INSR

Gene Summary

Gene:INSR; insulin receptor
Aliases: HHF5, CD220
Location:19p13.2
Summary:This gene encodes a member of the receptor tyrosine kinase family of proteins. The encoded preproprotein is proteolytically processed to generate alpha and beta subunits that form a heterotetrameric receptor. Binding of insulin or other ligands to this receptor activates the insulin signaling pathway, which regulates glucose uptake and release, as well as the synthesis and storage of carbohydrates, lipids and protein. Mutations in this gene underlie the inherited severe insulin resistance syndromes including type A insulin resistance syndrome, Donohue syndrome and Rabson-Mendenhall syndrome. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Oct 2015]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:insulin receptor
Source:NCBIAccessed: 30 August, 2019

Ontology:

What does this gene/protein do?
Show (74)
Pathways:What pathways are this gene/protein implicaed in?
Show (7)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 30 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Insulin Resistance
  • Young Adult
  • Adolescents
  • Transcriptome
  • Colorectal Cancer
  • TNF
  • Genotype
  • Risk Factors
  • Somatomedins
  • Genome-Wide Association Study
  • Subcutaneous Fat
  • Validation Studies as Topic
  • Drug Resistance
  • IGF1R
  • Case-Control Studies
  • Breast Cancer
  • Xenograft Models
  • Chromosome 19
  • Insulin-Like Growth Factor I
  • Receptors, FSH
  • Up-Regulation
  • Genetic Predisposition
  • Insulin Receptor Substrate Proteins
  • Cell Proliferation
  • Stomach Cancer
  • Neoplasm Proteins
  • IGF2
  • Insulin
  • Severity of Illness Index
  • Biomarkers, Tumor
  • CD Antigens
  • Transcription
  • Cancer Gene Expression Regulation
  • Single Nucleotide Polymorphism
  • Receptors, Somatomedin
  • Protein Transport
  • Estrogen Receptors
  • Translocation
  • Gene Expression Profiling
  • Signal Transduction
Tag cloud generated 30 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (3)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: INSR (cancer-related)

Iwanishi M, Kusakabe T, Azuma C, et al.
Clinical characteristics in two patients with partial lipodystrophy and Type A insulin resistance syndrome due to a novel heterozygous missense mutation in the insulin receptor gene.
Diabetes Res Clin Pract. 2019; 152:79-87 [PubMed] Related Publications
AIMS: The present report aimed to clarify the clinical characteristics in a girl at the age of 12 and her mother with partial lipodystrophy and Type A insulin resistance syndrome.
METHODS: We examined fat distribution in the patients using dual-energy X-ray absorptiometry, magnetic resonance imaging, and computed tomography. We performed genetic analysis to examine the causal gene for lipodystrophy and insulin resistance.
RESULTS: Both patients had partial lipodystrophy and a novel heterozygous missense mutation (Asn
CONCLUSIONS: This case might help to understand the mechanisms insulin receptor dysfunction that cause lipodystrophy.

Li J, Guo L, Chai L, Ai Z
Comprehensive Analysis of Driver Genes in Personal Genomes of Clear Cell Renal Cell Carcinoma.
Technol Cancer Res Treat. 2019; 18:1533033819830966 [PubMed] Free Access to Full Article Related Publications
AIM: To characterize personal driver genes in clear cell renal cell carcinoma independent of somatic mutation frequencies.
METHODS: Personal cancer driver genes were predicted by Integrated CAncer GEnome Score in 417 patients with clear cell renal cell carcinoma using 26 786 somatic mutations from The Cancer Genome Atlas, followed by an integrated investigation on personal driver genes.
RESULTS: A total of 233 personal driver genes were determined by Integrated CAncer GEnome Score. The coexpression network analysis found 5 coexpressed modules. The blue module was significantly negatively correlated with all 5 clinical features, including cancer stage, lymph node metastasis, distant metastasis, age, and survival status (death). CTNNB1, TGFBR2, KDR, FLT1, and INSR were the hub genes in the blue module. The expression of 79 personal driver genes was significantly associated with clinical outcomes of patients with clear cell renal cell carcinoma.
CONCLUSIONS: The set of personal driver genes sheds insights into the tumorigenesis of clear cell renal cell carcinoma and paves the way for developing personalized medicine for clear cell renal cell carcinoma.

Wang G, Yin L, Peng Y, et al.
Insulin promotes invasion and migration of KRAS
Cell Prolif. 2019; 52(3):e12575 [PubMed] Related Publications
OBJECTIVES: Hyperinsulinemia is a risk factor for pancreatic cancer, but the function of insulin in carcinogenesis is unclear, so this study aimed to elucidate the carcinogenic effects of insulin and the synergistic effect with the KRAS mutation in the early stage of pancreatic cancer.
MATERIALS AND METHODS: A pair of immortalized human pancreatic duct-derived cells, hTERT-HPNE E6/E7/st (HPNE) and its oncogenic KRAS
RESULTS: The migration and invasion ability of HPNE cells was increased after the introduction of the mutated KRAS gene, together with an increased expression of MMP-2. These effects were further enhanced by the simultaneous administration of insulin. The use of MMP-2 siRNA confirmed that MMP-2 was involved in the regulation of cell invasion. Furthermore, there was a concentration- and time-dependent increase in gelatinase activity after insulin treatment, which could be reversed by an insulin receptor tyrosine kinase inhibitor (HNMPA-(AM)
CONCLUSIONS: Taken together, these results suggest that insulin induced migration and invasion in HPNE and HPNE-mut-KRAS through PI3K/AKT and ERK1/2 activation, with MMP-2 gelatinolytic activity playing a vital role in this process. These findings may provide a new therapeutic target for preventing carcinogenesis and the evolution of pancreatic cancer with a background of hyperinsulinemia.

