Gene Summary

Gene:MAD1L1; mitotic arrest deficient 1 like 1
Aliases: MAD1, PIG9, TP53I9, TXBP181
Summary:MAD1L1 is a component of the mitotic spindle-assembly checkpoint that prevents the onset of anaphase until all chromosome are properly aligned at the metaphase plate. MAD1L1 functions as a homodimer and interacts with MAD2L1. MAD1L1 may play a role in cell cycle control and tumor suppression. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Jan 2015]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:mitotic spindle assembly checkpoint protein MAD1
Source:NCBIAccessed: 31 August, 2019


What does this gene/protein do?
Show (21)
Pathways:What pathways are this gene/protein implicaed in?
Show (1)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 01 September 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Gene Expression
  • Colonic Neoplasms
  • Epigenetics
  • Genomic Instability
  • Calcium-Binding Proteins
  • Mad2 Proteins
  • World Health Organization
  • ras Proteins
  • DNA-Binding Proteins
  • Cancer Gene Expression Regulation
  • Biomarkers, Tumor
  • Stomach Cancer
  • Bladder Cancer
  • Spindle Apparatus
  • Structure-Activity Relationship
  • Genome-Wide Association Study
  • Small Cell Lung Cancer
  • Colorectal Cancer
  • Nuclear Proteins
  • Genetic Predisposition
  • Mutation
  • U937 Cells
  • Apoptosis
  • Single Nucleotide Polymorphism
  • Prostate Cancer
  • Oligonucleotide Array Sequence Analysis
  • DNA Methylation
  • Cell Cycle Proteins
  • Poly-ADP-Ribose Binding Proteins
  • Neoplasm Proteins
  • Mitosis
  • Proto-Oncogene Proteins c-myc
  • Breast Cancer
  • Phosphoproteins
  • Tumor Suppressor Proteins
  • Disease Models, Animal
  • Cell Proliferation
  • Chromosome 7
  • Lung Cancer
  • Repressor Proteins
  • Telomerase
Tag cloud generated 31 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (7)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: MAD1L1 (cancer-related)

Guo X, Dai X, Ni J, et al.
Geraniin Differentially Modulates Chromosome Stability of Colon Cancer and Noncancerous Cells by Oppositely Regulating their Spindle Assembly Checkpoint.
Environ Mol Mutagen. 2019; 60(3):254-268 [PubMed] Related Publications
Geraniin has been reported to specifically induce apoptosis in multiple human cancers, but the underlying mechanism is poorly defined. The spindle assembly checkpoint (SAC) is a surveillance system to ensure high-fidelity chromosome segregation during mitosis. Weakening of SAC to enhance chromosome instability (CIN) can be therapeutic because very high levels of CIN are lethal. In this study, we have investigated the effects of geraniin on the SAC of colorectal cancer HCT116 cells and noncancerous colon epithelial CCD841 cells. We find that treatment of HCT116 cells with geraniin leads to dose-dependent decrease of cell proliferation, colony formation, and anchorage-independent growth. Geraniin is found to induce apoptosis in mitotic and postmitotic HCT116 cells. Furthermore, geraniin weakens the SAC function of HCT116 cells by decreasing the transcriptional expression of several SAC kinases (particularly Mad2 and Bub1), which in turn leads to premature anaphase entry, mitotic aberrations, and CIN in HCT116 cells. In contrast, the proliferation of CCD841 cells is slightly inhibited by geraniin. Even more interestingly, geraniin increases the transcriptional expression of several SAC kinases (e.g., Mad1 and BubR1) to strengthen SAC efficiency, which contributes to the reduction of mitotic aberrations and CIN in CCD841 cells. Altogether, our findings reveal that the SAC pathway in human colon cancer and noncancerous cell lineages responses oppositely to geraniin treatment, resulting CIN promotion and suppression, respectively. Specific abrogation of SAC to induce catastrophic CIN in HCT116 cells may account for the selective anticancer action of geraniin.. Environ. Mol. Mutagen. 60:254-268, 2019. © 2018 Wiley Periodicals, Inc.

Cao L, Xu C, Xiang G, et al.
AR-PDEF pathway promotes tumour proliferation and upregulates MYC-mediated gene transcription by promoting MAD1 degradation in ER-negative breast cancer.
Mol Cancer. 2018; 17(1):136 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Androgen receptor (AR) is expressed in 60%~ 70% oestrogen receptor (ER)-negative breast cancer (BC) cases and promotes the growth of this cancer subtype. Expression of prostate-derived Ets factor (PDEF), a transcription factor, is highly restricted to epithelial cells in hormone-regulated tissues. MYC and its negative regulator MAD1 play an important role in BC progression. Previously, we found that PDEF expression is strongly correlated with AR expression. However, the relationship between AR and PDEF and the function of PDEF in ER-negative BC proliferation are unclear.
METHODS: AR and PDEF expression in ER-negative BC tissues and cell lines was determined by performing immunohistochemistry or western blotting. Protein expression levels and location were analysed by performing western blotting, RT-qPCR and immunofluorescence staining. Co-immunoprecipitation and chromatin immunoprecipitation assays were performed to validate the regulation of AR-PDEF-MAD1-MYC axis. Moreover, the effect of AR and PDEF on BC progression was investigated both in vitro and in vivo.
RESULTS: We found that PDEF was overexpressed in ER-negative BC tissues and cell lines and appeared to function as an oncogene. PDEF expression levels were strongly correlated with AR expression in ER-negative BC, and PDEF transcription was positively regulated by AR. PDEF upregulated MYC-mediated gene transcription by promoting MAD1 degradation in ER-negative BC. Finally, we found that compared with the inhibition of AR expression alone, simultaneous inhibition of AR and PDEF expression further suppressed tumour proliferation both in vitro and in vivo.
CONCLUSIONS: Our data highlight the role of the AR-PDEF-MAD1-MYC axis in BC progression and suggest that PDEF can be used as a new clinical therapeutic target for treating ER-negative BC.

