KLF4

Gene Summary

Gene:KLF4; Kruppel like factor 4
Aliases: EZF, GKLF
Location:9q31.2
Summary:This gene encodes a protein that belongs to the Kruppel family of transcription factors. The encoded zinc finger protein is required for normal development of the barrier function of skin. The encoded protein is thought to control the G1-to-S transition of the cell cycle following DNA damage by mediating the tumor suppressor gene p53. Mice lacking this gene have a normal appearance but lose weight rapidly, and die shortly after birth due to fluid evaporation resulting from compromised epidermal barrier function. Alternative splicing results in multiple transcript variants encoding different isoforms. [provided by RefSeq, Sep 2015]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:Krueppel-like factor 4
Source:NCBIAccessed: 31 August, 2019

Ontology:

What does this gene/protein do?
Show (47)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 31 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 31 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (7)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: KLF4 (cancer-related)

Xie Y, Zhao J, Liang Y, et al.
MicroRNA-10b controls the metastasis and proliferation of colorectal cancer cells by regulating Krüppel-like factor 4.
Artif Cells Nanomed Biotechnol. 2019; 47(1):1722-1729 [PubMed] Related Publications
Mir-10b has been reported as a key regulator of metastasis in many human tumours. Moreover, it has also been regarded as a prognostic marker and therapeutic target of colorectal cancer (CRC). Whether miR-10b could affect the metastasis and proliferation of CRC is unclear. MiR-10b expression was detected by qPCR in human CRC tissues and cell line, Luciferase activity was employed for miR-10b binding to the 3`UTR of KLF4, Genes expression were examined by western blot, and mRNA by qPCR. PI and Annexin V staining were used to evaluate the cell cycle and apoptosis. Cell proliferation was detected with MTT, and cell migration and invasion were performed with Transwell assay. We found that miR-10b expression was up-regulated in metastatic CRC tissues and cell lines. Inhibition of miR-10b prevented cancer cell metastasis and growth by inducing cell-cycle arrest and apoptosis in vitro. Moreover, we found that KLF4 was a direct target of miR-10b. MiR-10b inhibitor led to the up-regulation of E-cadherin expression and the down-regulation of cyclin D1, which were partly abrogated after silencing KLF4.

Ji M, Liu L, Hou Y, Li B
1α,25‑Dihydroxyvitamin D3 restrains stem cell‑like properties of ovarian cancer cells by enhancing vitamin D receptor and suppressing CD44.
Oncol Rep. 2019; 41(6):3393-3403 [PubMed] Related Publications
Scientific evidence linking vitamin D with various cancer types is growing, but the effects of vitamin D on ovarian cancer stem cell‑like cells (CSCs) are largely unknown. The present study aimed to examine whether vitamin D was able to restrain the stemness of ovarian cancer. A side population (SP) from malignant ovarian surface epithelial cells was identified as CSCs, in vitro and in vivo. Furthermore, 1α,25‑dihydroxyvitamin D3 [1α,25(OH)2D3] treatment inhibited the self‑renewal capacity of SP cells by decreasing the sphere formation rate and by suppressing the mRNA expression levels of cluster of differentiation CD44, NANOG, OCT4, SOX2, Krüppel‑like factor 4 and adenosine triphosphate binding cassette subfamily G member 2. Additionally, 1α,25(OH)2D3 treatment decreased the expression of Cyclin D1, whereas it increased the expression of β‑catenin and vitamin D receptor (VDR). Notably, immunofluorescence staining verified that 1α,25(OH)2D3 promoted the expression of β‑catenin in the cytoplasm. Furthermore, vitamin D3 delayed the onset of tumor formation derived from injection of ovarian CSCs to nude mice, by reducing CD44 and enhancing β‑catenin expressions in vivo. In conclusion, 1α,25(OH)2D3 restrains the stem cell‑like properties of ovarian cancer cells by enhancing the expression of VDR, by promoting the expression of β‑catenin in the cytoplasm, and by suppressing the expression of CD44. These findings provide a novel insight into the functions of vitamin D in diminishing the stemness of cancer CSCs.

Muraki Y, Hasegawa T, Takeda D, et al.
Induced Pluripotent Stem Cell-related Genes Correlate With Poor Prognoses of Oral Squamous Cell Carcinoma.
Anticancer Res. 2019; 39(3):1205-1216 [PubMed] Related Publications
BACKGROUND/AIM: We recently investigated the contribution of the iPS-related genes SOX2, OCT4, and Nanog to de-differentiation by assaying for their mRNA levels. Given that mRNA expression does not always correlate with the protein levels, the aim of this study was to retrospectively determine the expression of these four iPS-related factors in human OSCC specimens by immunohistochemistry and examine their association with patient prognosis.
MATERIALS AND METHODS: iPS cell-related gene expression in 89 OSCC patients by tissue microarray, and its correlation with clinicopathological factors, differentiation, metastasis, and poor prognoses were investigated.
RESULTS: No evidence of statistically significant relationships was found between the expression of iPS cell-related genes and clinicopathological parameters. However, our data indicated that KLF4 expression was associated with survival, and poor tumor differentiation. In addition, high expression of KLF4 was an independent poor prognostic factor (p=0.004) for OSCC patients.
CONCLUSION: In preoperative biopsies, higher KLF4 and poor differentiation may be clinically effective predictors for the prognosis of oral cancer.

Zhang N, Su P, Li X, et al.
Downregulated Krüppel‑like factor 4 expression is associated with the aggressiveness of prostate cancer.
Oncol Rep. 2019; 41(3):1789-1796 [PubMed] Related Publications
Krüppel‑like factor 4 (KLF4) is a transcription factor and putative tumor suppressor. However, little is known about its role in the progression of prostate cancer. The aim of the present study was to examine the expression and potential role of KLF4 in prostate cancer. KLF4 and E‑cadherin expression in 60 prostate cancer tissues and 60 benign prostatic hyperplasia tissues was characterized by immunohistochemistry. The levels of KLF4 expression in prostate cancer cells were determined by reverse transcription‑quantitative polymerase chain reaction and western blot analysis. LNCaP cells were transduced with lentivirus to induce KLF4 overexpression. The effects of KLF4 overexpression on proliferation, cell cycle and migration were determined by MTT, flow cytometry, wound healing and Transwell migration assays. KLF4 was identified to be primarily expressed in the cytoplasm of non‑tumor prostate tissues. The percentage of KLF4+ tissues among prostate cancer tissues (16.67%) was significantly lower compared with that of non‑tumor tissues (84.67%; P<0.05). Downregulated KLF4 expression was associated with higher stage, positive lymph node metastasis and higher Gleason scores of prostate cancer (all P<0.05). Induction of KLF4 overexpression significantly inhibited the proliferation, wound healing and migration of LNCaP cells and induced their cell cycle arrest at S phase. Furthermore, E‑cadherin expression was downregulated in prostate cancer tissues and KLF4 overexpression enhanced the levels of E‑cadherin expression in LNCaP cells. In conclusion, downregulated KLF4 expression was associated with aggressiveness of prostate cancer, and KLF4 overexpression inhibited the proliferation, wound healing and migration of prostate cancer cells by inducing cell cycle arrest and E‑cadherin expression.

