MDS/MPN.
METHODS: Malignant CD14+ monocytes and CD34+ haematopoietic progenitor cells were isolated from peripheral blood/bone marrow mononuclear cells. The inhibition of CFU-GM colonies and the apoptotic effect on CD14+ and CD34+ induced by trabectedin were evaluated. Trabectedin's effects were also investigated in vitro on THP-1, and in vitro and in vivo on MV-4-11 cell lines.
RESULTS: On CMML/JMML cells, obtained from 20 patients with CMML and 13 patients with JMML, trabectedin - at concentration pharmacologically reasonable, 1-5 nM - strongly induced apoptosis and inhibition of growth of haematopoietic progenitors (CFU-GM). In these leukaemic cells, trabectedin downregulated the expression of genes belonging to the Rho GTPases pathway (RAS superfamily) having a critical role in cell growth and cytoskeletal dynamics. Its selective activity on myelomonocytic malignant cells was confirmed also on in vitro THP-1 cell line and on in vitro and in vivo MV-4-11 cell line models.
CONCLUSIONS: Trabectedin could be good candidate for clinical studies in JMML/CMML patients.
Silibinin, extracted from milk thistle (
Kontos CK, Papageorgiou SG, Diamantopoulos MA, et al.
mRNA overexpression of the hypoxia inducible factor 1 alpha subunit gene (HIF1A): An independent predictor of poor overall survival in chronic lymphocytic leukemia.Leuk Res. 2017; 53:65-73 [
PubMed]
Related Publications
The hypoxia inducible factor 1 (HIF1) is a heterodimeric transcription factor that ultimately regulates cellular responses to changes in oxygen tension. In this study, we examined the potential diagnostic and prognostic potential of the mRNA expression of HIF1 regulatory α-subunit (HIF1A) in chronic lymphocytic leukemia (CLL). For this purpose, total RNA was isolated from peripheral blood mononuclear cells collected from 88 CLL patients and 33 non-leukemic blood donors, and poly(A)-RNA was reversely transcribed. HIF1A mRNA levels were quantified using real-time PCR. Kaplan-Meier survival analysis showed that high HIF1A mRNA expression predicts inferior overall survival for CLL patients (p=0.001). Bootstrap univariate Cox regression analysis confirmed that HIF1A mRNA overexpression is a significant unfavorable prognosticator in CLL (hazard ratio=3.75, bias-corrected and accelerated 95% confidence interval=1.43-24.36, bootstrap p<0.001), independent of other established prognostic factors, including CD38 expression, the mutational status of the immunoglobulin heavy chain variable region (IGHV), and the clinical stage (Binet or Rai stage) or risk group (p<0.001 in all cases). Interestingly, HIF1A mRNA positivity retains its unfavorable prognostic value in distinct subgroups of patients, stratified according to established prognostic factors. Thus, HIF1A mRNA overexpression can be regarded as a promising, independent molecular biomarker of unfavorable prognosis in CLL.
Ronchini C, Brozzi A, Riva L, et al.
PML-RARA-associated cooperating mutations belong to a transcriptional network that is deregulated in myeloid leukemias.Leukemia. 2017; 31(9):1975-1986 [
PubMed]
Related Publications
It has been shown that individual acute myeloid leukemia (AML) patients are characterized by one of few initiating DNA mutations and 5-10 cooperating mutations not yet defined among hundreds identified by massive sequencing of AML genomes. We report an in vivo insertional-mutagenesis screen for genes cooperating with one AML initiating mutations (PML-RARA, oncogene of acute promyelocytic leukemia, APL), which allowed identification of hundreds of genetic cooperators. The cooperators are mutated at low frequency in APL or AML patients but are always abnormally expressed in a cohort of 182 APLs and AMLs analyzed. These deregulations appear non-randomly distributed and present in all samples, regardless of their associated genomic mutations. Reverse-engineering approaches showed that these cooperators belong to a single transcriptional gene network, enriched in genes mutated in AMLs, where perturbation of single genes modifies expression of others. Their gene-ontology analysis showed enrichment of genes directly involved in cell proliferation control. Therefore, the pool of PML-RARA cooperating mutations appears large and heterogeneous, but functionally equivalent and deregulated in the majority of APLs and AMLs. Our data suggest that the high heterogeneity of DNA mutations in APLs and AMLs can be reduced to patterns of gene expression deregulation of a single 'mutated' gene network.