Shen C, Chen F, Wang H, et al.
The Pinx1 Gene Downregulates Telomerase and Inhibits Proliferation of CD133+ Cancer Stem Cells Isolated from a Nasopharyngeal Carcinoma Cell Line by Regulating Trfs and Mad1/C-Myc/p53 Pathways.
Cell Physiol Biochem. 2018; 49(1):282-294 [PubMed] Related Publications
BACKGROUND/AIMS: Cancer stem cells (CSCs) are important factors for the continuous growth, recurrence, and metastasis of malignant tumors. They are responsible for the ineffectiveness of traditional radiotherapy and chemotherapy toward malignant tumors. Currently, stem cells or side-population cells have been isolated from many cancer cell lines and malignant tumor tissues, including nasopharyngeal carcinoma. Exploring the biological characteristics of CSCs for CSC-targeted therapy has gained importance. CSCs possess higher telomerase activity; thus, the use of the gene encoding telomerase inhibitor PinX1 gene to target telomerase in CSCs and inhibit proliferation, invasion, and metastasis of CSCs has become an important means for the treatment of malignant tumors. PinX1 may regulate complex pathways, including TRF1, Mad1/c-Myc, and p53.
METHODS: In this study, nasopharyngeal CD133+ CSCs were sorted using CD133 immunomagnetic beads by flow cytometry The successful isolation of CD133+ CSCs was confirmed by examining their surface markers, namely CD44, NaNOG, and SOX2 as well as their ability to undergo in vivo tumorigenesis and in vitro sphere formation, proliferation, migration, and invasion. In addition, CD133+ CSCs were transfected with the constructed PinX1 overexpression plasmid or siRNA and the resulting effects on their proliferation, migration, invasion, and apoptosis were detected using cell counting kit-8 (CCK-8), transwell assay, and scratch test, respectively. Furthermore, their effects on mRNA and protein levels of TRF1, TRF2, Mad1, c-Myc, and p53 were examined using quantitative real-time PCR and western blot, respectively.
RESULTS: The overexpression of PinX1 in CD133+ CSCs significantly decreased hTERT (P < 0.001), inhibited proliferation, migration, and invasion, induced apoptosis, and significantly decreased c-Myc mRNA levels (P < 0.001), while it increased TRF1, Mad1, and p53 mRNA levels (all P < 0.001). On the other hand, PinX1 silencing in CD133+ CSCs significantly decreased TRF1, Mad1, and p53 mRNA levels (all P < 0.01), while it increased hTERT and c-Myc mRNA levels (all P < 0.05).
CONCLUSION: These results indicate that PinX1 downregulates telomerase activity in CD133+ CSCs, inhibits its proliferation, migration, and invasion, and induces apoptosis possibly through TRF1, Mad1/c-Myc, and p53-mediated pathways.

Mitchell TJ, Turajlic S, Rowan A, et al.
Timing the Landmark Events in the Evolution of Clear Cell Renal Cell Cancer: TRACERx Renal.
Cell. 2018; 173(3):611-623.e17 [PubMed] Free Access to Full Article Related Publications
Clear cell renal cell carcinoma (ccRCC) is characterized by near-universal loss of the short arm of chromosome 3, deleting several tumor suppressor genes. We analyzed whole genomes from 95 biopsies across 33 patients with clear cell renal cell carcinoma. We find hotspots of point mutations in the 5' UTR of TERT, targeting a MYC-MAX-MAD1 repressor associated with telomere lengthening. The most common structural abnormality generates simultaneous 3p loss and 5q gain (36% patients), typically through chromothripsis. This event occurs in childhood or adolescence, generally as the initiating event that precedes emergence of the tumor's most recent common ancestor by years to decades. Similar genomic changes drive inherited ccRCC. Modeling differences in age incidence between inherited and sporadic cancers suggests that the number of cells with 3p loss capable of initiating sporadic tumors is no more than a few hundred. Early development of ccRCC follows well-defined evolutionary trajectories, offering opportunity for early intervention.

Zhong Q, Liu ZH, Lin ZR, et al.
Clin Cancer Res. 2018; 24(3):659-673 [PubMed] Free Access to Full Article Related Publications

Wright DJ, Day FR, Kerrison ND, et al.
Genetic variants associated with mosaic Y chromosome loss highlight cell cycle genes and overlap with cancer susceptibility.
Nat Genet. 2017; 49(5):674-679 [PubMed] Free Access to Full Article Related Publications
The Y chromosome is frequently lost in hematopoietic cells, which represents the most common somatic alteration in men. However, the mechanisms that regulate mosaic loss of chromosome Y (mLOY), and its clinical relevance, are unknown. We used genotype-array-intensity data and sequence reads from 85,542 men to identify 19 genomic regions (P < 5 × 10

Chen S, Bu D, Ma Y, et al.
H19 Overexpression Induces Resistance to 1,25(OH)2D3 by Targeting VDR Through miR-675-5p in Colon Cancer Cells.
Neoplasia. 2017; 19(3):226-236 [PubMed] Free Access to Full Article Related Publications
The long noncoding (lnc) RNA H19 was involved in the tumorigenesis of many types of cancer. However, the role of H19 in the tumorigenesis of colon cancer has not been fully illustrated. Recent studies suggested a potential relationship between H19 and vitamin D receptor (VDR) signaling. Considering the pivotal role of VDR signaling in the colon epithelium both physiologically and pathologically, the correlation between H19 and VDR signaling may have an important role in the development of colon cancer. In this study, the correlation between H19 and vitamin D receptor (VDR) signaling and the underlying mechanisms in colon cancer were investigated both in vitro and in vivo. The results suggested that VDR signaling was able to inhibit the expression of H19 through regulating C-Myc/Mad-1 network. H19, on the other hand, was able to inhibit the expression of VDR through micro RNA 675-5p (miR-675-5p). Furthermore, H19 overexpression induced resistance to the treatment with 1,25(OH)2D3 both in vitro and in vivo. Together, these results suggested that H19 overexpression might be one of the mechanisms underlying the development of resistance to the treatment with 1,25(OH)2D3 in the advanced stage of colon cancer.

