MLLT3

Gene Summary

Gene:MLLT3; MLLT3 super elongation complex subunit
Aliases: AF9, YEATS3
Location:9p21.3
Summary:-
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:protein AF-9
Source:NCBIAccessed: 31 August, 2019

Ontology:

What does this gene/protein do?
Show (8)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 31 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 31 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (4)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: MLLT3 (cancer-related)

Chu Y, Chen Y, Li M, et al.
Six1 regulates leukemia stem cell maintenance in acute myeloid leukemia.
Cancer Sci. 2019; 110(7):2200-2210 [PubMed] Free Access to Full Article Related Publications
Molecular genetic changes in acute myeloid leukemia (AML) play crucial roles in leukemogenesis, including recurrent chromosome translocations, epigenetic/spliceosome mutations and transcription factor aberrations. Six1, a transcription factor of the Sine oculis homeobox (Six) family, has been shown to transform normal hematopoietic progenitors into leukemia in cooperation with Eya. However, the specific role and the underlying mechanism of Six1 in leukemia maintenance remain unexplored. Here, we showed increased expression of SIX1 in AML patients and murine leukemia stem cells (c-Kit

Zhao Z, Wang L, Volk AG, et al.
Regulation of MLL/COMPASS stability through its proteolytic cleavage by taspase1 as a possible approach for clinical therapy of leukemia.
Genes Dev. 2019; 33(1-2):61-74 [PubMed] Free Access to Full Article Related Publications
Chromosomal translocations of the Mixed-lineage leukemia 1 (

Zhang LS, Kang X, Lu J, et al.
Installation of a cancer promoting WNT/SIX1 signaling axis by the oncofusion protein MLL-AF9.
EBioMedicine. 2019; 39:145-158 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Chromosomal translocation-induced expression of the chromatin modifying oncofusion protein MLL-AF9 promotes acute myelocytic leukemia (AML). Whereas WNT/β-catenin signaling has previously been shown to support MLL-AF9-driven leukemogenesis, the mechanism underlying this relationship remains unclear.
METHODS: We used two novel small molecules targeting WNT signaling as well as a genetically modified mouse model that allow targeted deletion of the WNT protein chaperone Wntless (WLS) to evaluate the role of WNT signaling in AML progression. ATAC-seq and transcriptome profiling were deployed to understand the cellular consequences of disrupting a WNT signaling in leukemic initiating cells (LICs).
FINDINGS: We identified Six1 to be a WNT-controlled target gene in MLL-AF9-transformed leukemic initiating cells (LICs). MLL-AF9 alters the accessibility of Six1 DNA to the transcriptional effector TCF7L2, a transducer of WNT/β-catenin gene expression changes. Disruption of WNT/SIX1 signaling using inhibitors of the Wnt signaling delays the development of AML.
INTERPRETATION: By rendering TCF/LEF-binding elements controlling Six1 accessible to TCF7L2, MLL-AF9 promotes WNT/β-catenin-dependent growth of LICs. Small molecules disrupting WNT/β-catenin signaling block Six1 expression thereby disrupting leukemia driven by MLL fusion proteins.

Xu X, Schneider B
Therapeutic targeting potential of chromatin-associated proteins in MLL-rearranged acute leukemia.
Cell Oncol (Dordr). 2019; 42(2):117-130 [PubMed] Related Publications
BACKGROUND: Acute leukemias (AL) with a Mixed Lineage Leukemia (MLL) gene rearrangement (MLLr) represent a group of leukemic entities conferring intermediate to adverse prognoses. Multiple chromatin-associated proteins have been shown to play essential roles during the genesis of MLLr AL. Some chromatin-associated proteins function as negative regulators of MLLr AL whereas others are required for leukemic initiation or maintenance - the latter group constituting potential therapeutic targets. Most of the identified proteins have been functionally analyzed using experimental models with human/murine normal cells transformed by MLL-AF9 or other MLL fusion products, which may recapitulate most but not all aspects of human AML, such as immune system interactions - features of which the importance is rapidly emerging.
CONCLUSIONS: Here, we review chromatin-associated proteins fundamental to MLLr AL development, highlighting those with targeting potential by small molecule inhibitors. In particular, we focus on synthetic targeting of multiple chromatin-associated proteins, a strategy that shows superior therapeutic efficacy and offers hope for overcoming drug resistance.