Yadav SS, Kumar M, Varshney A, Yadava PK
KLF4 sensitizes the colon cancer cell HCT-15 to cisplatin by altering the expression of HMGB1 and hTERT.
Life Sci. 2019; 220:169-176 [PubMed] Related Publications
AIMS: Insensitivity of cancer cells to therapeutic drugs is the most daunting challenge in cancer treatment. The mechanism of developing chemo-resistance is only partly understood to date. In continuation of some earlier reports, we hypothesize that KLF4, a key transcription factors that also has a crucial role in maintaining the stemness in cancer cells, may offer a basis for chemo-resistance.
MAIN METHODS: Sensitivity of cells to cisplatin was analyzed by cell proliferation, colony formation, and cell growth assay. Cell cycle analysis and immunophenotyping were used to measure cell cycle arrest and level of reactive oxygen species respectively. Immunoblotting was used to analyze the change in expression hTERT and HMGB1 involved in KLF4 mediated cisplatin resistance.
KEY FINDINGS: We found that KLF4 expression sensitizes cancer cell to cisplatin cytotoxicity. Further, KLF4 promotes the cisplatin-mediated G2/M cell cycle arrest while KLF4 knocked down induces cisplatin-mediated S-phase arrest compared to control. Decreased level of reactive oxygen species (ROS) in cisplatin-treated and KLF4 knocked down HCT-15 cells compared to vector control, accounting for increased cell survival. Immuno-blotting showed that KLF4 positively regulates expression of the survival proteins hTERT and HMGB1 while in presence of cisplatin, expression of HMGB1 and hTERT is negatively regulated by KLF4.
SIGNIFICANCE: This study suggests the involvement of KLF4-HMGB1/hTERT signaling in offering the basis for chemo-resistance in colon cancer cells and KLF4 overexpression as a probable strategy for sensitizing drug-resistant cancer cells to chemotherapy. The present study opens up new avenues for cancer research and therapeutics.

Dong X, Wang F, Xue Y, et al.
MicroRNA‑9‑5p downregulates Klf4 and influences the progression of hepatocellular carcinoma via the AKT signaling pathway.
Int J Mol Med. 2019; 43(3):1417-1429 [PubMed] Free Access to Full Article Related Publications
Krüppel‑like factor 4 (Klf4) is a transcriptional factor involved in the progression of hepatocellular carcinoma (HCC). However, the underlying regulatory mechanisms associated with the Klf4 gene as a tumor suppressor in HCC remain unclear. microRNAs (miRNAs or miRs) are a series of small non‑coding RNAs that serve a vital role in regulating gene expression via their influence on protein translation and the associated degradation of mRNA. The mRNA expression levels of the miRNA, miR‑9‑5p, and Klf4 were measured using reverse transcription‑quantitative polymerase chain reaction. The protein expression levels of Klf4, protein kinase B (AKT), phosphorylated (p‑)AKT, mechanistic target of rapamycin (mTOR), p‑mTOR, B cell lymphoma‑2 (Bcl‑2) and Bcl‑2‑associated X protein (Bax) were determined by western blot analysis. Dual luciferase reporter assay was used to confirm a direct interaction between miR‑9‑5p and the 3'‑untranslated region (3'‑UTR) sequence of Klf4. Cell counting kit‑8 assay, wound healing assay, Transwell migration assay and flow cytometric analysis were performed to evaluate the proliferative, migratory and apoptotic capabilities of the HCC cells. In the present study, miR‑9‑5p was revealed to be overexpressed in HCC as a novel upstream gene of Klf4. miR‑9‑5p expression was inversely associated with Klf4 expression in clinical samples. Additionally, Kaplan‑Meier analysis revealed a markedly poor prognosis of HCC in the miR‑9‑5p high‑expression group. Bioinformatics analysis revealed that miR‑9‑5p bound directly to the 3'‑UTR of Klf4, which reduced the expression levels of Klf4. The miR‑9‑5p/Klf4 axis promoted HCC proliferation and migration, and inhibited HCC apoptosis. Furthermore, miR‑9‑5p upregulated the Bcl‑2/Bax protein ratio and activated AKT/mTOR signaling. Taken together, these data demonstrated that the miR‑9‑5p/Klf4 axis was able to promote HCC progression, which may occur via regulation of the AKT signaling pathway, highlighting a potential novel target in HCC treatment.

Ma B, Zhang L, Zou Y, et al.
Reciprocal regulation of integrin β4 and KLF4 promotes gliomagenesis through maintaining cancer stem cell traits.
J Exp Clin Cancer Res. 2019; 38(1):23 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The dismal prognosis of patients with glioma is largely attributed to cancer stem cells that display pivotal roles in tumour initiation, progression, metastasis, resistance to therapy, and relapse. Therefore, understanding how these populations of cells maintain their stem-like properties is critical in developing effective glioma therapeutics.
METHODS: RNA sequencing analysis was used to identify genes potentially involved in regulating glioma stem cells (GSCs). Integrin β4 (ITGB4) expression was validated by quantitative real-time PCR (qRT-PCR) and immunohistochemical (IHC) staining. The role of ITGB4 was investigated by flow cytometry, mammosphere formation, transwell, colony formation, and in vivo tumorigenesis assays. The reciprocal regulation between Integrin β4 and KLF4 was investigated by chromatin immunoprecipitation (ChIP), dual-luciferase reporter assay, immunoprecipitation, and in vivo ubiquitylation assays.
RESULTS: In this study, we found that ITGB4 expression was increased in GSCs and human glioma tissues. Upregulation of ITGB4 was correlated with glioma grades. Inhibition of ITGB4 in glioma cells decreased the self-renewal abilities of GSCs and suppressed the malignant behaviours of glioma cells in vitro and in vivo. Further mechanistic studies revealed that KLF4, an important transcription factor, directly binds to the promoter of ITGB4, facilitating its transcription and contributing to increased ITGB4 expression in glioma. Interestingly, this increased expression enabled ITGB4 to bind KLF4, thus attenuating its interaction with its E3 ligase, the von Hippel-Lindau (VHL) protein, which subsequently decreases KLF4 ubiquitination and leads to its accumulation.
CONCLUSIONS: Collectively, our data indicate the existence of a positive feedback loop between KLF4 and ITGB4 that promotes GSC self-renewal and gliomagenesis, suggesting that ITGB4 may be a valuable therapeutic target for glioma.