Teye EK, Sido A, Xin P, et al.
PIGN gene expression aberration is associated with genomic instability and leukemic progression in acute myeloid leukemia with myelodysplastic features.
Oncotarget. 2017; 8(18):29887-29905 [PubMed] Free Access to Full Article Related Publications
Previous studies have linked increased frequency of glycosylphosphatidylinositol-anchor protein (GPI-AP) deficiency with genomic instability and the risk of carcinogenesis. However, the underlying mechanism is still not clear. A randomForest analysis of the gene expression array data from 55 MDS patients (GSE4619) demonstrated a significant (p = 0.0007) correlation (Pearson r =-0.4068) between GPI-anchor biosynthesis gene expression and genomic instability, in which PIGN, a gene participating in GPI-AP biosynthesis, was ranked as the third most important in predicting risk of MDS progression. Furthermore, we observed that PIGN gene expression aberrations (increased transcriptional activity but diminished to no protein production) were associated with increased frequency of GPI-AP deficiency in leukemic cells during leukemic transformation/progression. PIGN gene expression aberrations were attributed to partial intron retentions between exons 14 and 15 resulting in frameshifts and premature termination which were confirmed by examining the RNA-seq data from a group of AML patients (phs001027.v1.p1). PIGN gene expression aberration correlated with the elevation of genomic instability marker expression that was independent of the TP53 regulatory pathway. Suppression/elimination of PIGN protein expression caused a similar pattern of genomic instability that was rescued by PIGN restoration. Finally, we found that PIGN bound to the spindle assembly checkpoint protein, MAD1, and regulated its expression during the cell cycle. In conclusion, PIGN gene is crucial in regulating mitotic integrity to maintain chromosomal stability and prevents leukemic transformation/progression.

Li D, Meng Q, Zhang H, et al.
Mitotic arrest deficient-like 1 is correlated with poor prognosis in small-cell lung cancer after surgical resection.
Tumour Biol. 2016; 37(4):4393-8 [PubMed] Related Publications
Mitotic arrest deficient-like 1 (MAD1L1) whose dysfunction is associated with chromosomal instability plays a pathogenic role in a few human cancers. However, the status of MAD1L1 expression in small-cell lung cancer (SCLC) remains unknown. Immunohistochemistry was used to determine the expression of MAD1L1 protein in 32 lymph node metastasis (LN-M) tissues and 88 primary SCLCs compared with 32 adjacent noncancerous tissues. The associations of MAD1L1 protein expression with the clinicopathologic features and clinical outcomes in patients with SCLC were analyzed. The ratio of MAD1L1 positive expression was higher in primary SCLC tissues (39.8 %) and LN-M tissues (46.9 %) compared with adjacent noncancerous tissues (9.4 %). MAD1L1 positive expression was associated with tumor-node-metastasis (TNM) stage (P = 0.003), International Association for the Study of Lung Cancer (IASLC) stage (P = 0.004), tumor size (P = 0.015), lymph node metastasis (P = 0.014), and recurrence (P < 0.001). Multivariate analysis suggested that MAD1L1 positive expression was an independent factor for overall survival (hazard ratio (HR) 2.002; 95 % confidence interval (CI) 1.065-3.763; P = 0.031) and recurrence-free survival (HR 2.263; 95 % CI 1.197-4.276; P = 0.012). To sum up, MAD1L1 positive expression may be associated with tumour progression and metastasis in SCLCs and may thus serve as a new biomarker for prognosis in these patients.

Zhong R, Chen X, Chen X, et al.
MAD1L1 Arg558His and MAD2L1 Leu84Met interaction with smoking increase the risk of colorectal cancer.
Sci Rep. 2015; 5:12202 [PubMed] Free Access to Full Article Related Publications
The spindle assembly checkpoint (SAC) has been established as an important mechanism of driving aneuploidy, which occurs at a high frequency in the colorectal tumorigenesis. Two important components of SAC are MAD1L1 and MAD2L1, which function together in an interactive manner to initiate the checkpoint signal. We hypothesize that genetic variants in the binding domains of MAD1L1 and MAD2L1 may modulate protein structures and eventually contribute to CRC susceptibility. A case-control study including 710 CRC cases and 735 controls was performed to examine MAD1L1 Arg558His and MAD2L1 Leu84Met's conferring susceptibility to CRC. Cytokinesis-block micronucleus cytome assays were applied to assess the effect of two functional variants on chromosomal instability (CIN). Significant associations with CRC risk were observed for MAD1L1 Arg558His (OR = 1.38,95% CI: 1.09-1.75) and MAD2L1 Leu84Met in a dominant model (OR = 1.48,95% CI: 1.09-2.01). Moreover, significant multiplicative gene-smoking interactions were found in MAD1L1 Arg558His (P = 0.019) and MAD2L184 Leu/Met (P = 0.016) to enhance CRC risk. Additionally, the frequencies of lymphocytic micro-nucleated binucleated cells for MAD1L1 Arg558His polymorphism were significantly different in the exposed group (P = 0.013), but not in the control group. The study emphasized that MAD1L1 Arg558His and MAD2L1 Leu84Met can significantly interact with smoking to enhance CRC risk, and the genetic effects of MAD1L1Arg558His on CIN need to be further clarified in follow-up studies.

Cui C, Lu Z, Yang L, et al.
Genome-wide identification of differential methylation between primary and recurrent hepatocellular carcinomas.
Mol Carcinog. 2016; 55(7):1163-74 [PubMed] Related Publications
A biomarker capable of clinically predicting hepatocellular carcinoma (HCC) recurrence has not previously been established. Here genome-wide differential methylation between primary and recurrent HCC cell lines (Hep-11 and Hep-12) from the same patient was characterized. The HCC samples from two independent cohorts, complete with follow-up data, were used to validate the feasibility of the selected methylation biomarkers in predicting HCC prognosis. A methylation array assay identified 30 candidate genes or intergenic-fragments with an absolute methylation fold-change >2.0 between these cell lines; 22 candidates were hypomethylated in Hep-12 cells relative to Hep-11 cells. Bisulfite sequencing confirmed these results. Most importantly, classification of tumors by LINE-2 methylation level was significantly associated with HCC recurrence in both cohorts (P < 0.02). Similarly, MAD1L1 and LINC00682 methylation levels also correlated with HCC recurrence. Survival analysis showed that a combined baseline LINE-2, MAD1L1, and LINC00682 methylation signature was significantly associated with short recurrence-free survival in patients from both cohorts. A synergic effect was observed between these markers on both recurrence-free survival (P < 0.010) and overall survival (P < 0.040). In conclusion, low levels of LINE-2, MAD1L1, and LINC00682 methylation were associated with recurrence and decreased overall survival in HCC patients. © 2015 Wiley Periodicals, Inc.