Bariar B, Vestal CG, Deem B, et al.
Bioflavonoids promote stable translocations between MLL-AF9 breakpoint cluster regions independent of normal chromosomal context: Model system to screen environmental risks.
Environ Mol Mutagen. 2019; 60(2):154-167 [PubMed] Article available free on PMC after 01/03/2020 Related Publications
Infant acute leukemias are aggressive and characterized by rapid onset after birth. The majority harbor translocations involving the MLL gene with AF9 as one of its most common fusion partners. MLL and AF9 loci contain breakpoint cluster regions (bcrs) with sequences hypothesized to be targets of topoisomerase II inhibitors that promote translocation formation. Overlap of MLL bcr sequences associated with both infant acute leukemia and therapy-related leukemia following exposure to the topoisomerase II inhibitor etoposide led to the hypothesis that exposure during pregnancy to biochemically similar compounds may promote infant acute leukemia. We established a reporter system to systematically quantitate and stratify the potential for such compounds to promote chromosomal translocations between the MLL and AF9 bcrs analogous to those in infant leukemia. We show bioflavonoids genistein and quercetin most biochemically similar to etoposide have a strong association with MLL-AF9 bcr translocations, while kaempferol, fisetin, flavone, and myricetin have a weak but consistent association, and other compounds have a minimal association in both embryonic stem (ES) and hematopoietic stem cell (HSC) populations. The frequency of translocations induced by bioflavonoids at later stages of myelopoiesis is significantly reduced by more than one log. The MLL and AF9 bcrs are sensitive to these agents and recombinogenic independent of their native context suggesting bcr sequences themselves are drivers of illegitimate DNA repair reactions and translocations, not generation of functional oncogenic fusions. This system provides for rapid systematic screening of relative risk, dose dependence, and combinatorial impact of multitudes of dietary and environmental exposures on MLL-AF9 translocations. Environ. Mol. Mutagen. 60: 154-167, 2019. © 2018 Wiley Periodicals, Inc.

Wang Q, Shen Y, Ye B, et al.
Gene expression differences between thyroid carcinoma, thyroid adenoma and normal thyroid tissue.
Oncol Rep. 2018; 40(6):3359-3369 [PubMed] Article available free on PMC after 01/03/2020 Related Publications
To identify differences in gene expression profiles of infected cells between thyroid carcinoma (C), thyroid adenoma (A) and normal thyroid (N) epithelial cells, differentially expressed genes were identified using three pairwise comparisons with the GEO2R online tool. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis were used to classify them at the functional level. The most significant cluster in the N vs. A pairwise comparison had four hub genes: Insulin-like growth factor 2, Von Willebrand factor (VWF), multimerin 1 (MMRN1) and complement factor D (CFD). In N vs. C, the most significant cluster had 19 genes: IGF2, early growth response 2, transcription factor 3, KIT proto‑oncogene receptor tyrosine kinase, SMAD family member 9, MLLT3 super elongation complex subunit, runt related transcription factor 1, CFD, actinin α 1, SWI/SNF related matrix associated actin dependent regulator of chromatin subfamily a member 4, JunD proto‑oncogene AP‑1 transcription factor subunit, serum response factor (SRF), FosB proto‑oncogene, AP‑1 transcription factor subunit, connective tissue growth factor (CTGF), SRC proto‑oncogene, non‑receptor tyrosine kinase, MMRN1, SRY‑box 9, early growth response 3 and ETS variant 4. In A vs. C, the most significant cluster had 14 genes: BCL2-like 1, galectin 3, MCL1 BCL2 family apoptosis regulator, DNA damage inducible transcript 3, BCL2 apoptosis regulator, CTGF, matrix metallopeptidase 7, early growth response 1, kinase insert domain receptor, TIMP metallopeptidase inhibitor 1, apolipoprotein E, VWF, cyclin D1 and placental growth factor. Histological evidence was presented to confirm the makeup of the hubs prior to logistic regression analysis to differentiate benign and malignant neoplasms. The results of the present study may aid in the search for novel potential biomarkers for the differential diagnosis, prognosis and development of drug targets of thyroid neoplasm.

Kotani S, Yoda A, Kon A, et al.
Molecular pathogenesis of disease progression in MLL-rearranged AML.
Leukemia. 2019; 33(3):612-624 [PubMed] Article available free on PMC after 01/03/2020 Related Publications
Leukemic relapse is frequently accompanied by progressively aggressive clinical course. To understand the molecular mechanism of leukemic relapse, MLL/AF9-transformed mouse leukemia cells were serially transplanted in C57BL/6 mice (N = 96) by mimicking repeated recurrences, where mutations were monitored by exome sequencing (N = 42). The onset of leukemia was progressively promoted with advanced transplants, during which increasing numbers of somatic mutations were acquired (P < 0.005). Among these, mutations in Ptpn11 (p.G60R) and Braf (p.V637E) corresponded to those identified in human MLL-AML, while recurrent mutations affecting Msn (p.R295C) were observed only in mouse but not in human MLL-AML. Another mutated gene of interest was Gnb2 which was reported to be recurrently mutated in various hematological neoplasms. Gnb2 mutations (p.G77R) were significantly increased in clone size (P = 0.007) and associated with earlier leukemia onset (P = 0.011). GNB2 transcripts were significantly upregulated in human MLL-AML compared to MLL-negative AML (P < 0.05), which was supported by significantly increased Gnb2 transcript induced by MLL/AF9 overexpression (P < 0.001). In in vivo model, both mutation and overexpression of GNB2 caused leukemogenesis, and downregulation of GNB2 expression reduced proliferative potential and survival benefit, suggesting a driver role of GNB2. In conclusion, alterations of driver genes over time may play an important role in the progression of MLL-AML.