Zhang L, Luo M, Yang H, et al.
Next-generation sequencing-based genomic profiling analysis reveals novel mutations for clinical diagnosis in Chinese primary epithelial ovarian cancer patients.
J Ovarian Res. 2019; 12(1):19 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Ovarian cancer (OC) is one of the most malignant gynecological tumors, associated with excess death rate (50-60%) in ovarian cancer patients. Particularly, among newly occurred ovarian cancer patients, 70% of clinical cases are diagnosed at the advanced stage, which definitely delay the timely treatment and lead to high mortality rate within 5 years post diagnosis. Therefore, identification of sensitive gene markers, as well as development of reliable genetic diagnosis, are important for the early detection and precise therapy for OC patients. This study aims to identify novel genetic mutations and develop a feasible clinical approach for early OC diagnosis.
METHODS: The OC tissue-derived DNA sample was acquired from 31 OC patients, and the somatic gene mutations will be identified after comparison with normal samples, using Genome-wide analysis and next-generation sequencing.
RESULTS: A total of 463 somatic mutations, which were considered as potential pathogenic sites, were assigned to 473 genes. Among them, 15 genes (TP53, TTN, MUC16, OR4N2, BRCA1, CAD, CCDC129, INSR, NAV3, NELL2, NRAS, OBSCN, PGLYRP4, RBM15B and TRPC7) were mutated on at least two sites. These genes were mapped to RNA sequencing (RNAseq) data, and a total of 117 genes had an absolute fold- change ≥ 2 and p ≤ 0.01. Five genes were mutated in at least two OC patients. Gene ontology (GO) classification indicated that a majority of genes participated in biological processes. Kyoto Enrichment of Genes and Genomes (KEGG) enrichment pathway analysis revealed that the genes were mainly involved in the regulation of metabolic signaling pathways.
CONCLUSIONS: Taken together, this study identified several novel genetic alterations pathway for early clinical diagnosis and provided abundant information for understanding molecular mechanisms of the OC occurrence and development.

Branavan U, Muneeswaran K, Wijesundera S, et al.
Identification of selected genetic polymorphisms in polycystic ovary syndrome in Sri Lankan women using low cost genotyping techniques.
PLoS One. 2018; 13(12):e0209830 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Polycystic ovary syndrome (PCOS), the commonest endocrine disorder affecting young women, appears to be a multigenic trait with contributing genes being unclear. Hence, analysis of polymorphisms in multiple candidate genes is required. Currently available genotyping methods are expensive, time-consuming with limited analytical sensitivity.
AIM: (i) Develop and validate high resolution melting (HRM) assay and allele-specific real-time quantitative PCR (AS-qPCR) for genotyping selected SNPs associated with PCOS. (ii) Identify selected SNPs and their association with a Sri Lankan cohort of well-characterized PCOS.
METHODS: DNA was extracted from women with well-characterized PCOS from adolescence (n = 55) and ethnically matched controls (n = 110). FTO (Fat mass and obesity associated gene; rs9939609), FSHB (Follicle stimulating hormone beta subunit; rs6169), FSHR (Follicle stimulating hormone receptor; rs6165/rs6166), and INSR (Insulin receptor; rs1799817) genes were genotyped using HRM assay. GnRH1 (Gonadotropin releasing hormone; rs6185), LHB (Luteinizing hormone beta subunit; rs1800447/rs34349826) and LHCGR (Luteinizing hormone/choriogonadotropin receptor; rs2293275) genes were genotyped using AS-qPCR method. Genotyping results were validated using Sanger sequencing.
RESULTS: A significant association was observed within FTO gene polymorphism (rs9939609) and PCOS. Genotype frequency of FTO gene (rs9939609)-cases versus controls were TT-36.4% vs.65.4% (p<0.05), AT-23.6% vs.20.9%, AA-40% vs.13.6% (p<0.05). Genotype frequencies of the SNPs GnRH1 (rs6185), FSHB (rs6169), FSHR (rs6165 & rs6166), LHB (rs1800447 & rs34349826), LHCGR (rs2293275) and INSR (rs1799817) were not significantly different between cases and controls (p>0.05). Only the mutant alleles were observed for LHB rs1800447 and rs34349826 SNPs in both groups. The HRM and AS-qPCR assay results had 100% concordance with sequencing results.
CONCLUSIONS: FTO gene rs9939609 polymorphism is significantly more prevalent among Sri Lankan PCOS subjects while the other selected SNPs of HPG axis genes and INSR gene showed no association. HRM and AS-qPCR assays provide a reliable, fast and user-friendly genotyping method facilitating wider implication in clinical practice.