Feng J, Chen X, Wang Y, et al.
Myricetin inhibits proliferation and induces apoptosis and cell cycle arrest in gastric cancer cells.
Mol Cell Biochem. 2015; 408(1-2):163-70 [PubMed] Related Publications
Myricetin is a flavonoid that is abundant in fruits and vegetables and has protective effects against cancer and diabetes. However, the mechanism of action of myricetin against gastric cancer (GC) is not fully understood. We researched myricetin on the proliferation, apoptosis, and cell cycle in GC HGC-27 and SGC7901 cells, to explore the underlying mechanism of action. Cell Counting Kit (CCK)-8 assay, Western blotting, cell cycle analysis, and apoptosis assay were used to evaluate the effects of myricetin on cell proliferation, apoptosis, and the cell cycle. To analyze the binding properties of ribosomal S6 kinase 2 (RSK2) with myricetin, surface plasmon resonance (SPR) analysis was performed. CCK8 assay showed that myricetin inhibited GC cell proliferation. Flow cytometry analysis showed that myricetin induces apoptosis and cell cycle arrest in GC cells. Western blotting indicated that myricetin influenced apoptosis and cell cycle arrest of GC cells by regulating related proteins. SPR analysis showed strong binding affinity of RSK2 and myricetin. Myricetin bound to RSK2, leading to increased expression of Mad1, and contributed to inhibition of HGC-27 and SGC7901 cell proliferation. Our results suggest the therapeutic potential of myricetin in GC.

Dasgupta P, Sengupta SB
Role of diallyl disulfide-mediated cleavage of c-Myc and Sp-1 in the regulation of telomerase activity in human lymphoma cell line U937.
Nutrition. 2015 Jul-Aug; 31(7-8):1031-7 [PubMed] Related Publications
OBJECTIVE: Garlic (Allium sativum) has been considered a wonder herb for years with a reputation of disease prevention. Telomerase, a ribonucleoprotein enzyme responsible for telomere integrity, is strongly up-regulated in different types of cancers. The aim of this study was to reveal the role of diallyl disulfide (DADS), an organosulfur component of garlic, on telomerase activity in human lymphoma with an emphasis on key transcription factors c-Myc and Sp-1.
METHODS: Human lymphoma cell line U937 was used as model cell line. Telomerase activity was measured by telomerase repeat amplification protocol assay, levels of related proteins and mRNAs were measured by Western blot and reverse transcriptase polymerase chain reaction, respectively. Moreover, in vitro binding assay was performed using radiolabeled double-stranded DNA having specific sequences to detect involvement of transcription factors in DADS-dependent modulation of telomerase activity.
RESULTS: The present study demonstrated DADS-mediated decrease in telomerase activity in U937 cells with concomitant transcriptional down-regulation of human telomerase reverse transcriptase (hTERT) that is caused by reduced binding of c-Myc and Sp-1 to their respective binding sites on hTERT promoter. Lowering of DNA-binding activity of c-Myc and Sp-1 due to DADS treatment is caused by the deactivation of these transcription factors due to cleavage. Additionally, Mad1-the repressor protein of hTERT expression-is also overexpressed in DADS-treated U937 cells.
CONCLUSIONS: These findings strongly suggest that DADS down-regulate telomerase activity through c-Myc-, Sp-1-, and Mad1-dependent transcriptional down-regulation of hTERT.

Karsli-Ceppioglu S, Ngollo M, Adjakly M, et al.
Genome-wide DNA methylation modified by soy phytoestrogens: role for epigenetic therapeutics in prostate cancer?
OMICS. 2015; 19(4):209-19 [PubMed] Related Publications
In prostate cancer, DNA methylation is significantly associated with tumor initiation, progression, and metastasis. Previous studies have suggested that soy phytoestrogens might regulate DNA methylation at individual candidate gene loci and that they play a crucial role as potential therapeutic agents for prostate cancer. The purpose of our study was to examine the modulation effects of phytoestrogens on a genome-wide scale in regards to DNA methylation in prostate cancer. Prostate cancer cell lines DU-145 and LNCaP were treated with 40 μM of genistein and 110 μM of daidzein. DNMT inhibitor 5-azacytidine (2 μM) and the methylating agent budesonide (2 μM) were used to compare their demethylation/methylation effects with phytoestrogens. The regulatory effects of phytoestrogens on DNA methylation were analyzed by using a methyl-DNA immunoprecipitation method coupled with Human DNA Methylation Microarrays (MeDIP-chip). We observed that the methylation profiles of 58 genes were altered by genistein and daidzein treatments in DU-145 and LNCaP prostate cancer cells. In addition, the methylation frequencies of the MAD1L1, TRAF7, KDM4B, and hTERT genes were remarkably modified by genistein treatment. Our results suggest that the modulation effects of phytoestrogens on DNA methylation essentially lead to inhibition of cell growth and induction of apoptosis. Genome-wide methylation profiling reported here suggests that epigenetic regulation mechanisms and, by extension, epigenetics-driven novel therapeutic candidates warrant further consideration in future "omics" studies of prostate cancer.

Elzinga-Tinke JE, Dohle GR, Looijenga LH
Etiology and early pathogenesis of malignant testicular germ cell tumors: towards possibilities for preinvasive diagnosis.
Asian J Androl. 2015 May-Jun; 17(3):381-93 [PubMed] Free Access to Full Article Related Publications
Malignant testicular germ cell tumors (TGCT) are the most frequent cancers in Caucasian males (20-40 years) with an 70% increasing incidence the last 20 years, probably due to combined action of (epi)genetic and (micro)environmental factors. It is expected that TGCT have carcinoma in situ(CIS) as their common precursor, originating from an embryonic germ cell blocked in its maturation process. The overall cure rate of TGCT is more than 90%, however, men surviving TGCT can present long-term side effects of systemic cancer treatment. In contrast, men diagnosed and treated for CIS only continue to live without these long-term side effects. Therefore, early detection of CIS has great health benefits, which will require an informative screening method. This review described the etiology and early pathogenesis of TGCT, as well as the possibilities of early detection and future potential of screening men at risk for TGCT. For screening, a well-defined risk profile based on both genetic and environmental risk factors is needed. Since 2009, several genome wide association studies (GWAS) have been published, reporting on single-nucleotide polymorphisms (SNPs) with significant associations in or near the genes KITLG, SPRY4, BAK1, DMRT1, TERT, ATF7IP, HPGDS, MAD1L1, RFWD3, TEX14, and PPM1E, likely to be related to TGCT development. Prenatal, perinatal, and postnatal environmental factors also influence the onset of CIS. A noninvasive early detection method for CIS would be highly beneficial in a clinical setting, for which specific miRNA detection in semen seems to be very promising. Further research is needed to develop a well-defined TGCT risk profile, based on gene-environment interactions, combined with noninvasive detection method for CIS.