Li Z, Huang J, Shen S, et al.
SIRT6 drives epithelial-to-mesenchymal transition and metastasis in non-small cell lung cancer via snail-dependent transrepression of KLF4.
J Exp Clin Cancer Res. 2018; 37(1):323 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Epithelial-to-mesenchymal transition (EMT) contributes to the invasion and metastasis of epithelial tumors. Sirtuin 6 (SIRT6), an NAD-dependent deacetylase, is known to promote metastasis of non-small cell lung cancer (NSCLC).
METHODS: In this work, we determined the role of SIRT6 in the EMT of NSCLC cells and identified the key EMT-related genes involved in the oncogenic activity of SIRT6.
RESULTS: We report that depletion of SIRT6 inhibits transforming growth factor-β1 (TGF-β1)-induced EMT in A549 and H1299 NSCLC cells, which is rescued by ectopic expression of SIRT6. Knockdown of SIRT6 leads to a reduction in Snail protein without affecting the mRNA level. Immunoprecipitation experiments demonstrate a physical association between SIRT6 and Snail. SIRT6 deacetylates Snail and prevents its proteasomal degradation. Silencing of Snail blunts SIRT6-induced NSCLC cell migration and invasion, while overexpression of Snail restores the invasion and EMT in SIRT6-depleted NSCLC cells. SIRT6 depletion leads to an upregulation of kruppel-like factor 4 (KLF4) and reduced Snail binding to the promoter of Klf4 in NSCLC cells. Knockdown of KLF4 rescues the invasive capacity in SIRT6-depleted NSCLC cells. Conversely, co-expression of KLF4 impairs SIRT6-induced aggressive behavior. In vivo data further demonstrate that SIRT6-induced NSCLC metastasis is antagonized by overexpression of KLF4.
CONCLUSIONS: These findings provide mechanistic insights into the pro-metastatic activity of SIRT6 and highlight the role of the SIRT6/Snail/KLF4 axis in regulating EMT and invasion of NSCLC cells.

Zeng Z, Li Y, Pan Y, et al.
Cancer-derived exosomal miR-25-3p promotes pre-metastatic niche formation by inducing vascular permeability and angiogenesis.
Nat Commun. 2018; 9(1):5395 [PubMed] Free Access to Full Article Related Publications
Cancer-derived exosomes are considered a major driver of cancer-induced pre-metastatic niche formation at foreign sites, but the mechanisms remain unclear. Here, we show that miR-25-3p, a metastasis-promoting miRNA of colorectal cancer (CRC), can be transferred from CRC cells to endothelial cells via exosomes. Exosomal miR-25-3p regulates the expression of VEGFR2, ZO-1, occludin and Claudin5 in endothelial cells by targeting KLF2 and KLF4, consequently promotes vascular permeability and angiogenesis. In addition, exosomal miR-25-3p from CRC cells dramatically induces vascular leakiness and enhances CRC metastasis in liver and lung of mice. Moreover, the expression level of miR-25-3p from circulating exosomes is significantly higher in CRC patients with metastasis than those without metastasis. Our work suggests that exosomal miR-25-3p is involved in pre-metastatic niche formation and may be used as a blood-based biomarker for CRC metastasis.

Liu K, Xu SH, Chen Z, et al.
TRPM7 overexpression enhances the cancer stem cell-like and metastatic phenotypes of lung cancer through modulation of the Hsp90α/uPA/MMP2 signaling pathway.
BMC Cancer. 2018; 18(1):1167 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Waixenicin A, a bioactive extract of soft coral Sarcothelia edmondsoni, has been shown to be anti-neoplastic. However, its mechanisms of action remain unclear. Cancer stem cells (CSCs) and associated stemness factors are implicated in lung cancer. Here, we investigated the role of Waixenicin A on CSCs-like and metastatic lung cancer cells.
METHODS: We demonstrated and compared TRPM7 expression in the non-tumor lung tissues or bronchial epithelial 16-HBE cell line. TRPM7 was aberrantly expressed in the cancer tissues and SPCA-1, NCI-H520, SK-MES-1, A549 and 95D cell lines.
RESULTS: Increased TRPM7 expression was associated with enhanced SOX2, KLF4, and CD133, Hsp90α, uPA, and MMP2 expression in lung cancer cells. TRPM7-silencing inhibited epithelial-to-mesenchymal transition (EMT), suppressed stemness markers and phenotypes, concomitantly suppressed Hsp90α/uPA/MMP2 axis. Coincidently, Waixenicin A treatment downregulated TRPM7 and oncogenic markers; Waixenicin A also attenuated the ability of lung cancer cells to form tumorspheres, in vitro. In validation, our clinicopathological analyses showed that a higher TRPM7 expression was positively correlated with the larger tumor size (p = 0.007), positive lymph node metastasis (p = 0.005) and disease grade (p = 0.003).
CONCLUSIONS: Through its ability to inhibit Hsp90α/uPA/MMP2 signaling and suppress TRPM7 expression, we showed that Waixenicin A is a potential anticancer therapeutic agent for treating malignant lung cancer.