Parada H, Cleveland RJ, North KE, et al.
Genetic polymorphisms of diabetes-related genes, their interaction with diabetes status, and breast cancer incidence and mortality: The Long Island Breast Cancer Study Project.
Mol Carcinog. 2019; 58(3):436-446 [PubMed] Free Access to Full Article Related Publications
To examine 143 diabetes risk single nucleotide polymorphisms (SNPs), identified from genome-wide association studies, in association with breast cancer (BC) incidence and subsequent mortality. A population-based sample of Caucasian women with first primary invasive BC (n = 817) and controls (n = 1021) were interviewed to assess diabetes status. Using the National Death Index, women with BC were followed for >18 years during which 340 deaths occurred (139 BC deaths). Genotyping was done using DNA extracted from blood samples. We used unconditional logistic regression to estimate age-adjusted odds ratios and 95% confidence intervals (CIs) for BC incidence, and Cox regression to estimate age-adjusted hazard ratios and CIs for all-cause and BC-specific mortality. Twelve SNPs were associated with BC risk in additive genotype models, at α = 0.05. The top three significant SNPs included SLC30A8-rs4876369 (P = 0.0034), HHEX-rs11187146 (P = 0.0086), and CDKN2A/CDKN2B-rs1333049 (P = 0.0094). Diabetes status modified the associations between rs4876369 and rs2241745 and BC incidence, on the multiplicative interaction scale. Six SNPs were associated with all-cause (CDKAL1-rs981042, P = 0.0032; HHEX-rs1111875, P = 0.0361; and INSR-rs919275, P = 0.0488) or BC-specific (CDKN2A/CDKN2B-rs3218020, P = 0.0225; CDKAL1-rs981042, P = 0.0246; and TCF2/HNF1B-rs3094508, P = 0.0344) mortality in additive genotype models, at α = 0.05. Genetic polymorphisms that increase the risk of developing diabetes may also increase the risk of developing and dying from BC.

Gerashchenko GV, Mevs LV, Chashchina LI, et al.
Expression of steroid and peptide hormone receptors, metabolic enzymes and EMT-related genes in prostate tumors in relation to the presence of the TMPRSS2/ERG fusion.
Exp Oncol. 2018; 40(2):101-108 [PubMed] Related Publications
AIM: To analyze an expression pattern of the steroid and peptide hormone receptors, metabolic enzymes and EMT-related genes in prostate tumors in relation to the presence of the TMPRSS2/ERG fusion; and to examine a putative correlation between gene expression and clinical characteristics, to define the molecular subtypes of prostate cancer.
MATERIALS AND METHODS: The relative gene expression (RE) of 33 transcripts (27 genes) and the presence/absence of the TMPRSS2/ERG fusion were analyzed by a quantitative PCR. 37 prostate cancer tissues (T) paired with conventionally normal prostate tissue (CNT) and 21 samples of prostate adenomas were investigated. RE changes were calculated, using different protocols of statistics.
RESULTS: We demonstrated differences in RE of seven genes between tumors and CNT, as was calculated, using the 2-ΔCT model and the Wilcoxon matched paired test. Five genes (ESR1, KRT18, MKI67, MMP9, PCA3) showed altered expression in adenocarcinomas, in which the TMPRSS2/ERG fusion was detected. Two genes (INSR, isoform B and HOTAIR) expressed differently in tumors without fusion. Comparison of the gene expression pattern in adenomas, CNT and adenocarcinomas demonstrated that in adenocarcinomas, bearing the TMPRSS2/ERG fusion, genes KRT18, PCA3, and SCHLAP1 expressed differently. At the same time, we detected differences in RE of AR (isoform 2), MMP9, PRLR and HOTAIR in adenocarcinomas without the TMPRSS2/ERG fusion. Two genes (ESR1 and SRD5A2) showed differences in RE in both adenocarcinoma groups. Fourteen genes, namely AR (isoforms 1 and 2), CDH1, OCLN, NKX3-1, XIAP, GCR (ins AG), INSR (isoform A), IGF1R, IGF1R tr, PRLR, PRL, VDR and SRD5A2 showed correlation between RE and tumor stage. RE of four genes (CDH2, ESR2, VDR and SRD5A2) correlated with differentiation status of tumors (Gleason score). Using the K-means clustering, we could cluster adenocarcinomas in three groups, according to gene expression profiles. A specific subtype of prostate tumors is characterized by the activated ERG signaling, due to the presence of TMPRSS2/ERG fusion, and also by high levels of the androgen receptor, prolactin, IGF, INSR and PCA3.
CONCLUSIONS: We have found the specific differences in expression of the steroid and peptide hormone receptors, metabolic enzymes and EMT-related genes, depending on the pre-sence/absence of the TMPRSS2/ERG fusion in prostate adenocarcinomas, CNT and adenomas. We showed three different gene expression profiles of prostate adenocarcinomas. One of them is characteristic for adenocarcinomas with the TMPRSS2/ERG fusion. Further experiments are needed to confirm these data in a larger cohort of patients.

Grinshpun A, Gavert N, Granit RZ, et al.
Ev vivo organ culture as potential prioritization tool for breast cancer targeted therapy.
Cancer Biol Ther. 2018; 19(8):645-648 [PubMed] Free Access to Full Article Related Publications
The growing use of genomic testing presents new treatment options but also new dilemmas. We describe here a heavily-pretreated metastatic triple negative breast cancer patient who failed to respond to conventional treatment. Genomic analyses were performed that discovered several targetable alterations (e.g. FGFR1, CDK6, INSR) and created a clinical challenge - which target to target first? Our solution to this relatively common scenario was using ex-vivo organ culture (EVOC) system to prioritize treatment directed toward the best molecular target. EVOC enabled the trial of several potent targeted agents (Everolimus, Linsitinib, Palbociclib, AZD4547) and allowed semi-quantitative measurement of tumor response. The best response was to FGFR inhibitor, AZD4547. Consequently, the most accessible FGFR inhibiting agents (Pazopanib, then Nintedanib) were administered and some response was achieved. This report provides a potential rationale for utilizing EVOC system to predict tumor response to targeted therapy when multiple targets are proposed.