Mehta J, Asthana S, Mandal CC, Saxena S
A molecular analysis provides novel insights into androgen receptor signalling in breast cancer.
PLoS One. 2015; 10(3):e0120622 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Androgen Receptor (AR) is an essential transcription factor for the development of secondary sex characteristics, spermatogenesis and carcinogenesis. Recently AR has been implicated in the development and progression of breast and prostate cancers. Although some of the functions of the AR are known but the mechanistic details of these divergent processes are still not clear. Therefore understanding the regulatory mechanisms of the functioning of the AR in ER-/AR+ breast cancer will provide many novel targets for the purpose of therapeutic intervention.
METHODS/RESULTS: Using bioinformatics tools, we have identified 75 AR targets having prominent roles in cell cycle, apoptosis and metabolism. Herein, we validated 10 genes as AR targets by studying the regulation of these genes in MDA-MB-453 cell line on stimulation by androgens like 5α-dihydrotestosterone (DHT), using RT-qPCR and ChIP assay. It was observed that all the identified genes involved in cell cycle except MAD1L1 were found to be up regulated whereas expression of apoptosis related genes was decreased in response to DHT treatment. We performed an exhaustive, rigid-body docking between individual ARE and DNA binding domain (DBD) of the AR protein and it was found that novel residues K567, K588, K591 and R592 are involved in the process of DNA binding. To verify these specific DNA-protein interactions electrostatic energy term calculations for each residue was determined using the linearized Poisson-Boltzmann equation. Our experimental data showed that treatment of breast cancer cells with DHT promotes cell proliferation and decreases apoptosis. It was observed that bicalutamide treatment was able to reverse the effect of DHT.
CONCLUSION: Taken together, our results provide new insights into the mechanism by which AR promotes breast cancer progression. Moreover our work proposes to use bicalutamide along with taxanes as novel therapy for the treatment of TNBCs, which are positive for downstream AR signalling.

Farhana L, Dawson MI, Fontana JA
Down regulation of miR-202 modulates Mxd1 and Sin3A repressor complexes to induce apoptosis of pancreatic cancer cells.
Cancer Biol Ther. 2015; 16(1):115-24 [PubMed] Free Access to Full Article Related Publications
Aberrant regulation of microRNA expression in pancreatic cancers has been shown to play an important role in its inherent poor prognosis and malignant potential. MicroRNAs have also been shown to inhibit translation of genes by targeting the 3'-untranslated region (3-UTR) of mRNAs resulting in the inhibition of translation and often destruction of the mRNA. In the present study we investigated the role of the microRNA miR-202 in the apoptotic pathways of pancreatic cancer cells. The adamantyl-related molecule, 3-Cl-AHPC down-regulated expression of miR-202 and miR-578 resulting in the increased expression of mRNA and protein expression of their target genes, Max dimerization protein 1 (Mxd1/Mad1) and the Sin3A associated protein 18 (SAP18). Overexpression of pre-miR-202 led to diminished levels of Mxd1 and blocked the 3-Cl-AHPC-mediated increase in Mxd1 mRNA expression. The addition of the microRNA inhibitor 2'-O-methylated miR-202 enhanced the 3-Cl-AHPC-mediated increase of Mxd1 mRNA levels as well as 3-CI-AHPC-mediated apoptosis. We found increased Mxd1 bound to the Sin3A repressor protein complex through its increased binding with HDAC-2 and subsequently enhanced transcriptional repression in cells as evidenced by increased HDAC activity. Mxd1 also repressed human telomerase reverse transcriptase (hTERT) mRNA expression through its increased binding to the hTERT promoter site and resulted in decreased telomerase activity in cells. Our results demonstrate that down regulation of miR-202 increased the expression of its target Mxd1, followed by Mxd1 recruitment to the Sin3A repressor complex and through its dimerization with Max, and increased repression of Myc-Max target proteins.

Avram S, Milac A, Mernea M, et al.
Structure-biological function relationship extended to mitotic arrest-deficient 2-like protein Mad2 native and mutants-new opportunity for genetic disorder control.
Int J Mol Sci. 2014; 15(11):21381-400 [PubMed] Free Access to Full Article Related Publications
Overexpression of mitotic arrest-deficient proteins Mad1 and Mad2, two components of spindle assembly checkpoint, is a risk factor for chromosomal instability (CIN) and a trigger of many genetic disorders. Mad2 transition from inactive open (O-Mad2) to active closed (C-Mad2) conformations or Mad2 binding to specific partners (cell-division cycle protein 20 (Cdc20) or Mad1) were targets of previous pharmacogenomics studies. Here, Mad2 binding to Cdc20 and the interconversion rate from open to closed Mad2 were predicted and the molecular features with a critical contribution to these processes were determined by extending the quantitative structure-activity relationship (QSAR) method to large-size proteins such as Mad2. QSAR models were built based on available published data on 23 Mad2 mutants inducing CIN-related functional changes. The most relevant descriptors identified for predicting Mad2 native and mutants action mechanism and their involvement in genetic disorders are the steric (van der Waals area and solvent accessible area and their subdivided) and energetic van der Waals energy descriptors. The reliability of our QSAR models is indicated by significant values of statistical coefficients: Cross-validated correlation q2 (0.53-0.65) and fitted correlation r2 (0.82-0.90). Moreover, based on established QSAR equations, we rationally design and analyze nine de novo Mad2 mutants as possible promoters of CIN.