Lopez-Ramirez MA, Pham A, Girard R, et al.
Cerebral cavernous malformations form an anticoagulant vascular domain in humans and mice.
Blood. 2019; 133(3):193-204 [PubMed] Article available free on PMC after 17/01/2020 Related Publications
Cerebral cavernous malformations (CCMs) are common brain vascular dysplasias that are prone to acute and chronic hemorrhage with significant clinical sequelae. The pathogenesis of recurrent bleeding in CCM is incompletely understood. Here, we show that central nervous system hemorrhage in CCMs is associated with locally elevated expression of the anticoagulant endothelial receptors thrombomodulin (TM) and endothelial protein C receptor (EPCR). TM levels are increased in human CCM lesions, as well as in the plasma of patients with CCMs. In mice, endothelial-specific genetic inactivation of

Jones RA, Franks SE, Moorehead RA
Comparative mRNA and miRNA transcriptome analysis of a mouse model of IGFIR-driven lung cancer.
PLoS One. 2018; 13(11):e0206948 [PubMed] Article available free on PMC after 17/01/2020 Related Publications
Mouse models of cancer play an important role in elucidating the molecular mechanisms that contribute to tumorigenesis. The extent to which these models resemble one another and their human counterparts at the molecular level is critical in understanding tumorigenesis. In this study, we carried out a comparative gene expression analysis to generate a detailed molecular portrait of a transgenic mouse model of IGFIR-driven lung cancer. IGFIR-driven tumors displayed a strong resemblance with established mouse models of lung adenocarcinoma, particularly EGFR-driven models highlighted by elevated levels of the EGFR ligands Ereg and Areg. Cross-species analysis revealed a shared increase in human lung adenocarcinoma markers including Nkx2.1 and Napsa as well as alterations in a subset of genes with oncogenic and tumor suppressive properties such as Aurka, Ret, Klf4 and Lats2. Integrated miRNA and mRNA analysis in IGFIR-driven tumors identified interaction pairs with roles in ErbB signaling while cross-species analysis revealed coordinated expression of a subset of conserved miRNAs and their targets including miR-21-5p (Reck, Timp3 and Tgfbr3). Overall, these findings support the use of SPC-IGFIR mice as a model of human lung adenocarcinoma and provide a comprehensive knowledge base to dissect the molecular pathogenesis of tumor initiation and progression.

Liu Z, Li W, Pang Y, et al.
SF3B4 is regulated by microRNA-133b and promotes cell proliferation and metastasis in hepatocellular carcinoma.
EBioMedicine. 2018; 38:57-68 [PubMed] Article available free on PMC after 17/01/2020 Related Publications
BACKGROUND: Splicing factor 3b subunit 4 (SF3B4) is a splicing factor and potential oncogene in hepatocellular carcinoma (HCC); however, its regulatory mechanism is yet unclear. We aimed to determine the role of SF3B4 in HCC and the underlying mechanism.
METHODS: To investigate the association between alternative splicing events and miRNAs, putative miRNAs were screened using TargetScan. Expression levels of and prognostic information for SF3B4 and miRNAs were determined based on public genomic data and clinical samples. Then, we examined the possible roles of SF3B4 and miRNA-133b in HCC cells and a xenograft mouse model. Pearson correlation analysis and in vitro experiments verified SF3B4 as a miRNA-133b target. Protein levels of key targets from the SF3B4 signaling pathway were estimated using western blotting.
FINDINGS: The expression of SF3B4 was upregulated in HCC tissues and cell lines whereas, the expression of miRNA-133b was downregulated. MiRNA-133b negatively regulated the expression of SF3B4. Effects of SF3B4 overexpression were partially abolished by miRNA-133b mimics, confirming that SF3B4 is a target of miRNA-133b. Moreover, molecules associated with SF3B4, including KLF4, KIP1, and SNAI2, were also modulated by miRNA-133b.
INTERPRETATION: SF3B4 plays a crucial role in HCC and is negatively regulated by miRNA-133b. The miRNA-133b/ SF3B4 axis may serve as a new therapeutic target for HCC treatment. FUND: China National Funds for Distinguished Young Scientists (No.81425019), the State Key Program of National Natural Science Foundation of China (No.81730076), Shanghai Science and Technology Committee Program (No.18XD1405300) and Specially-Appointed Professor Fund of Shanghai (GZ2015009). China National Funds for National Natural Science Fund (No.81672899).

Li X, Wang H, Ding J, et al.
Celastrol strongly inhibits proliferation, migration and cancer stem cell properties through suppression of Pin1 in ovarian cancer cells.
Eur J Pharmacol. 2019; 842:146-156 [PubMed] Related Publications
Ovarian cancer is one of the most serious diseases worldwide and the fifth-most common cancer among women. Celastrol, extracted from Thunder God Vine, exerts anti-cancer effects on various cancers; however, the mechanism underlying these anti-cancer effects in ovarian cancer needs further investigation. Herein, we investigated the anti-cancer efficacy of celastrol and its underlying mechanism in human ovarian cancer cell lines A2780, OVCAR3, and SKOV3. Celastrol significantly suppressed cell proliferation and migration in a dose-dependent manner. Celastrol resulted in a G2/M cell cycle arrest, accompanied with the down-regulation of Cyclin D1, CDK2, and CDK4. Celastrol induced apoptosis primarily via up-regulation of caspase-3, caspase-8, and Bax, and down-regulation of Bcl-2. Celastrol treatment inhibited the expression of stem cell marker CD44, Nanog, Klf4, and Oct4, and reduced a portion of the CD44

Venur VA, Santagata S, Galanis E, Brastianos PK
New molecular targets in meningiomas: the present and the future.
Curr Opin Neurol. 2018; 31(6):740-746 [PubMed] Related Publications
PURPOSE OF REVIEW: Meningiomas, the most common primary brain tumor, have historically been managed with surgery and radiation. Traditional chemotherapy has not been effective. Fortunately, recent advances in genetic sequencing have led to an improved understanding of the molecular drivers in meningioma. This article aims to discuss the diagnostic and therapeutic implications of recently discovered genetic alterations in meningiomas.
RECENT FINDINGS: Many of the recently discovered genetic alterations correlate with distinct clinical phenotypes. SMO, AKT and PIK3CA mutations are enriched in the anterior skull base. KLF4 mutations are specific for secretory histology, and BAP1 alterations are common in progressive rhabdoid meningiomas. Alterations in TERT, DMD and BAP1 correlate with poor clinical outcomes. Importantly, the discovery of clinically actionable alterations in a number of genes, including SMO, AKT1 and PIK3CA, has opened up novel potential avenues for therapeutic management of meningiomas. Overexpression of PD-L1 in higher grade meningiomas also provides preclinical support for the investigation of checkpoint blockade.
SUMMARY: The discovery of genetic alterations has improved our understanding of the natural history and classification of meningiomas. Clinical trials with several novel agents targeting driver mutations are currently accruing patients and they can lead to better treatment strategies.