Peterson JF, Baughn LB, Pearce KE, et al.
KMT2A (MLL) rearrangements observed in pediatric/young adult T-lymphoblastic leukemia/lymphoma: A 10-year review from a single cytogenetic laboratory.
Genes Chromosomes Cancer. 2018; 57(11):541-546 [PubMed] Related Publications
T-lymphoblastic leukemia/lymphoma (T-ALL/LBL) accounts for approximately 15% of pediatric and 25% of adult ALL. While the underlying frequency of KMT2A (MLL) gene rearrangements has been identified in approximately 4-8% of T-ALL/LBL cases, a paucity of literature is available to characterize further the KMT2A rearrangements in pediatric/young adult T-ALL/LBL. A 10-year retrospective review was performed to identify KMT2A rearrangements in specimens sent for T-ALL/LBL fluorescence in situ hybridization studies in patients under the age of 30 years. Of 806 T-ALL/LBL FISH studies performed on unique individuals, 27 (3.3%) harbored KMT2A rearrangements. Nineteen patients were male and eight were female (M:F ratio, 2.4:1) with ages ranging from 1 to 20 years (mean 12, median 12). Of the 27 cases, nine (33%) had KMT2A/MLLT1 fusions, eight (30%) had KMT2A/AFDN fusions, two (7%) had KMT2A/ELL fusions, and one (4%) had a KMT2A/MLLT10 fusion. In addition, five (19%) had KMT2A rearrangements with unidentified gene fusion partners and two (7%) had 3'KMT2A deletions. Our results indicate that MLLT1 and AFDN account for the majority (63%) of KMT2A gene partners in pediatric/young adult T-ALL/LBL, while no KMT2A/AFF1 or KMT2A/MLLT3 fusions were observed despite their common identification in B-ALL and acute myeloid leukemia, respectively. In addition to diagnostic and prognostic value, detecting specific KMT2A fusions may also be of clinical importance in the era of targeted therapies.

Gao S, Zhou B, Li H, et al.
Long noncoding RNA HOTAIR promotes the self-renewal of leukemia stem cells through epigenetic silencing of p15.
Exp Hematol. 2018; 67:32-40.e3 [PubMed] Related Publications
Acute myeloid leukemia (AML) is a heterogeneous hematopoietic disorder initiated from a small subset of leukemia stem cell (LSC), which presents unrestricted self-renewal and proliferation. Long non-coding RNA HOTAIR is abundantly expressed and plays oncogenic roles in solid cancer and AML. However, whether HOTAIR regulates the self-renewal of LSC is largely unknown. Here, we reported that the expression of HOTAIR was increased in LSC than in normal hematological stem and progenitor cells (HSPCs). HOTAIR inhibition by short hairpin RNAs (shRNAs) decreased colony formation in leukemia cell lines and primary AML blasts. We then investigated the role of HOTAIR in leukemia in vivo. HOTAIR knockdown extends the survival time in U937-transplanted NSG mice. Furthermore, HOTAIR knockdown reduced infiltration of leukemic blasts, decreased frequency of LSC, and prolonged overall survival in MLL-AF9-induced murine leukemia, suggesting that HOTAIR is required for the maintenance of AML. Mechanistically, HOTAIR inhibited p15 expression through zeste homolog 2 (EZH2)-enrolled tri-methylation of Lys 27 of histone H3 (H3K27me3) in p15 promoter. In addition, p15 partially reversed the decrease of colony and proliferation induced by HOTAIR knockdown, suggesting that p15 plays an important role in the leukemogenesis by HOTAIR. In conclusion, our study suggests that HOTAIR facilitates leukemogenesis by enhancing self-renewal of LSC. HOTAIR might be a potential target for anti-LSC therapy.