Kaur R, Kaur T, Kaur A
Genetic association study from North India to analyze association of CYP19A1 and CYP17A1 with polycystic ovary syndrome.
J Assist Reprod Genet. 2018; 35(6):1123-1129 [PubMed] Free Access to Full Article Related Publications
PURPOSE: Polycystic ovary syndrome (PCOS) is a complex multifactorial endocrine disorder affecting approximately 5-10% of women of reproductive age. Affected women have menstrual disturbances due to anovulation, infertility, and hyperandrogenism. Ovarian androgen overproduction is the key physiopathologic feature of PCOS. A number of genes encoding major enzymes of the androgen metabolic pathways, such as HSD17B6, CYP19A1, CYP11A1, CYP17A1, and INSR, have been examined. Very few studies have been done in North India. There is an increasing prevalence of PCOS in women in Punjab and it is the leading cause of female infertility. In view of the strong evidence implicating the importance of CYP19A1 and CYP17A1 in androgen metabolic pathways, we investigated the association of rs700519, rs2414096, and rs743572 (- 34T>C) polymorphisms on susceptibility of developing PCOS, in North India.
METHODS: A total of 500 subjects (women of reproductive age) including 250 PCOS cases and 250 healthy age-matched controls were included in the present study. DNA was extracted from venous blood for all samples, and association analysis for rs2414096, rs700519, and rs743572 was done by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique. Lipid profile was done using a biochemical analyzer and body mass index (BMI) was measured for all cases. Statistical analysis was performed.
RESULTS: Significant association of - 34T>C polymorphism of CYP17A1 was found with PCOS (p = 0.0005). BMI was statistically different between PCOS cases and controls (p = 0.000). Triglycerides were high in PCOS women. Variations of CYP19A1 were not statistically significant with PCOS.
CONCLUSIONS: These data suggest that - 34T>C polymorphism in CYP17A1 is associated with PCOS in North India. No polymorphism of CYP19A1 was found to be associated.

Sun J, Lu Z, Deng Y, et al.
Up-regulation of INSR/IGF1R by C-myc promotes TSCC tumorigenesis and metastasis through the NF-κB pathway.
Biochim Biophys Acta Mol Basis Dis. 2018; 1864(5 Pt A):1873-1882 [PubMed] Related Publications
The insulin receptor (INSR) and insulin-like growth factor 1 receptor (IGF1R) have been reported to be involved in the tumorigenesis and metastasis of various malignancies. The aim of our study was to investigate and compare the effects of INSR and IGF1R on the tumorigenesis and metastasis of tongue squamous cell carcinoma (TSCC) and explore the possible mechanism(s) involved. We found that INSR had the same up-regulated expression pattern as IGF1R in TSCC tissues. INSR and IGF1R up-regulation were correlated with each other and associated with lymph node metastasis and poor prognosis. Functional studies established that knocking down either INSR or IGF1R dramatically impeded TSCC cell proliferation, migration, and invasion in vitro and tumorigenesis and tumor metastasis in vivo, whereas ectopic overexpression of INSR or IGF1R enhanced these activities. Both INSR and IGF1R directly targeted p65 and activated the NF-κB pathway; furthermore, C-myc was observed to directly bind to the INSR and IGF1R promoters and up-regulates INSR and IGF1R expression in TSCC. Thus, our current data demonstrate that both INSR and IGF1R are directly targeted by C-myc and exert similar effects to promote the tumorigenesis and metastasis of TSCC through the NF-κB pathway. Therefore, INSR and IGF1R may be therapeutic target genes and potential prognostic factors for TSCC.

Bronsveld HK, De Bruin ML, Wesseling J, et al.
The association of diabetes mellitus and insulin treatment with expression of insulin-related proteins in breast tumors.
BMC Cancer. 2018; 18(1):224 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The insulin receptor (INSR) and the insulin growth factor 1 receptor (IGF1R) play important roles in the etiology of both diabetes mellitus and breast cancer. We aimed to evaluate the expression of hormone and insulin-related proteins within or related to the PI3K and MAPK pathway in breast tumors of women with or without diabetes mellitus, treated with or without insulin (analogues).
METHODS: Immunohistochemistry was performed on tumor tissue of 312 women with invasive breast cancer, with or without pre-existing diabetes mellitus, diagnosed in 2000-2010, who were randomly selected from a Danish breast cancer cohort. Women with diabetes were 2:1 frequency matched by year of birth and age at breast cancer diagnosis to those without diabetes. Tumor Microarrays were successfully stained for p-ER, EGFR, p-ERK1/2, p-mTOR, and IGF1R, and scored by a breast pathologist. Associations of expression of these proteins with diabetes, insulin treatment (human insulin and insulin analogues) and other diabetes medication were evaluated by multivariable logistic regression adjusting for menopause and BMI; effect modification by menopausal status, BMI, and ER status was assessed using interactions terms.
RESULTS: We found no significant differences in expression of any of the proteins in breast tumors of women with (n = 211) and without diabetes (n = 101). Among women with diabetes, insulin use (n = 53) was significantly associated with higher tumor protein expression of IGF1R (OR = 2.36; 95%CI:1.02-5.52; p = 0.04) and p-mTOR (OR = 2.35; 95%CI:1.13-4.88; p = 0.02), especially among women treated with insulin analogues. Menopause seemed to modified the association between insulin and IGF1R expression (p = 0.07); the difference in IGF1R expression was only observed in tumors of premenopausal women (OR = 5.10; 95%CI:1.36-19.14; p = 0.02). We found no associations between other types of diabetes medication, such as metformin, and protein expression of the five proteins evaluated.
CONCLUSIONS: In our study, breast tumors of women with pre-existing diabetes did not show an altered expression of selected PI3K/MAPK pathway-related proteins. We observed an association between insulin treatment and increased p-mTOR and IGF1R expression of breast tumors, especially in premenopausal women. This observation, if confirmed, might be clinically relevant since the use of IGF1R and mTOR inhibitors are currently investigated in clinical trials.