Ye H, Wang Q
Efficient Generation of Non-Integration and Feeder-Free Induced Pluripotent Stem Cells from Human Peripheral Blood Cells by Sendai Virus.
Cell Physiol Biochem. 2018; 50(4):1318-1331 [PubMed] Related Publications
BACKGROUND/AIMS: Induced pluripotent stem cells (iPSCs) hold great promise for regenerative medicine, disease modeling, and drug development. Thus, generation of non-integration and feeder-free iPSCs is highly desirable for clinical applications. Peripheral blood mononuclear cells (PBMCs) are an attractive resource for cell reprogramming because of their properties of easy accessibility and the limited invasiveness of blood collection. However, derivation of iPSCs is technically demanding due to the low reprogramming efficiency and nonadherent features of PBMCs.
METHODS: iPSCs were generated from PBMCs using non-integrative Sendai viruses carrying the reprogramming factors Oct4, Sox2, Klf4, and cMyc. The derived iPSCs were fully characterized at the levels of gene and protein, and then they were transplanted into immunocompromised mice for evaluation of in vivo differentiation potential. Three types of extracellular substrates (Geltrex, vitronectin, and rhLaminn-521) were tested for their influences on cell reprogramming under feeder-free conditions. We also sought to establish approaches to efficient cell recovery post-thaw and single cell passaging of iPSCs employing Rock inhibitors.
RESULTS: iPSCs were efficiently generated from PBMCs under feeder-free conditions. The derived iPSCs proved to be pluripotent and transgene-free. Furthermore, they demonstrated multi-lineage differentiation potentials when transplanted into immunocompromised mice. Among the three substrates, Geltrex and rhLaminin-521 could effectively support the initial cell reprogramming process, but vitronectin failed. However, the vitronectin, similar to Geltrex and rhLaminin-521, could effectively maintain cell growth and expansion of passaged iPSCs. In addition, RevitaCell supplement (RVC) was more potent on cell recovery post-thaw than Y-27632. And RVC and Y-27632 could significantly increase the cell survival when the cells were passaged in single cells, and they showed comparable effectiveness on cell recovery.
CONCLUSION: We have successfully derived non-integration and feeder-free human iPSCs from peripheral blood cells, and established effective strategies for efficient cell recovery and single cell passaging. This study will pave the way to the derivation of clinical-grade human iPSCs for future clinical applications.

Li S, Zhai J, Liu J, et al.
Erythropoietin-producing hepatocellular A7 triggering ovulation indicates a potential beneficial role for polycystic ovary syndrome.
EBioMedicine. 2018; 36:539-552 [PubMed] Article available free on PMC after 17/01/2020 Related Publications
BACKGROUND: The ovulatory dysfunction mechanisms underlying polycystic ovary syndrome (PCOS) are not completely understood. And the roles of EPHA7 and EPHA7-regulated pathway factors in the pathogenesis of anovulation remain to be elucidated.
METHODS: We used human granulosa cells (hGCs) of PCOS and non-PCOS patients to measure EPHA7 and other target gene expressions. We performed in vitro experiments in KGN cells to verify the molecular mechanisms. Additionally, we conducted in vivo loss- and gain-of-function studies using EPHA7 shRNA lentivirus and recombinant EPHA7-Fc protein injection to identify the ovulation effects of EPHA7.
FINDINGS: EPHA7 functions as a critically positive upstream factor for the expression of ERK1/2-mediated C/EBPβ. This protein, in turn, induced the expression of KLF4 and then ADAMTS1. Moreover, decreased abundance of EPHA7 was positively correlated with that of its downstream factors in hGCs of PCOS patients. Additionally, a 1-week functional EPHA7 shRNA lentivirus in rat ovaries contributed to decreased numbers of retrieved oocytes, and a 3-week functional lentivirus led to menstrual disorders and morphological polycystic changes in rat ovaries. More importantly, we found that EPHA7 triggered ovulation in rats, and it improved polycystic ovarian changes induced by DHEA in PCOS rats.
INTERPRETATION: Our findings demonstrate a new role of EPHA7 in PCOS, suggesting that EPHA7 is an effective target for the development of innovative medicines to induce ovulation. FUND: National Key Research and Development Program of China, National Natural Science Foundation, Shanghai Municipal Education Commission--Gaofeng Clinical Medicine, and Shanghai Commission of Science and Technology.

Halim S, Markert EK, Vazquez A
Analysis of cell proliferation and tissue remodelling uncovers a KLF4 activity score associated with poor prognosis in colorectal cancer.
Br J Cancer. 2018; 119(7):855-863 [PubMed] Article available free on PMC after 17/01/2020 Related Publications
BACKGROUND: Human cancers can be classified based on gene signatures quantifying the degree of cell proliferation and tissue remodelling (PR). However, the specific factors that drive the increased tissue remodelling in tumours are not fully understood. Here we address this question using colorectal cancer as a case study.
METHODS: We reanalysed a reported cohort of colorectal cancer patients. The patients were stratified based on gene signatures of cell proliferation and tissue remodelling. Putative transcription factors activity was inferred using gene expression profiles and annotations of transcription factor targets as input.
RESULTS: We demonstrate that the PR classification performs better than the currently adopted consensus molecular subtyping (CMS). Although CMS classification differentiates patients with a mesenchymal signature, it cannot distinguish the remaining patients based on survival. We demonstrate that the missing factor is cell proliferation, which is indicative of good prognosis. We also uncover a KLF4 transcription factor activity score associated with the tissue remodelling gene signature. We further show that the KLF4 activity score is significantly higher in colorectal tumours with predicted infiltration of cells from the myeloid lineage.
CONCLUSION: The KLF4 activity score is associated with tissue remodelling, myeloid cell infiltration and poor prognosis in colorectal cancer.