Minzel W, Venkatachalam A, Fink A, et al.
Small Molecules Co-targeting CKIα and the Transcriptional Kinases CDK7/9 Control AML in Preclinical Models.
Cell. 2018; 175(1):171-185.e25 [PubMed] Article available free on PMC after 01/03/2020 Related Publications
CKIα ablation induces p53 activation, and CKIα degradation underlies the therapeutic effect of lenalidomide in a pre-leukemia syndrome. Here we describe the development of CKIα inhibitors, which co-target the transcriptional kinases CDK7 and CDK9, thereby augmenting CKIα-induced p53 activation and its anti-leukemic activity. Oncogene-driving super-enhancers (SEs) are highly sensitive to CDK7/9 inhibition. We identified multiple newly gained SEs in primary mouse acute myeloid leukemia (AML) cells and demonstrate that the inhibitors abolish many SEs and preferentially suppress the transcription elongation of SE-driven oncogenes. We show that blocking CKIα together with CDK7 and/or CDK9 synergistically stabilize p53, deprive leukemia cells of survival and proliferation-maintaining SE-driven oncogenes, and induce apoptosis. Leukemia progenitors are selectively eliminated by the inhibitors, explaining their therapeutic efficacy with preserved hematopoiesis and leukemia cure potential; they eradicate leukemia in MLL-AF9 and Tet2

Mizukawa B, O'Brien E, Mulloy JC, Zheng Y
Cell Polarity and Division Symmetry Analyses in Transformed Blood Cells.
Methods Mol Biol. 2018; 1821:257-266 [PubMed] Article available free on PMC after 01/03/2020 Related Publications
Cdc42 was originally discovered as a key regulator of bud site assembly and polarity in S. cerevisiae. Recent genetic studies have shown that the function of Cdc42 in regulating cell polarity appears highly conserved from budding yeast to humans. The role of Cdc42 in hematopoietic cell transformation and leukemia progression has been studied in an acute myeloid leukemia model using the MLL-AF9 oncogene-induced transformation and a Cdc42 conditional gene-targeted mouse model. Here we describe the leukemia cell polarity and division symmetry assays in the context of leukemia cell fate determination.

Tan J, Zhao L, Wang G, et al.
Human MLL-AF9 Overexpression Induces Aberrant Hematopoietic Expansion in Zebrafish.
Biomed Res Int. 2018; 2018:6705842 [PubMed] Article available free on PMC after 01/03/2020 Related Publications
The 11q23 of the mixed lineage leukemia 1 (

Meyer SE, Muench DE, Rogers AM, et al.
miR-196b target screen reveals mechanisms maintaining leukemia stemness with therapeutic potential.
J Exp Med. 2018; 215(8):2115-2136 [PubMed] Article available free on PMC after 01/03/2020 Related Publications
We have shown that antagomiR inhibition of miRNA miR-21 and miR-196b activity is sufficient to ablate MLL-AF9 leukemia stem cells (LSC) in vivo. Here, we used an shRNA screening approach to mimic miRNA activity on experimentally verified miR-196b targets to identify functionally important and therapeutically relevant pathways downstream of oncogenic miRNA in MLL-r AML. We found

Lillico R, Lawrence CK, Lakowski TM
Selective DOT1L, LSD1, and HDAC Class I Inhibitors Reduce HOXA9 Expression in MLL-AF9 Rearranged Leukemia Cells, But Dysregulate the Expression of Many Histone-Modifying Enzymes.
J Proteome Res. 2018; 17(8):2657-2667 [PubMed] Related Publications
Mixed lineage leukemia results from chromosomal rearrangements of the gene mixed lineage leukemia (MLL). MLL-AF9 is one such rearrangement that recruits the lysine methyltransferase, human disruptor of telomere silencing 1-like (DOT1L) and lysine specific demethylase 1 (LSD1), resulting in elevated expression of the Homeobox protein A9 (HOXA9), and leukemia. Inhibitors of LSD1 or DOT1L reduce HOXA9 expression, kill MLL-rearranged cells, and may treat leukemia. To quantify their effects on histone modifying enzyme activity and expression in MLL-rearranged leukemia, we tested inhibitors of DOT1L (EPZ-5676), LSD1 (GSK2879552), and HDAC (mocetinostat), in the MLL-AF9 cell line MOLM-13. All inhibitors reduced MOLM-13 viability but only mocetinostat induced apoptosis. EPZ-5676 increased total histone lysine dimethylation, which was attributed to a reduction in LSD1 expression, and was indistinguishable from direct LSD1 inhibition by GSK2879552. All compounds directly inhibit, or reduce the expression of, HOXA9, DOT1L and LSD1 by qPCR, increase total histone lysine methylation and acetylation by LC-MS/MS, and specifically reduce H3K79Me2 and increase H3K14Ac. Each inhibitor altered the expression of many histone modifying enzymes which may precipitate additional changes in expression. To the extent that this decreases HOXA9 expression it benefits mixed lineage leukemia treatment, all other expression changes are off-target effects.