Belani M, Deo A, Shah P, et al.
Differential insulin and steroidogenic signaling in insulin resistant and non-insulin resistant human luteinized granulosa cells-A study in PCOS patients.
J Steroid Biochem Mol Biol. 2018; 178:283-292 [PubMed] Related Publications
Insulin resistance (IR) is one of the significant aberrations in polycystic ovarian syndrome (PCOS), however is only observed in 70%-80% of obese PCOS and 20%-25% of lean PCOS. Hyperinsulinemia accompanies PCOS-IR along with hyperandrogenemia against normal insulin and androgen levels in PCOS-non insulin resistance (NIR). This could possibly be due to defects in the downstream signaling pathways. The study thus aims to unravel insulin and steroidogenic signaling pathways in luteinized granulosa cells isolated from PCOS-IR and NIR vs matched controls. Luteinized granulosa cells from 30 controls and 39 PCOS were classified for IR based on a novel method of down regulation of protein expression of insulin receptor-β (INSR- β) as shown in our previous paper. We evaluated expression of molecules involved in insulin, steroidogenic signaling and lipid metabolism in luteinized granulosa cells followed by analysis of estradiol, progesterone and testosterone in follicular fluid. Protein expression of INSR- β, pIRS (ser 307), PI(3)K, PKC-ζ, pAkt, ERK1/2, pP38MAPK and gene expression of IGF showed differential expression in the two groups. Increased protein expression of PPAR-γ was accompanied by up regulation in SREBP1c, FAS, CPT-1 and ACC-1 genes in PCOS-IR group. Expression of StAR, CYP19A1, 17 β- HSD and 3 β- HSD demonstrated significant decrease along with increase in CYP11A1, FSH-R and LH-R in both the groups. Follicular fluid testosterone increased and progesterone decreased in PCOS-IR group. This study shows how candidate molecules that were differentially expressed, aid in designing targeted therapy against the two phenotypes of PCOS.

Chen J, Nagle AM, Wang YF, et al.
Controlled dimerization of insulin-like growth factor-1 and insulin receptors reveals shared and distinct activities of holo and hybrid receptors.
J Biol Chem. 2018; 293(10):3700-3709 [PubMed] Free Access to Full Article Related Publications
Breast cancer development and progression are influenced by insulin-like growth factor receptor 1 (IGF1R) and insulin receptor (InsR) signaling, which drive cancer phenotypes such as cell growth, proliferation, and migration. IGF1R and InsR form IGF1R/InsR hybrid receptors (HybRs) consisting of one molecule of IGF1R and one molecule of InsR. The specific signaling and functions of HybR are largely unknown, as HybR is activated by both IGF1 and insulin, and no cellular system expresses HybR in the absence of holo-IGF1R or holo-InsR. Here we studied the role of HybR by constructing inducible chimeric receptors and compared HybR signaling with that of holo-IGF1R and holo-InsR. We cloned chemically inducible chimeric IGF1R and InsR constructs consisting of the extracellular domains of the p75 nerve growth factor receptor fused to the intracellular β subunit of IGF1R or InsR and a dimerization domain. Dimerization with the drugs AP20187 or AP21967 allowed specific and independent activation of holo-IGF1R, holo-InsR, or HybR, resulting in activation of the PI3K pathway. Holo-IGF1R and HybR both promoted cell proliferation and glucose uptake, whereas holo-InsR only promoted glucose uptake, and only holo-IGF1R showed anti-apoptotic effects. We also found that the three receptors differentially regulated gene expression: holo-IGF1R and HybR up-regulated EGR3; holo-InsR specifically down-regulated JUN and BCL2L1; holo-InsR down-regulated but HybR up-regulated HK2; and HybR specifically up-regulated FHL2, ITGA6, and PCK2. Our findings suggest that, when expressed and activated in mammary epithelial cells, HybR acts in a manner similar to IGF1R and support further investigation of the role of HybR in breast cancer.