Bigoni-Ordóñez GD, Ortiz-Sánchez E, Rosendo-Chalma P, et al.
Molecular iodine inhibits the expression of stemness markers on cancer stem-like cells of established cell lines derived from cervical cancer.
BMC Cancer. 2018; 18(1):928 [PubMed] Article available free on PMC after 17/01/2020 Related Publications
BACKGROUND: Cancer stem cells (CSC) are characterized by deregulated self-renewal, tumorigenicity, metastatic potential, aberrant stemness signaling pathways, resistance to conventional therapy, and the ability to give rise to a progeny of proliferating cells that constitute the bulk of tumors. Targeting CSC will provide novel treatments for cancer. Different investigations have focused on developing complementary approaches that involve natural compounds that decrease chemo-resistance and reduce the side effects of conventional therapies. Since, it has been reported that molecular iodine (I
METHODS: HeLa and SiHa cervical cancer cells were treated with 200uM I
RESULTS: In the present study, monolayer and CSC-enriched cultures (cervospheres) from cervical cancer-derived cell lines, HeLa and SiHa, showed that 200uM I
CONCLUSIONS: All this data led us to suggest a clinical potential use of I

Xu H, Wen Q
miR‑3120‑5p acts as a diagnostic biomarker in non‑small cell lung cancer and promotes cancer cell proliferation and invasion by targeting KLF4.
Mol Med Rep. 2018; 18(5):4621-4628 [PubMed] Related Publications
Accumulating evidence indicates that microRNAs (miRs) are important regulators in a number of types of human cancer, including non‑small cell lung cancer (NSCLC). The function of miR‑3120‑5p in NSCLC remains unclear. In the present study, it was demonstrated that miR‑3120‑5p was significantly upregulated in NSCLC tissues. Additionally, miR‑3120‑5p expression level was positively associated with NSCLC metastasis and tumor, node and metastasis stage. Furthermore, it was demonstrated that miR‑3120‑5p exhibited potential as an indicator of NSCLC for use in diagnosis. Through functional experiments, it was demonstrated that overexpression of miR‑3120‑5p promoted the proliferation, colony formation and invasion of NSCLC cells. miR‑3120‑5p overexpression significantly promoted cell cycle progression. Mechanistically, it was demonstrated that Krueppel‑like factor 4 (KLF4) was a target of miR‑3120‑5p in NSCLC cells. Overexpression of miR‑3120‑5p repressed the expression of KLF4 in A549 and H460 cells. Furthermore, it was demonstrated that KLF4 was downregulated in NSCLC tissues and cell lines. Overexpression of KLF4 significantly reversed the effects of miR‑3120‑5p on NSCLC cell proliferation and invasion. In conclusion, the present study demonstrated that miR‑3120‑5p promoted NSCLC progression by directly targeting KLF4.

Danková Z, Braný D, Dvorská D, et al.
Methylation status of KLF4 and HS3ST2 genes as predictors of endometrial cancer and hyperplastic endometrial lesions.
Int J Mol Med. 2018; 42(6):3318-3328 [PubMed] Article available free on PMC after 17/01/2020 Related Publications
Endometrial carcinoma is one of the most common tumours in developed countries. In addition to the active role of genetic factors, epigenetic changes also have an important effect. The present study analysed the methylation status of kruppel like factor 4 (KLF4) and heparan sulfate‑glucosamine 3‑sulfotransferase 2 (HS3ST2) genes in three endometrial tissue types for carcinoma prediction. The sample comprised 91 women with histologically‑confirmed endometrial carcinoma (64.16±9.64 years old), 36 women with hyperplasia (53.39±9.64 years old) and 45 with no signs or symptoms of malignancy (48.53±11.11 years old). The CpG dinucleotide methylation levels were examined by quantitative pyrosequencing, and the discrimination accuracy of the model was calculated using the Random Forest classification algorithm of the area under the ROC curve (AUC). The mean values of KLF4 and HS3ST2 methylation indices were 23.83±11.39 and 8.52±2.57 in the control samples; 30.40±8.52 and 33.76±20.66 in hyperplasia and 34.72±10.79 and 34.49±18.39 in the cancerous tissues. Multinomial logistic regression indicated that the HS3ST2 CpG1 methylation status is a predictor of hyperplasia (P<0.05) and that the KLF4 CpG2 dinucleotide can predict carcinoma formation (P<0.001). The AUC value of 0.95 indicates high discrimination accuracy of the CpG nucleotides methylation status model between the controls and the two other diagnoses. The results of the present study establish the likelihood that aberrations in KLF4 and HS3ST2 gene methylation levels are important in the development of endometrial hyperplasia and carcinoma, with hyperplasia an intermediate step between healthy and tumour tissues.

Fajka-Boja R, Marton A, Tóth A, et al.
Increased insulin-like growth factor 1 production by polyploid adipose stem cells promotes growth of breast cancer cells.
BMC Cancer. 2018; 18(1):872 [PubMed] Article available free on PMC after 17/01/2020 Related Publications
BACKGROUND: Adipose-tissue stem cells (ASCs) are subject of intensive research since their successful use in regenerative therapy. The drawback of ASCs is that they may serve as stroma for cancer cells and assist tumor progression. It is disquieting that ASCs frequently undergo genetic and epigenetic changes during their in vitro propagation. In this study, we describe the polyploidization of murine ASCs and the accompanying phenotypical, gene expressional and functional changes under long term culturing.
METHODS: ASCs were isolated from visceral fat of C57BL/6 J mice, and cultured in vitro for prolonged time. The phenotypical changes were followed by microscopy and flow cytometry. Gene expressional changes were determined by differential transcriptome analysis and changes in protein expression were shown by Western blotting. The tumor growth promoting effect of ASCs was examined by co-culturing them with 4 T1 murine breast cancer cells.
RESULTS: After five passages, the proliferation of ASCs decreases and cells enter a senescence-like state, from which a proportion of cells escape by polyploidization. The resulting ASC line is susceptible to adipogenic, osteogenic and chondrogenic differentiation, and expresses the stem cell markers CD29 and Sca-1 on an upregulated level. Differential transcriptome analysis of ASCs with normal and polyploid karyotype shows altered expression of genes that are involved in regulation of cancer, cellular growth and proliferation. We verified the increased expression of Klf4 and loss of Nestin on protein level. We found that elevated production of insulin-like growth factor 1 by polyploid ASCs rendered them more potent in tumor growth promotion in vitro.
CONCLUSIONS: Our model indicates how ASCs with altered genetic background may support tumor progression.