Zang W, Wang T, Wang Y, et al.
Myricetin exerts anti-proliferative, anti-invasive, and pro-apoptotic effects on esophageal carcinoma EC9706 and KYSE30 cells via RSK2.
Tumour Biol. 2014; 35(12):12583-92 [PubMed] Related Publications
Myricetin, a common dietary flavonoid, is widely distributed in fruits and vegetables and is used as a health food supplement based on its anti-tumor properties. However, the effect and mechanisms of myricetin in esophageal carcinoma are not fully understood. Here, we demonstrated the effect of myricetin on the proliferation, apoptosis, and invasion of the esophageal carcinoma cell lines EC9706 and KYSE30 and explored the underlying mechanism and target protein(s) of myricetin. CCK-8 assay, transwell invasion assay, wound-healing assay, cell cycle analysis, and apoptosis assay were used to evaluate the effects of myricetin on cell proliferation, invasion, and apoptosis. Nude mouse tumor xenograft model was built to understand the interaction between myricetin and NTD RSK2. Pull-down assay was used to verify molecular mechanism. Myricetin inhibited proliferation and invasion and induced apoptosis of EC9706 and KYSE30 cells. Moreover, myricetin was shown to bind RSK2 through the NH2-terminal kinase domain. Finally, myricetin inhibited EC9706 and KYSE30 cell proliferation through Mad1 and induced cell apoptosis via Bad. Myricetin inhibits the proliferation and invasion and induces apoptosis in EC9706 and KYSE30 cells via RSK2. Myricetin exerts anti-proliferative, anti-invasive, and pro-apoptotic effects on esophageal carcinoma EC9706 and KYSE30 cells via RSK2. Our results provide novel insight into myricetin as a potential agent for the prevention and treatment of esophageal carcinoma.

Matson DR, Stukenberg PT
CENP-I and Aurora B act as a molecular switch that ties RZZ/Mad1 recruitment to kinetochore attachment status.
J Cell Biol. 2014; 205(4):541-54 [PubMed] Free Access to Full Article Related Publications
The RZZ (Rod, ZW10, and Zwilch) complex and Mad1 proteins tightly associate with kinetochores to generate the spindle checkpoint signal, but they are released when a kinetochore forms mature microtubule attachments. Here we demonstrate that the centromere protein CENP-I is required to generate a stable association of RZZ and Mad1 with kinetochores. CENP-I also inhibits their removal by dynein stripping. This regulation of Mad1 and RZZ dissociation functions independently of Aurora B, which regulates their association. We show that the microtubule status of each kinetochore independently dictates the recruitment of Aurora B kinase, kinase activity on a kinetochore substrate, and loading of spindle checkpoint proteins. This dynamic regulation of Mad1 association by Aurora B is only uncovered when CENP-I is depleted, consistent with our finding that CENP-I inhibits the dissociation of Mad1. We conclude that the dual activities of Aurora B and CENP-I generate a molecular switch that maintains a robust spindle checkpoint signal at prometaphase kinetochores until they attain mature attachments to microtubules.

Hill MJ, Donocik JG, Nuamah RA, et al.
Transcriptional consequences of schizophrenia candidate miR-137 manipulation in human neural progenitor cells.
Schizophr Res. 2014; 153(1-3):225-30 [PubMed] Free Access to Full Article Related Publications
MIR137, transcribed as the microRNA miR-137, is one of the leading candidate schizophrenia susceptibility genes to arise from large genome-wide association studies (GWAS) of the disorder. Recent data suggest that miR-137 modulates the expression of other schizophrenia susceptibility genes. Although bioinformatic resources are available with which to predict genes regulated by individual microRNA, there has been a lack of empirical data on genome-wide gene expression changes following miR-137 manipulation. We have therefore performed a genome-wide assessment of transcriptional changes in a human neural progenitor cell line after miR-137 over-expression and inhibition in order to elucidate molecular pathways by which genetic perturbation of miR-137 could promote susceptibility to schizophrenia. Bioinformatically-predicted miR-137 targets showed a small but highly significant down-regulation following miR-137 over-expression. Genes that were significantly down-regulated in association with miR-137 over-expression were enriched for involvement in neuronal differentiation. Differentially expressed genes that were confirmed by qPCR included others at genome-wide significant risk loci for schizophrenia (MAD1L1 and DPYD) and BDNF. These data point to molecular pathways through which genetic variation at the MIR137 locus could confer risk for schizophrenia.

Sze KM, Chu GK, Mak QH, et al.
Proline-rich acidic protein 1 (PRAP1) is a novel interacting partner of MAD1 and has a suppressive role in mitotic checkpoint signalling in hepatocellular carcinoma.
J Pathol. 2014; 233(1):51-60 [PubMed] Related Publications
Loss of mitotic checkpoint of cells contributes to chromosomal instability and leads to carcinogenesis. Mitotic arrest deficient 1 (MAD1) is a key component in mitotic checkpoint signalling. In this study, we identified a novel MAD1 interacting partner, proline-rich acidic protein 1 (PRAP1), using yeast-two hybrid screening, and investigated its role in mitotic checkpoint signalling in hepatocellular carcinoma (HCC). We demonstrated the physical interaction of PRAP1 with MAD1 and of PRAP1 with MAD1 isoform MAD1β, using a co-immunoprecipitation assay. Moreover, stable expression of PRAP1 in mitotic checkpoint-competent HCC cells, BEL-7402 and SMMC-7721, induced impairment of the mitotic checkpoint (p < 0.01), formation of chromosome bridges (p < 0.01) and aberrant chromosome numbers (p < 0.001). Interestingly, ectopic expression PRAP1 in HCC cells led to significant under-expression of MAD1. In human HCC tumours, 40.4% (23/57) of HCCs showed under-expression of PRAP1 protein as compared with their corresponding non-tumorous livers; up-regulation of MAD1 protein was significantly associated with down-regulation of PRAP1 (p = 0.030). Our data revealed that PRAP1 is a protein interacting partner of MAD1 and that PRAP1 is able to down-regulate MAD1 and suppress mitotic checkpoint signalling in HCC.

Sun Q, Zhang X, Liu T, et al.
Increased expression of mitotic arrest deficient-like 1 (MAD1L1) is associated with poor prognosis and insensitive to Taxol treatment in breast cancer.
Breast Cancer Res Treat. 2013; 140(2):323-30 [PubMed] Related Publications
Aneuploidy is a characteristic of human cancers, and recent studies have suggested that defects of mitotic checkpoints play a role in carcinogenesis. Mitotic Arrest Deficient-Like 1 (MAD1L1), whose altered expression is associated with chromosomal instability, is a checkpoint gene. We examined MAD1L1 protein expression from 461 breast cancer tissues and patients' normal breast tissues by tissue microarray to study the correlation between the MAD1L1 expression and the clinicopathological features. MAD1L1 protein expression was significantly increased in the nuclei of cancer cells (28.4 %) compared with that in normal mammary cells (2.2 %), and was correlated with Her-2 status, cancer subtypes, p53 status, and age. High level of MAD1L1 expression in nuclei was associated with worse OS (p = 0.018). Furthermore, patients with high level of MAD1L1 expression (in nuclei) and undergone Taxol chemotherapy treatment have shorter overall survival than ones without Taxol treatment in this study (p = 0.026). In conclusion, our data demonstrated a significant correlation between nuclear expression of MAD1L1 protein and adverse prognosis in breast cancer. MAD1L1 might be used as a prognostic biomarker for breast cancer and expression of MAD1L1 in nuclei is also a predict biomarker of contraindication to pacilitaxel treatment in breast cancer.