Busch EL, Crous-Bou M, Prescott J, et al.
Adiponectin, Leptin, and Insulin-Pathway Receptors as Endometrial Cancer Subtyping Markers.
Horm Cancer. 2018; 9(1):33-39 [PubMed] Free Access to Full Article Related Publications
Developing a system of molecular subtyping for endometrial tumors might improve insight into disease etiology and clinical prediction of patient outcomes. High body mass index (BMI) has been implicated in development of endometrial cancer through hormonal pathways and might influence tumor expression of biomarkers involved in BMI-sensitive pathways. We evaluated whether endometrial tumor expression of 7 markers from BMI-sensitive pathways of insulin resistance could effectively characterize molecular subtypes: adiponectin receptor 1, adiponectin receptor 2, leptin receptor, insulin receptor (beta subunit), insulin receptor substrate 1, insulin-like growth factor 1 receptor, and insulin-like growth factor 2 receptor. Using endometrial carcinoma tissue specimens from a case-only prospective sample of 360 women from the Nurses' Health Study, we scored categorical immunohistochemical measurements of protein expression for each marker. Logistic regression was used to estimate associations between endometrial cancer risk factors, especially BMI, and tumor marker expression. Proportional hazard modeling was performed to estimate associations between marker expression and time to all-cause mortality as well as time to endometrial cancer-specific mortality. No association was observed between BMI and tumor expression of any marker. No marker was associated with time to either all-cause mortality or endometrial cancer-specific mortality in models with or without standard clinical predictors of patient mortality (tumor stage, grade, and histologic type). It did not appear that any of the markers evaluated here could be used effectively to define molecular subtypes of endometrial cancer.

Barrdahl M, Canzian F, Gaudet MM, et al.
A comprehensive analysis of polymorphic variants in steroid hormone and insulin-like growth factor-1 metabolism and risk of in situ breast cancer: Results from the Breast and Prostate Cancer Cohort Consortium.
Int J Cancer. 2018; 142(6):1182-1188 [PubMed] Free Access to Full Article Related Publications
We assessed the association between 1,414 single nucleotide polymorphisms (SNPs) in genes involved in synthesis and metabolism of steroid hormones and insulin-like growth factor 1, and risk of breast cancer in situ (BCIS), with the aim of determining whether any of these were disease specific. This was carried out using 1,062 BCIS cases and 10,126 controls as well as 6,113 invasive breast cancer cases from the Breast and Prostate Cancer Cohort Consortium (BPC3). Three SNPs showed at least one nominally significant association in homozygous minor versus homozygous major models. ACVR2A-rs2382112 (OR

Wu X, Miao J, Jiang J, Liu F
Analysis of methylation profiling data of hyperplasia and primary and metastatic endometrial cancers.
Eur J Obstet Gynecol Reprod Biol. 2017; 217:161-166 [PubMed] Related Publications
OBJECTIVE: Endometrial cancer is a prevalent cancer, and its metastasis causes low survival rate. This study aims to utilize DNA methylation data to investigate the mechanism of the development and metastasis of endometrial cancer.
STUDY DESIGN: Methylation profiling data were down-loaded from Gene Expression Omnibus, including 8 hyperplasias, 33 primary and 53 metastatic endometrial cancers. COHCAP package and annotation files were utilized to identify differentially methylated genes (DMGs) and CpG islands between the three different endometrial diseases. STRING database and Cytoscape were used to analyze and visualize protein-protein interactions (PPIs) between DMGs. CytoNCA plugin was utilized to identify key nodes in PPI network.
RESULTS: A total of 610, 1076, and 501 DMGs were identified between primary endometrial cancer and hyperplasia, metastatic endometrial cancer and hyperplasia, as well as metastatic and primary endometrial cancers, respectively. For the three DMG sets, 53 common hypermethylated DMGs (e.g. PAX6 and INSR) and 6 common hypomethylated DMGs (e.g. PRDM8, KLHL14, and DUSP6) were found. For primary-hyperplasia DMG set and metastasis-hyperplasia DMG set, 527 common DMGs were found. For these common DMGs, a PPI network involving 692 PPIs was constructed. For DMGs between metastatic and primary endometrial cancers, a PPI network involving 673 PPIs was established, with PAX6 and INSR in the top 20 DMGs in both networks. PRDM8, KLHL14, and DUSP6 had hypomethylated CpG islands.
CONCLUSION: DMGs comparison, PPI network analysis, and analysis of differentially methylated CpG islands indicated that PAX6, INSR, PRDM8, KLHL14, and DUSP6 might participate in the development and metastasis of endometrial cancer.

Neuzillet Y, Chapeaublanc E, Krucker C, et al.
IGF1R activation and the in vitro antiproliferative efficacy of IGF1R inhibitor are inversely correlated with IGFBP5 expression in bladder cancer.
BMC Cancer. 2017; 17(1):636 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The insulin growth factor (IGF) pathway has been proposed as a potential therapeutic target in bladder cancer. We characterized the expression of components of the IGF pathway - insulin growth factor receptors (INSR, IGF1R, IGF2R), ligands (INS, IGF1, IGF2), and binding proteins (IGFBP1-7, IGF2BP1-3) - in bladder cancer and its correlation with IGF1R activation, and the anti-proliferative efficacy of an IGF1R kinase inhibitor in this setting.
METHODS: We analyzed transcriptomic data from two independent bladder cancer datasets, corresponding to 200 tumoral and five normal urothelium samples. We evaluated the activation status of the IGF pathway in bladder tumors, by assessing IGF1R phosphorylation and evaluating its correlation with mRNA levels for IGF pathway components. We finally evaluated the correlation between inhibition of proliferation by a selective inhibitor of the IGF1R kinase (AEW541), reported in 13 bladder cancer derived cell lines by the Cancer Cell Line Encyclopedia Consortium and mRNA levels for IGF pathway components.
RESULTS: IGF1R expression and activation were stronger in non-muscle-invasive than in muscle-invasive bladder tumors. There was a significant inverse correlation between IGF1R phosphorylation and IGFBP5 expression in tumors. Consistent with this finding, the inhibition of bladder cell line viability by IGF1R inhibitor was also inversely correlated with IGFBP5 expression.
CONCLUSION: The IGF pathway is activated and therefore a potential therapeutic target for non muscle-invasive bladder tumors and IGFBP5 could be used as a surrogate marker for predicting tumor sensitivity to anti-IGF therapy.