Zhang L, Li X, Chao Y, et al.
KLF4, a miR-32-5p targeted gene, promotes cisplatin-induced apoptosis by upregulating BIK expression in prostate cancer.
Cell Commun Signal. 2018; 16(1):53 [PubMed] Article available free on PMC after 17/01/2020 Related Publications
BACKGROUND: Chemotherapeutic insensitivity remains a big challenge in prostate cancer treatment. Recently, increasing evidence has indicated that KLF4 plays a key role in prostate cancer. However, the potential biological role of KLF4 in Chemotherapeutic insensitivity of prostate cancer is still unknown.
METHODS: The role of KLF4 in cisplatin-induced apoptosis was detected by western blotting and a cell counting kit (CCK8). The potential molecular mechanism of KLF4 in regulating prostate cancer chemosensitivity was investigated by RNA sequencing analysis, q-RT-PCR, western blotting and chromatin immunoprecipitation (ChIP). The expression level of KLF4 mediated by miR-32-5p was confirmed by bioinformatic analysis and luciferase assays.
RESULTS: Here, we found that KLF4 was induced by cisplatin in prostate cancer cells and that the increase in KLF4 promoted cell apoptosis. Further mechanistic studies revealed that KLF4 directly bound to the promoter of BIK, facilitating its transcription. Additionally, we also found that the gene encoding KLF4 was a direct target of miR-32-5p. The downregulation of miR-32-5p in response to cisplatin treatment promoted KLF4 expression, which resulted in a increase in the chemosensitivity of prostate cancer.
CONCLUSION: Thus, our data revealed that KLF4 is an essential regulator in cisplatin-induced apoptosis, and the miR-32-5p-KLF4-BIK signalling axis plays an important role in prostate cancer chemosensitivity.

Abbaszadegan MR, Taghehchian N, Li L, et al.
Contribution of KCTD12 to esophageal squamous cell carcinoma.
BMC Cancer. 2018; 18(1):853 [PubMed] Article available free on PMC after 17/01/2020 Related Publications
BACKGROUND: It has been shown that the expression of potassium channel tetramerization domain containing 12 (KCTD12) as a regulator of GABAB receptor signaling is reversely associated with gastrointestinal stromal tumors. In present study we examined the probable role of KCTD12 in regulation of several signaling pathways and chromatin remodelers in esophageal squamous cell carcinoma (ESCC).
METHODS: KCTD12 ectopic expression was done in KYSE30 cell line. Comparative quantitative real time PCR was used to assess the expression of stem cell factors and several factors belonging to the WNT/NOTCH and chromatin remodeling in transfected cells in comparison with non-transfected cells.
RESULTS: We observed that the KCTD12 significantly down regulated expression of NANOG, SOX2, SALL4, KLF4, MAML1, PYGO2, BMI1, BRG1, MSI1, MEIS1, EGFR, DIDO1, ABCC4, ABCG2, and CRIPTO1 in transfected cells in comparison with non-transfected cells. Migration assay showed a significant decrease in cell movement in ectopic expressed cells in comparison with non-transfected cells (p = 0.02). Moreover, KCTD12 significantly decreased the 5FU resistance in transfected cells (p = 0.01).
CONCLUSIONS: KCTD12 may exert its inhibitory role in ESCC through the suppression of WNT /NOTCH, stem cell factors, and chromatin remodelers and can be introduced as an efficient therapeutic marker.

Liao S, Maertens O, Cichowski K, Elledge SJ
Genetic modifiers of the BRD4-NUT dependency of NUT midline carcinoma uncovers a synergism between BETis and CDK4/6is.
Genes Dev. 2018; 32(17-18):1188-1200 [PubMed] Article available free on PMC after 17/01/2020 Related Publications
Bromodomain and extraterminal (BET) domain inhibitors (BETis) show efficacy on NUT midline carcinoma (NMC). However, not all NMC patients respond, and responders eventually develop resistance and relapse. Using CRISPR and ORF expression screens, we systematically examined the ability of cancer drivers to mediate resistance of NMC to BETis and uncovered six general classes/pathways mediating resistance. Among these, we showed that RRAS2 attenuated the effect of JQ1 in part by sustaining ERK pathway function during BRD4 inhibition. Furthermore, overexpression of Kruppel-like factor 4 (KLF4), mediated BETi resistance in NMC cells through restoration of the E2F and MYC gene expression program. Finally, we found that expression of cyclin D1 or an oncogenic cyclin D3 mutant or RB1 loss protected NMC cells from BETi-induced cell cycle arrest. Consistent with these findings, cyclin-dependent kinase 4/6 (CDK4/6) inhibitors showed synergistic effects with BETis on NMC in vitro as well as in vivo, thereby establishing a potential two-drug therapy for NMC.

Chen E, Li Q, Wang H, et al.
MiR-92a promotes tumorigenesis of colorectal cancer, a transcriptomic and functional based study.
Biomed Pharmacother. 2018; 106:1370-1377 [PubMed] Related Publications
Colorectal cancer (CRC) is a leading cause of cancer deaths worldwide. Accumulation of varieties of epigenetic changes, including miRNA regulation, is one of the fundamental processes driving CRC initiation and progression. Mir-92a has been reported in several studies as an oncogene, and particularly in colorectal cancer, it has become a useful biomarker for early detection of CRC in both serum or stool. The Cancer Genome Atlas (TCGA) is a powerful database to analyze cancer-related genes and their correlation with patients' pathological information. However, miR-92a expression and its regulating target genes has yet to be investigated in TCGA system. In this study, we found miR-92a expression is associated with CRC pathological process. Notably, high expression of miR-92a mainly occurs in microsatellite-stable (MSS) cases. Further experiments showed exogenous introduction of miR-92a into LoVo and SW480 cells could enhance cell proliferation, migration, and invasion, whereas inhibition of miR-92a showed the opposite effects. A system analysis based on binding capacity and expression correlation analysis confirmed DKK3 and KLF4 are the top target genes of miR-92a, and novel target SMAD7 highlights the role of miR-92a in BMPs/SMAD pathway. In conclusion, miR-92a acts as an oncomir and directly targets Wnt/β-catenin, PTEN/Akt/FoxO, and BMP/Smads related genes, thus participates in CRC progression.