Greenblatt SM, Man N, Hamard PJ, et al.
CARM1 Is Essential for Myeloid Leukemogenesis but Dispensable for Normal Hematopoiesis.
Cancer Cell. 2018; 33(6):1111-1127.e5 [PubMed] Article available free on PMC after 01/03/2020 Related Publications
Chromatin-modifying enzymes, and specifically the protein arginine methyltransferases (PRMTs), have emerged as important targets in cancer. Here, we investigated the role of CARM1 in normal and malignant hematopoiesis. Using conditional knockout mice, we show that loss of CARM1 has little effect on normal hematopoiesis. Strikingly, knockout of Carm1 abrogates both the initiation and maintenance of acute myeloid leukemia (AML) driven by oncogenic transcription factors. We show that CARM1 knockdown impairs cell-cycle progression, promotes myeloid differentiation, and ultimately induces apoptosis. Finally, we utilize a selective, small-molecule inhibitor of CARM1 to validate the efficacy of CARM1 inhibition in leukemia cells in vitro and in vivo. Collectively, this work suggests that targeting CARM1 may be an effective therapeutic strategy for AML.

Skucha A, Ebner J, Schmöllerl J, et al.
MLL-fusion-driven leukemia requires SETD2 to safeguard genomic integrity.
Nat Commun. 2018; 9(1):1983 [PubMed] Article available free on PMC after 01/03/2020 Related Publications
MLL-fusions represent a large group of leukemia drivers, whose diversity originates from the vast molecular heterogeneity of C-terminal fusion partners of MLL. While studies of selected MLL-fusions have revealed critical molecular pathways, unifying mechanisms across all MLL-fusions remain poorly understood. We present the first comprehensive survey of protein-protein interactions of seven distantly related MLL-fusion proteins. Functional investigation of 128 conserved MLL-fusion-interactors identifies a specific role for the lysine methyltransferase SETD2 in MLL-leukemia. SETD2 loss causes growth arrest and differentiation of AML cells, and leads to increased DNA damage. In addition to its role in H3K36 tri-methylation, SETD2 is required to maintain high H3K79 di-methylation and MLL-AF9-binding to critical target genes, such as Hoxa9. SETD2 loss synergizes with pharmacologic inhibition of the H3K79 methyltransferase DOT1L to induce DNA damage, growth arrest, differentiation, and apoptosis. These results uncover a dependency for SETD2 during MLL-leukemogenesis, revealing a novel actionable vulnerability in this disease.

Schneidawind C, Jeong J, Schneidawind D, et al.
Blood Adv. 2018; 2(8):832-845 [PubMed] Article available free on PMC after 01/03/2020 Related Publications
Genome editing provides a potential approach to model de novo leukemogenesis in primary human hematopoietic stem and progenitor cells (HSPCs) through induction of chromosomal translocations by targeted DNA double-strand breaks. However, very low efficiency of translocations and lack of markers for translocated cells serve as barriers to their characterization and model development. Here, we used transcription activator-like effector nucleases to generate t(9;11) chromosomal translocations encoding

Heshmati Y, Türköz G, Harisankar A, et al.
The chromatin-remodeling factor
Haematologica. 2018; 103(7):1169-1181 [PubMed] Article available free on PMC after 01/03/2020 Related Publications
Epigenetic alterations contribute to leukemogenesis in childhood acute myeloid leukemia and therefore are of interest for potential therapeutic strategies. Herein, we performed large-scale ribonucleic acid interference screens using small hairpin ribonucleic acids in acute myeloid leukemia cells and non-transformed bone marrow cells to identify leukemia-specific dependencies. One of the target genes displaying the strongest effects on acute myeloid leukemia cell growth and less pronounced effects on nontransformed bone marrow cells, was the chromatin remodeling factor

Park JW, Cho H, Oh H, et al.
AURKA Suppresses Leukemic THP-1 Cell Differentiation through Inhibition of the KDM6B Pathway.
Mol Cells. 2018; 41(5):444-453 [PubMed] Article available free on PMC after 01/03/2020 Related Publications
Aberrations in histone modifications are being studied in mixed-lineage leukemia (MLL)-AF9-driven acute myeloid leukemia (AML). In this study, we focused on the regulation of the differentiation of the MLL-AF9 type AML cell line THP-1. We observed that, upon phorbol 12-myristate 13-acetate (PMA) treatment, THP-1 cells differentiated into monocytes by down-regulating Aurora kinase A (AURKA), resulting in a reduction in H3S10 phosphorylation. We revealed that the AURKA inhibitor alisertib accelerates the expression of the H3K27 demethylase KDM6B, thereby dissociating AURKA and YY1 from the