Tarnowski M, Tkacz M, Zgutka K, et al.
Picropodophyllin (PPP) is a potent rhabdomyosarcoma growth inhibitor both in vitro and in vivo.
BMC Cancer. 2017; 17(1):532 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Insulin-like growth factors and insulin are important factors promoting cancer growth and metastasis. The molecules act through IGF1 (IGF1R) and insulin (InsR) receptors. Rhambodmyosarcomas (RMS) overproduce IGF2 - a potent ligand for IGF1R and, at the same time, highly express IGF1 receptor. The purpose of the study was to evaluate possible application of picropodophyllin (PPP) - a potent IGF1R inhibitor.
METHODS: In our study we used a number of in vitro assays showing influence of IGF1R blockage on RMS cell lines (both ARMS and ERMS) proliferation, migration, adhesion, cell cycling and signal transduction pathways. Additionally, we tested possible concomitant application of PPP with commonly used chemotherapeutics (vincristine, actinomycin-D and cisplatin). Moreover, we performed an in vivo study where PPP was injected intraperitoneally into RMS tumor bearing SCID mice.
RESULTS: We observed that PPP strongly inhibits RMS proliferation, chemotaxis and adhesion. What is more, application of the IGF1R inhibitor attenuates MAPK phosphorylation and cause cell cycle arrest in G2/M phase. PPP increases sensitivity of RMS cell lines to chemotherapy, specifically to vincristine and cisplatin. In our in vivo studies we noted that mice treated with PPP grew smaller tumors and displayed significantly decreased seeding into bone marrow.
CONCLUSIONS: The cyclolignan PPP effectively inhibits RMS tumor proliferation and metastasis in vitro and in an animal model.

Chen W, Kuang Y, Qiu HB, et al.
Dual Targeting of Insulin Receptor and KIT in Imatinib-Resistant Gastrointestinal Stromal Tumors.
Cancer Res. 2017; 77(18):5107-5117 [PubMed] Related Publications
Oncogenic KIT or PDGFRA receptor tyrosine kinase (RTK) mutations are compelling therapeutic targets in gastrointestinal stromal tumors (GIST), and treatment with the KIT/PDGFRA inhibitor imatinib is the standard of care for patients with metastatic GIST. Most GISTs eventually acquire imatinib resistance due to secondary mutations in the KIT kinase domain, but it is unclear whether these genomic resistance mechanisms require other cellular adaptations to create a clinically meaningful imatinib-resistant state. Using phospho-RTK and immunoblot assays, we demonstrate activation of KIT and insulin receptor (IR) in imatinib-resistant GIST cell lines (GIST430 and GIST48) and biopsies with acquisition of

Song WJ, Shi X, Zhang J, et al.
Akt-mTOR Signaling Mediates Abnormalities in the Proliferation and Apoptosis of Ovarian Granulosa Cells in Patients with Polycystic Ovary Syndrome.
Gynecol Obstet Invest. 2018; 83(2):124-132 [PubMed] Related Publications
BACKGROUND/AIMS: Abnormal apoptosis of granulosa cells (GCs) is thought to involve in the pathogenesis of polycystic ovary syndrome (PCOS); however, the associated cellular and molecular mechanisms remain unclear.
METHODS: Primary GCs were obtained from healthy women and women with PCOS. The cell proliferation and apoptosis were analyzed in insulin-stimulated and insulin receptor gene (INSR) siRNA-transfected GCs. The protein expression of Akt-mTOR-S6K1 signal molecules was measured by Western blot.
RESULTS: This study showed that 1 nM of insulin significantly stimulated cell proliferation, induced cell apoptosis, and decreased the telomerase activity in GCs from both the healthy women and PCOS patients (p < 0.001), but silencing of INSR expression blocked the effects of insulin. Insulin induced significantly more apoptosis in GCs from PCOS patients than from healthy women (p < 0.01). Insulin significantly increased the ratio of p-Akt/Akt, the expression of mTOR protein, and the ratio of p-S6K1/S6K1 in GCs from normal control than in cells from PCOS patients (p < 0.001).
CONCLUSION: Insulin-induced apoptosis of GCs, less activation of Akt-mTOR signaling, and reduction of telomerase activity may be associated with the pathogenesis of PCOS.

Sanderson MP, Hofmann MH, Garin-Chesa P, et al.
The IGF1R/INSR Inhibitor BI 885578 Selectively Inhibits Growth of IGF2-Overexpressing Colorectal Cancer Tumors and Potentiates the Efficacy of Anti-VEGF Therapy.
Mol Cancer Ther. 2017; 16(10):2223-2233 [PubMed] Related Publications
Clinical studies of pharmacologic agents targeting the insulin-like growth factor (IGF) pathway in unselected cancer patients have so far demonstrated modest efficacy outcomes, with objective responses being rare. As such, the identification of selection biomarkers for enrichment of potential responders represents a high priority for future trials of these agents. Several reports have described high IGF2 expression in a subset of colorectal cancers, with focal