Troschel FM, Böhly N, Borrmann K, et al.
miR-142-3p attenuates breast cancer stem cell characteristics and decreases radioresistance in vitro.
Tumour Biol. 2018; 40(8):1010428318791887 [PubMed] Related Publications
Effectively targeting cancer stem cells, a subpopulation of tumorigenic, aggressive, and radioresistant cells, holds therapeutic promise. However, the effects of the microRNA miR-142-3p, a small endogenous regulator of gene expression on breast cancer stem cells, have not been investigated. This study identifies the influence of miR-142-3p on mammary stemness properties and breast cancer radioresistance to establish its role in this setting. miR-142-3p precursor transfection was performed in MDA-MB-468, HCC1806, and MCF-7 cells, and stem cell markers CD44, CD133, ALDH1 activity and mammosphere formation were measured. β-catenin, the canonical wnt signaling effector protein, was quantified by Western blots and cell fluorescence assays both in miR-142-3p-overexpressing and anti-miR-142-3p-treated cells. Radiation response was investigated by colony formation assays. Levels of BRCA1, BRCA2, and Bod1 in miR-142-3p-overexpressing cells as well as expression of miR-142-3p, Bod1, KLF4, and Oct4 in sorted CD44

Oyinlade O, Wei S, Kammers K, et al.
Analysis of KLF4 regulated genes in cancer cells reveals a role of DNA methylation in promoter- enhancer interactions.
Epigenetics. 2018; 13(7):751-768 [PubMed] Article available free on PMC after 17/01/2020 Related Publications
Recent studies have revealed an unexpected role of DNA methylation at promoter regions in transcription activation. However, whether DNA methylation at enhancer regions activates gene expression and influences cellular functions remains to be determined. In this study, by employing the transcription factor krÜppel-like factor 4 (KLF4) that binds to methylated CpGs (mCpGs), we investigated the molecular outcomes of the recruitment of KLF4 to mCpGs at enhancer regions in human glioblastoma cells. First, by integrating KLF4 ChIP-seq, whole-genome bisulfite sequence, and H3K27ac ChIP-seq datasets, we found 1,299 highly methylated (β >0.5) KLF4 binding sites, three-quarters of which were located at putative enhancer regions, including gene bodies and intergenic regions. In the meantime, by proteomics, we identified 16 proteins as putative targets upregulated by KLF4-mCpG binding at enhancer regions. By chromosome conformation capture (3C) analysis, we demonstrated that KLF4 bound to methylated CpGs at the enhancer regions of the B-cell lymphocyte kinase (BLK) and Lim domain only protein 7 (LMO7) genes, and activated their expression via 3D chromatin loop formation with their promoter regions. Expression of mutant KLF4, which lacks KLF4 ability to bind methylated DNA, or removal of DNA methylation in enhancer regions by a DNA methyltransferase inhibitor abolished chromatin loop formation and gene expression, suggesting the essential role of DNA methylation in enhancer-promoter interactions. Finally, we performed functional assays and showed that BLK was involved in glioblastoma cell migration. Together, our study established the concept that DNA methylation at enhancer regions interacts with transcription factors to activate gene expression and influence cellular functions.

Shi L, Tang X, Qian M, et al.
A SIRT1-centered circuitry regulates breast cancer stemness and metastasis.
Oncogene. 2018; 37(49):6299-6315 [PubMed] Article available free on PMC after 17/01/2020 Related Publications
Cancer stem cell (CSC)-dictated intratumor heterogeneity accounts for the majority of drug-resistance and distant metastases of breast cancers. Here, we identify a SIRT1-PRRX1-KLF4-ALDH1 circuitry, which couples CSCs, chemo-resistance, metastasis and aging. Pro-longevity protein SIRT1 deacetylates and stabilizes the epithelial-to-mesenchymal-transition (EMT) inducer PRRX1, which inhibits the transcription of core stemness factor KLF4. Loss of SIRT1 destabilizes PRRX1, disinhibits KLF4, and activates the transcription of ALDH1, which induces and functionally marks CSCs, resulting in chemo-resistance and metastatic relapse. Clinically, the level of PRRX1 is positively linked to SIRT1, whereas KLF4 is reversely correlated. Importantly, KLF4 inhibitor Kenpaullone sensitizes breast cancer cells and xenograft tumors to Paclitaxel and improves therapeutic effects. Our findings delineate a SIRT1-centered circuitry that regulates CSC origination, and targeting this pathway might be a promising therapeutic strategy.

Özdemir İ, Pınarlı FG, Pınarlı FA, et al.
Epigenetic silencing of the tumor suppressor genes SPI1, PRDX2, KLF4, DLEC1, and DAPK1 in childhood and adolescent lymphomas.
Pediatr Hematol Oncol. 2018; 35(2):131-144 [PubMed] Related Publications
The aim of the study was to investigate the expression and methylation status of seven distinctive genes with tumor suppressing properties in childhood and adolescent lymphomas. A total of 96 patients with Hodgkin Lymphoma (HL, n = 41), Non-Hodgkin Lymphoma (NHL, n = 15), and reactive lymphoid hyperplasia (RLH, n = 40, as controls) are included in the research. The expression status of CDKN2A, SPI1, PRDX2, DLEC1, FOXO1, KLF4 and DAPK1 genes were measured with QPCR method after the RNA isolation from paraffin blocks of tumor tissue and cDNA conversion. DNA isolation was performed from samples with low gene expression followed by methylation PCR study specific to promoter regions of these genes. We found that SPI1, PRDX2, DLEC1, KLF4, and DAPK1 genes are significantly less expressed in patient than the control group (p = 0.0001). However, expression of CDKNA2 and FOXO1 genes in the patient and control groups were not statistically different. The methylation ratios of all genes excluding the CDKN2A and FOXO1 were significantly higher in the HL and NHL groups than the controls (p = 0.0001). We showed that SPI1, PRDX2, DLEC1, KLF4 and DAPK1 genes are epigenetically silenced via hypermethylation in the tumor tissues of children with HL and NHL. As CDKN2A gene was not expressed in both patient and control groups, we conclude that it is not specific to malignancy. As FOXO1 gene was similarly expressed in both groups, its relationship with malignancy could not be established. The epigenetically silenced genes may be candidates for biomarkers or therapeutic targets in childhood and adolescent lymphomas.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. KLF4, Cancer Genetics Web: http://www.cancer-genetics.org/KLF4.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 31 August, 2019     Cancer Genetics Web, Established 1999