Hsu CC, Shi J, Yuan C, et al.
Recognition of histone acetylation by the GAS41 YEATS domain promotes H2A.Z deposition in non-small cell lung cancer.
Genes Dev. 2018; 32(1):58-69 [PubMed] Article available free on PMC after 01/03/2020 Related Publications
Histone acetylation is associated with active transcription in eukaryotic cells. It helps to open up the chromatin by neutralizing the positive charge of histone lysine residues and providing binding platforms for "reader" proteins. The bromodomain (BRD) has long been thought to be the sole protein module that recognizes acetylated histones. Recently, we identified the YEATS domain of AF9 (ALL1 fused gene from chromosome 9) as a novel acetyl-lysine-binding module and showed that the ENL (eleven-nineteen leukemia) YEATS domain is an essential acetyl-histone reader in acute myeloid leukemias. The human genome encodes four YEATS domain proteins, including GAS41, a component of chromatin remodelers responsible for H2A.Z deposition onto chromatin; however, the importance of the GAS41 YEATS domain in human cancer remains largely unknown. Here we report that

Brown FC, Still E, Koche RP, et al.
MEF2C Phosphorylation Is Required for Chemotherapy Resistance in Acute Myeloid Leukemia.
Cancer Discov. 2018; 8(4):478-497 [PubMed] Article available free on PMC after 01/03/2020 Related Publications
In acute myeloid leukemia (AML), chemotherapy resistance remains prevalent and poorly understood. Using functional proteomics of patient AML specimens, we identified MEF2C S222 phosphorylation as a specific marker of primary chemoresistance. We found that

Burillo-Sanz S, Morales-Camacho RM, Caballero-Velázquez T, et al.
MLL-rearranged acute myeloid leukemia: Influence of the genetic partner in allo-HSCT response and prognostic factor of MLL 3' region mRNA expression.
Eur J Haematol. 2018; 100(5):436-443 [PubMed] Related Publications
OBJECTIVE: MLL gene is involved in more than 80 known genetic fusions in acute leukemia. To study the relevance of MLL partner gene and selected gene's expression, in this work, we have studied a cohort of 20 MLL-rearranged acute myeloid leukemia (AML).
METHODS: Twenty MLL-rearranged AML patients along with a control cohort of 138 AML patients are included in this work. By RT-PCR and sequencing, MLL genetic fusion was characterized, and relative gene expression quantification was carried out for EVI1, MEIS1, MLL-3', RUNX1, SETBP1, HOXA5, and FLT3 genes. Risk stratification and association of MLL genetic partner and gene expression to overall survival, in the context of received therapy, were performed.
RESULTS: MLLr cohort showed to have an OS more similar to intermediate-risk AML. Type of MLL genetic partner showed to be relevant in allo-HSCT response; having MLLT1 and MLLT3, a better benefit from it. Expression of MLL-3' region, EVI1 and FLT3, showed association with OS in patients undergoing allo-HSCT.
CONCLUSION: We show that the MLL genetic partner could have implications in allo-HSCT response, and we propose three genes whose expression could be useful for the prognosis of this leukemia in patients undergoing allo-HSCT: 3' region of MLL, EVI1, and FLT3.

Wang R, Feng W, Yang F, et al.
Heterogeneous effects of M-CSF isoforms on the progression of MLL-AF9 leukemia.
Immunol Cell Biol. 2018; 96(2):190-203 [PubMed] Related Publications
Macrophage colony-stimulating factor (M-CSF) regulates both malignant cells and microenvironmental cells. Its splicing isoforms show functional heterogeneity. However, their roles on leukemia have not been well established. Here, the expression of total M-CSF in patients with hematopoietic malignancies was analyzed. The roles of M-CSF isoforms on the progression of acute myeloid leukemia (AML) were studied by establishing MLL-AF9-induced mouse AML models with high level membrane-bound M-CSF (mM-CSF) or soluble M-CSF (sM-CSF). Total M-CSF was highly expressed in myeloid leukemia patients. Furthermore, mM-CSF but not sM-CSF prolonged the survival of leukemia mice. While sM-CSF was more potent to promote proliferation and self-renew, mM-CSF was more potent to promote differentiation. Moreover, isoforms had different effects on leukemia-associated macrophages (LAMs) though they both increase monocytes/macrophages by growth-promoting and recruitment effects. In addition, mM-CSF promoted specific phagocytosis of leukemia cells by LAMs. RNA-seq analysis revealed that mM-CSF enhanced phagocytosis-associated genes and activated oxidative phosphorylation and metabolism pathway. These results highlight heterogeneous effects of M-CSF isoforms on AML progression and the mechanisms of mM-CSF, that is, intrinsically promoting AML cell differentiation and extrinsically enhancing infiltration of macrophages and phagocytosis by macrophages, which may provide potential clues for clinical diagnosis and therapy.