Chung CC, Kanetsky PA, Wang Z, et al.
Meta-analysis identifies four new loci associated with testicular germ cell tumor.
Nat Genet. 2013; 45(6):680-5 [PubMed] Free Access to Full Article Related Publications
We conducted a meta-analysis to identify new susceptibility loci for testicular germ cell tumor (TGCT). In the discovery phase, we analyzed 931 affected individuals and 1,975 controls from 3 genome-wide association studies (GWAS). We conducted replication in 6 independent sample sets comprising 3,211 affected individuals and 7,591 controls. In the combined analysis, risk of TGCT was significantly associated with markers at four previously unreported loci: 4q22.2 in HPGDS (per-allele odds ratio (OR) = 1.19, 95% confidence interval (CI) = 1.12-1.26; P = 1.11 × 10(-8)), 7p22.3 in MAD1L1 (OR = 1.21, 95% CI = 1.14-1.29; P = 5.59 × 10(-9)), 16q22.3 in RFWD3 (OR = 1.26, 95% CI = 1.18-1.34; P = 5.15 × 10(-12)) and 17q22 (rs9905704: OR = 1.27, 95% CI = 1.18-1.33; P = 4.32 × 10(-13) and rs7221274: OR = 1.20, 95% CI = 1.12-1.28; P = 4.04 × 10(-9)), a locus that includes TEX14, RAD51C and PPM1E. These new TGCT susceptibility loci contain biologically plausible genes encoding proteins important for male germ cell development, chromosomal segregation and the DNA damage response.

Ni M, Chen Y, Fei T, et al.
Amplitude modulation of androgen signaling by c-MYC.
Genes Dev. 2013; 27(7):734-48 [PubMed] Free Access to Full Article Related Publications
Androgen-stimulated growth of the molecular apocrine breast cancer subtype is mediated by an androgen receptor (AR)-regulated transcriptional program. However, the molecular details of this AR-centered regulatory network and the roles of other transcription factors that cooperate with AR in the network remain elusive. Here we report a positive feed-forward loop that enhances breast cancer growth involving AR, AR coregulators, and downstream target genes. In the absence of an androgen signal, TCF7L2 interacts with FOXA1 at AR-binding sites and represses the basal expression of AR target genes, including MYC. Direct AR regulation of MYC cooperates with AR-mediated activation of HER2/HER3 signaling. HER2/HER3 signaling increases the transcriptional activity of MYC through phosphorylation of MAD1, leading to increased levels of MYC/MAX heterodimers. MYC in turn reinforces the transcriptional activation of androgen-responsive genes. These results reveal a novel regulatory network in molecular apocrine breast cancers regulated by androgen and AR in which MYC plays a central role as both a key target and a cooperating transcription factor to drive oncogenic growth.

Cho K, Shin HW, Kim YI, et al.
Mad1 mediates hypoxia-induced doxorubicin resistance in colon cancer cells by inhibiting mitochondrial function.
Free Radic Biol Med. 2013; 60:201-10 [PubMed] Related Publications
Cancer cells acquire resistance to chemotherapy under hypoxia, which is mainly driven by the transcription factor HIF (hypoxia-inducible factor). Yet, it is uncertain which molecules mediate such resistance. While profiling gene expression in colon cancer cells, we found that Mad1 (MAX dimerization protein 1) is substantially induced during hypoxia. The hypoxic induction of Mad1 was confirmed by RT-PCR and Western blotting. The Mad1 expression was attenuated by HIF-1α small interfering (si) RNAs, but less so by HIF-2α siRNAs. Moreover, luciferase reporter and chromatin immunoprecipitation analyses revealed that HIF-1 transactivates the MAD1 gene by directly targeting a putative hypoxia-response element in the MAD1 promoter. We next investigated if Mad1 is responsible for the hypoxia-induced drug resistance. We treated colon cancer cells with doxorubicin and found that the cells under hypoxia survived more than those under normoxia. The doxorubicin resistance was not induced in Mad1-knocked-down cells even under hypoxia. Mad1 knockdown reactivated the caspase-9/caspase-3/PARP apoptotic pathway under hypoxia. Moreover, doxorubicin-induced production of reactive oxygen species was significantly reduced under hypoxia, which was reversed by Mad1 knockdown. During hypoxia, mitochondria became bigger in size and less active in respiration, both of which were attenuated by Mad1 knockdown. These data indicate that hypoxia-induced Mad1 lowers doxorubicin-stimulated generation of reactive oxygen species through mitochondrial inhibition and subsequently contributes to tumor resistance to doxorubicin. Therefore, Mad1 could be a potential target for sensitizing cancer cells to redox-cycling drugs such as doxorubicin.

Reuss DE, Mucha J, Hagenlocher C, et al.
Sensitivity of malignant peripheral nerve sheath tumor cells to TRAIL is augmented by loss of NF1 through modulation of MYC/MAD and is potentiated by curcumin through induction of ROS.
PLoS One. 2013; 8(2):e57152 [PubMed] Free Access to Full Article Related Publications
Malignant peripheral nerve sheath tumor (MPNST) is a rare aggressive form of sarcoma often associated with the tumor syndrome neurofibromatosis type 1 (NF1). We investigated the effects of tumor necrosis factor-related apoptosis inducing ligand (TRAIL) on NF1 associated MPNST and determinants of TRAIL sensitivity. MPNST cell lines with complete neurofibromin deficiency were sensitive to apoptotic cell death induced by TRAIL whereas MPNST cells with retained neurofibromin expression or normal human Schwann cells were resistant. Increased sensitivity to TRAIL was associated with overexpression of death receptors, especially DR5. Re-expression of the GAP related domain of neurofibromin (NF1-GRD) suppressed DR5 expression and decreased sensitivity to TRAIL. We show that death receptor expression and TRAIL sensitivity critically depend on c-MYC and that c-MYC amounts are increased by MEK/ERK and PI3K/AKT signalling pathways which are suppressed by neurofibromin. Furthermore PI3K/AKT signalling strongly suppresses the MYC-antagonist MAD1 which significantly contributes to TRAIL sensitivity. Re-expression of the NF1-GRD decreased c-MYC and increased MAD1 amounts suggesting that neurofibromin influences TRAIL sensitivity at least in part by modulating the MYC/MAX/MAD network. The phytochemical curcumin further increased the sensitivity of neurofibromin deficient MPNST cells to TRAIL. This was presumably mediated by ROS, as it correlated with increased ROS production, was blocked by N-acetylcysteine and mimicked by exogenous ROS.