Bahr C, von Paleske L, Uslu VV, et al.
A Myc enhancer cluster regulates normal and leukaemic haematopoietic stem cell hierarchies.
Nature. 2018; 553(7689):515-520 [PubMed] Related Publications
The transcription factor Myc is essential for the regulation of haematopoietic stem cells and progenitors and has a critical function in haematopoietic malignancies. Here we show that an evolutionarily conserved region located 1.7 megabases downstream of the Myc gene that has previously been labelled as a 'super-enhancer' is essential for the regulation of Myc expression levels in both normal haematopoietic and leukaemic stem cell hierarchies in mice and humans. Deletion of this region in mice leads to a complete loss of Myc expression in haematopoietic stem cells and progenitors. This caused an accumulation of differentiation-arrested multipotent progenitors and loss of myeloid and B cells, mimicking the phenotype caused by Mx1-Cre-mediated conditional deletion of the Myc gene in haematopoietic stem cells. This super-enhancer comprises multiple enhancer modules with selective activity that recruits a compendium of transcription factors, including GFI1b, RUNX1 and MYB. Analysis of mice carrying deletions of individual enhancer modules suggests that specific Myc expression levels throughout most of the haematopoietic hierarchy are controlled by the combinatorial and additive activity of individual enhancer modules, which collectively function as a 'blood enhancer cluster' (BENC). We show that BENC is also essential for the maintenance of MLL-AF9-driven leukaemia in mice. Furthermore, a BENC module, which controls Myc expression in mouse haematopoietic stem cells and progenitors, shows increased chromatin accessibility in human acute myeloid leukaemia stem cells compared to blasts. This difference correlates with MYC expression and patient outcome. We propose that clusters of enhancers, such as BENC, form highly combinatorial systems that allow precise control of gene expression across normal cellular hierarchies and which also can be hijacked in malignancies.

Xiu Y, Dong Q, Li Q, et al.
Stabilization of NF-κB-Inducing Kinase Suppresses MLL-AF9-Induced Acute Myeloid Leukemia.
Cell Rep. 2018; 22(2):350-358 [PubMed] Article available free on PMC after 01/03/2020 Related Publications
Canonical NF-κB signaling is constitutively activated in acute myeloid leukemia (AML) stem cells and is required for maintenance of the self-renewal of leukemia stem cells (LSCs). However, any potential role for NF-κB non-canonical signaling in AML has been largely overlooked. Here, we report that stabilization of NF-κB-inducing kinase (NIK) suppresses AML. Mechanistically, stabilization of NIK activates NF-κB non-canonical signaling and represses NF-κB canonical signaling. In addition, stabilization of NIK-induced activation of NF-κB non-canonical signaling upregulates Dnmt3a and downregulates Mef2c, which suppresses and promotes AML development, respectively. Importantly, by querying the connectivity MAP using up- and downregulated genes that are present exclusively in NIK-stabilized LSCs, we discovered that verteporfin has anti-AML effects, suggesting that repurposing verteporfin to target myeloid leukemia is worth testing clinically. Our data provide a scientific rationale for developing small molecules to stabilize NIK specifically in myeloid leukemias as an attractive therapeutic option.

Cui P, Zhang Y, Cui M, et al.
Leukemia cells impair normal hematopoiesis and induce functionally loss of hematopoietic stem cells through immune cells and inflammation.
Leuk Res. 2018; 65:49-54 [PubMed] Related Publications
Bone marrow (BM) failure is often seen in leukemia patients, indicating an abnormal hematopoietic process. However, hematopoiesis in leukemic milieus is largely unknown. In the present study, we utilized one of the most frequent leukemogenic translocations MLL-AF9 to induce leukemia and investigated the hematopoiesis and the activity of hematopoietic stem and progenitor cells (HSPCs) in a leukemic milieu. We found that the phenotypes of the non-leukemic population in leukemic BM were drastically different than normal BM, including blockage of differentiation and a drastically reduced Lin-/Sca+/c-kit+ (LSK) population that contains all HSPCs in leukemic BM. Further, transplantation assays demonstrated that stem cell function of HSPCs from leukemic BM was significantly compromised. Intriguingly, BM from a patient-derived xenograft leukemia model and from immunocompromised mice transplanted with murine MLL-AF9 cells, showed comparable percentage of hematopoietic stem cells (HSCs) to normal controls, indicating that an immunocompetent microenvironment is critical for leukemia-induced loss of HSPCs. Mechanistically, we found that the non-leukemic cells from leukemic BM possessed a more inflammatory profile than either leukemic cells or normal BM counterparts. Co-culturing or co-transplantation with non-leukemic cells from leukemic BM impaired the stem cell function of normal HSPCs in vitro and in vivo respectively, suggesting that the highly inflammatory non-leukemic population in leukemic BM not only is functionally abnormal but displayed a 'leukemia-like' characteristic. Finally, we tested the effect of the anti-inflammation drug diclofenac on leukemia mice. However, no phenotypic changes of HSPCs were observed upon diclofenac treatment due to only mild repression of inflammatory genes by diclofenac, further indicating that inflammation is a powerful negative regulator of HSPCs. Together, our results suggest that leukemia impairs normal hematopoiesis and inflammation as well as immune cells play a critical role in leukemia-induced BM failure.