Sandhu SK, Volinia S, Costinean S, et al.
miR-155 targets histone deacetylase 4 (HDAC4) and impairs transcriptional activity of B-cell lymphoma 6 (BCL6) in the Eμ-miR-155 transgenic mouse model.
Proc Natl Acad Sci U S A. 2012; 109(49):20047-52 [PubMed] Free Access to Full Article Related Publications
Multiple studies have established that microRNAs (miRNAs) are involved in the initiation and progression of cancer. Notably, miR-155 is one of the most overexpressed miRNAs in several solid and hematological malignancies. Ectopic miR-155 expression in mice B cells (Eμ-miR-155 transgenic mice) has been shown to induce pre-B-cell proliferation followed by high-grade lymphoma/leukemia. Loss of miR-155 in mice resulted in impaired immunity due to defective T-cell-mediated immune response. Here we provide a mechanistic insight into miR-155-induced leukemogenesis in the Eμ-miR-155 mouse model through genome-wide transcriptome analysis of naïve B cells and target studies. We found that a key transcriptional repressor and proto-oncogene, Bcl6 is significantly down-regulated in Eμ-miR-155 mice. The reduction of Bcl6 subsequently leads to de-repression of some of the known Bcl6 targets like inhibitor of differentiation (Id2), interleukin-6 (IL6), cMyc, Cyclin D1, and Mip1α/ccl3, all of which promote cell survival and proliferation. We show that Bcl6 is indirectly regulated by miR-155 through Mxd1/Mad1 up-regulation. Interestingly, we found that miR-155 directly targets HDAC4, a corepressor partner of BCL6. Furthermore, ectopic expression of HDAC4 in human-activated B-cell-type diffuse large B-cell lymphoma (DLBCL) cells results in reduced miR-155-induced proliferation, clonogenic potential, and increased apoptosis. Meta-analysis of the diffuse large B-cell lymphoma patient microarray data showed that miR-155 expression is inversely correlated with Bcl6 and Hdac4. Hence this study provides a better understanding of how miR-155 causes disruption of the BCL6 transcriptional machinery that leads to up-regulation of the survival and proliferation genes in miR-155-induced leukemias.

Bie L, Zhao G, Cheng P, et al.
The accuracy of survival time prediction for patients with glioma is improved by measuring mitotic spindle checkpoint gene expression.
PLoS One. 2011; 6(10):e25631 [PubMed] Free Access to Full Article Related Publications
Identification of gene expression changes that improve prediction of survival time across all glioma grades would be clinically useful. Four Affymetrix GeneChip datasets from the literature, containing data from 771 glioma samples representing all WHO grades and eight normal brain samples, were used in an ANOVA model to screen for transcript changes that correlated with grade. Observations were confirmed and extended using qPCR assays on RNA derived from 38 additional glioma samples and eight normal samples for which survival data were available. RNA levels of eight major mitotic spindle assembly checkpoint (SAC) genes (BUB1, BUB1B, BUB3, CENPE, MAD1L1, MAD2L1, CDC20, TTK) significantly correlated with glioma grade and six also significantly correlated with survival time. In particular, the level of BUB1B expression was highly correlated with survival time (p<0.0001), and significantly outperformed all other measured parameters, including two standards; WHO grade and MIB-1 (Ki-67) labeling index. Measurement of the expression levels of a small set of SAC genes may complement histological grade and other clinical parameters for predicting survival time.

Velpula KK, Dasari VR, Tsung AJ, et al.
Transcriptional repression of Mad-Max complex by human umbilical cord blood stem cells downregulates extracellular signal-regulated kinase in glioblastoma.
Stem Cells Dev. 2012; 21(10):1779-93 [PubMed] Free Access to Full Article Related Publications
Previously, we have shown that human umbilical cord blood stem cell (hUCBSC) treatment downregulate cyclin D1 in glioma cells. To study the cell cycle progression and investigate the upstream molecules regulating cyclin D1 expression, we analyzed the involvement of extracellular signal-regulated kinase (ERK) and its functionality after treatment with hUCBSC. We observed downregulation of pERK after hUCBSC treatment at both transcriptional and translational levels. Increased translocation of ERK from cytoplasm to the nucleus was observed in glioma cells, whereas hUCBSC cocultures with glioma cells showed suppressed nuclear translocation. This finding suggests that hUCBSC regulates ERK by suppressing its phosphorylation at phospho-Thr(202)/Tyr(204) retarding pERK nuclear translocation. ERK promoter analysis has shown c-Myc binding sites, indicative of possible transcriptional interactions that regulate cyclin D1 and ERK expression levels. Treatment of U251 and 5310 glioma cells with U0126, a MEK/ERK inhibitor receded pERK and c-Myc levels. In another experiment, U251 and 5310 cells treated with 10074-G5, c-Myc/Max inhibitor displayed reduction in pERK and c-Myc levels suggestive of a positive feedback loop between ERK/c-Myc/Max molecules. In the present study, we show that glioma cells exhibit abundant c-Myc expression and increased c-Myc/Max activity. In contrast, the glioma cells cocultured with hUCBSC demonstrated high Mad1 expression that competitively binds to Max to repress the c-Myc/Max mediated gene transcription. Our studies thus elucidate the potential role of hUCBSC in controlling glioma cell cycle progression and invasion by limiting Max binding to c-Myc, thus regulating the expression of glioma cell cycle and invasion associated molecules such as ERK, integrins via increased levels of Mad1 expression.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. MAD1L1, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 31 August, 2019     Cancer Genetics Web, Established 1999