Carretta M, Brouwers-Vos AZ, Bosman M, et al.
BRD3/4 inhibition and FLT3-ligand deprivation target pathways that are essential for the survival of human MLL-AF9+ leukemic cells.
PLoS One. 2017; 12(12):e0189102 [PubMed] Article available free on PMC after 01/03/2020 Related Publications
In the present work we aimed to identify targetable signaling networks in human MLL-AF9 leukemias. We show that MLL-AF9 cells critically depend on FLT3-ligand induced pathways as well as on BRD3/4 for their survival. We evaluated the in vitro and in vivo efficacy of the BRD3/4 inhibitor I-BET151 in various human MLL-AF9 (primary) models and patient samples and analyzed the transcriptome changes following treatment. To further understand the mode of action of BRD3/4 inhibition, we performed ChIP-seq experiments on the MLL-AF9 complex in THP1 cells and compared it to RNA-seq data of I-BET151 treated cells. While we could confirm a consistent and specific downregulation of key-oncogenic drivers such as MYC and BCL2, we found that the majority of I-BET151-responsive genes were not direct MLL-AF9 targets. In fact, MLL-AF9 specific targets such as the HOXA cluster, MEIS1 and other cell cycle regulators such as CDK6 were not affected by I-BET151 treatment. Furthermore, we also highlight how MLL-AF9 transformed cells are dependent on the function of non-mutated hematopoietic transcription factors and tyrosine kinases such as the FLT3-TAK1/NF-kB pathway, again impacting on BCL2 but not on the HOXA cluster. We conclude that BRD3/4 and the FLT3-TAK1/NF-kB pathways collectively control a set of targets that are critically important for the survival of human MLL-AF9 cells.

Meng FJ, Meng FM, Wu HX, Cao XF
miR-564 inhibited metastasis and proliferation of prostate cancer by targeting MLLT3.
Eur Rev Med Pharmacol Sci. 2017; 21(21):4828-4834 [PubMed] Related Publications
OBJECTIVE: MiR-564 has been discovered to be abnormally expressed in human malignancy. Two recent studies suggested that miR-564 plays a role in tumor inhibition in both lung and breast cancer. However, no evidence reported the mechanism and function of miR-564 in prostate cancer (PCa).
PATIENTS AND METHODS: The PCa tissues and their adjacent normal tissues were collected from 50 PCa patients. Expressions of miR-564 in tissues and cells were evaluated with RT-qPCR. The MTT [3-(4,5-dimethylthiazol-2-yl)2,5-diphenyl tetrazolium bromide] assay, flow cytometry and Western-blot analysis, were applied to detect the proliferation, cell cycle progression and the protein expression of PCa cell lines (PC-3 and DU-145). Migration and invasion of PCa cells were analyzed by Transwell assays. Furthermore, the correlation between miR-564 and MLLT3 was assessed by luciferase reporter assay. Also, the PCa cells were transfected with miR-564 mimics control and inhibitor.
RESULTS: In our present research, miR-564 was found dysregulated in PCa cells and to act as a suppressor in PCa cell proliferation, progression of cell cycle, cell invasion and migration. MLLT3 (also known as Af9) is a proto-oncogene, which has first reported in leukemia, and the regulation of its expression remains incompletely elucidated. Also, it is first reported in our study, suggesting that MLLT3 is a direct target of miR-564. The results also showed a significant negative correlation with miR-564 in PCa cells. Furthermore, up-regulation of MLLT3 attenuates the effects of miR-564 on the ability of PCa cells.
CONCLUSIONS: Our research demonstrated the suppressor function of miR-564 in PCa, revealing restoration of miR-564 as a potential therapeutic strategy for the treatment of PCa.

Afrin S, Zhang CRC, Meyer C, et al.
Targeted Next-Generation Sequencing for Detecting
Mol Cancer Res. 2018; 16(2):279-285 [PubMed] Related Publications
Mixed lineage leukemia (

Di Marcantonio D, Martinez E, Sidoli S, et al.
Protein Kinase C Epsilon Is a Key Regulator of Mitochondrial Redox Homeostasis in Acute Myeloid Leukemia.
Clin Cancer Res. 2018; 24(3):608-618 [PubMed] Article available free on PMC after 01/03/2020 Related Publications

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. MLLT3, Cancer Genetics Web: http://www.cancer-genetics.org/MLLT3.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 31 August, 2019     Cancer Genetics Web, Established 1999