Son HY, Hwangbo Y, Yoo SK, et al.
Genome-wide association and expression quantitative trait loci studies identify multiple susceptibility loci for thyroid cancer.
Nat Commun. 2017; 8:15966 [PubMed] Free Access to Full Article Related Publications
Thyroid cancer is the most common cancer in Korea. Several susceptibility loci of differentiated thyroid cancer (DTC) were identified by previous genome-wide association studies (GWASs) in Europeans only. Here we conducted a GWAS and a replication study in Koreans using a total of 1,085 DTC cases and 8,884 controls, and validated these results using expression quantitative trait loci (eQTL) analysis and clinical phenotypes. The most robust associations were observed in the NRG1 gene (rs6996585, P=1.08 × 10

Petkevicius V, Salteniene V, Juzenas S, et al.
Polymorphisms of microRNA target genes
World J Gastroenterol. 2017; 23(19):3480-3487 [PubMed] Free Access to Full Article Related Publications
AIM: To evaluate associations between miRNA target genes
METHODS: Gene polymorphisms were analyzed in 508 controls and 474 GC patients from 3 tertiary centers in Germany, Lithuania and Latvia. Controls were patients from the out-patient departments, who were referred for upper endoscopy because of dyspeptic symptoms and had no history of previous malignancy. Gastric cancer (GC) patients had histopathological verification of gastric adenocarcinoma. Genomic DNA was extracted using salting out method from peripheral blood mononuclear cells.
RESULTS: We observed similar distribution of genotypes and allelic frequencies of all polymorphisms between GC patients and controls except of

El-Aarag SA, Mahmoud A, Hashem MH, et al.
In silico identification of potential key regulatory factors in smoking-induced lung cancer.
BMC Med Genomics. 2017; 10(1):40 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Lung cancer is a leading cause of cancer-related death worldwide and is the most commonly diagnosed cancer. Like other cancers, it is a complex and highly heterogeneous disease involving multiple signaling pathways. Identifying potential therapeutic targets is critical for the development of effective treatment strategies.
METHODS: We used a systems biology approach to identify potential key regulatory factors in smoking-induced lung cancer. We first identified genes that were differentially expressed between smokers with normal lungs and those with cancerous lungs, then integrated these differentially expressed genes (DEGs) with data from a protein-protein interaction database to build a network model with functional modules for pathway analysis. We also carried out a gene set enrichment analysis of DEG lists using the Kinase Enrichment Analysis (KEA), Protein-Protein Interaction (PPI) hubs, and KEGG (Kyoto Encyclopedia of Genes and Genomes) databases.
RESULTS: Twelve transcription factors were identified as having potential significance in lung cancer (CREB1, NUCKS1, HOXB4, MYCN, MYC, PHF8, TRIM28, WT1, CUX1, CRX, GABP, and TCF3); three of these (CRX, GABP, and TCF) have not been previously implicated in lung carcinogenesis. In addition, 11 kinases were found to be potentially related to lung cancer (MAPK1, IGF1R, RPS6KA1, ATR, MAPK14, MAPK3, MAPK4, MAPK8, PRKCZ, and INSR, and PRKAA1). However, PRKAA1 is reported here for the first time. MEPCE, CDK1, PRKCA, COPS5, GSK3B, BRCA1, EP300, and PIN1 were identified as potential hubs in lung cancer-associated signaling. In addition, we found 18 pathways that were potentially related to lung carcinogenesis, of which 12 (mitogen-activated protein kinase, gonadotropin-releasing hormone, Toll-like receptor, ErbB, and insulin signaling; purine and ether lipid metabolism; adherens junctions; regulation of autophagy; snare interactions in vesicular transport; and cell cycle) have been previously identified.
CONCLUSION: Our systems-based approach identified potential key molecules in lung carcinogenesis and provides a basis for investigations of tumor development as well as novel drug targets for lung cancer treatment.

Jin Y, Zhu H, Cai W, et al.
B-Myb Is Up-Regulated and Promotes Cell Growth and Motility in Non-Small Cell Lung Cancer.
Int J Mol Sci. 2017; 18(6) [PubMed] Free Access to Full Article Related Publications
B-Myb is a transcription factor that is overexpressed and plays an oncogenic role in several types of human cancers. However, its potential implication in lung cancer remains elusive. In the present study, we have for the first time investigated the expression profile of B-Myb and its functional impact in lung cancer. Expression analysis by quantificational real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry demonstrated that B-Myb expression is aberrantly overexpressed in non-small cell lung cancer (NSCLC), and positively correlated with pathologic grade and clinical stage of NSCLC. A gain-of-function study revealed that overexpression of B-Myb significantly increases lung cancer cell growth, colony formation, migration, and invasion. Conversely, a loss-of-function study showed that knockdown of B-Myb decreases cell growth, migration, and invasion. B-Myb overexpression also promoted tumor growth in vivo in a NSCLC xenograft nude mouse model. A molecular mechanistic study by RNA-sequencing (RNA-seq) analysis showed that B-Myb overexpression causes up-regulation of various downstream genes (e.g.,

Mancarella C, Casanova-Salas I, Calatrava A, et al.
Insulin-like growth factor 1 receptor affects the survival of primary prostate cancer patients depending on TMPRSS2-ERG status.
BMC Cancer. 2017; 17(1):367 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Prostate cancer (PCa) is characterized by clinical and biological heterogeneity and has differential outcomes and mortality rates. Therefore, it is necessary to identify molecular alterations to define new therapeutic strategies based on the risk of progression. In this study, the prognostic relevance of the insulin-like growth factor (IGF) system was examined in molecular subtypes defined by TMPRSS2-ERG (T2E) gene fusion within a series of patients with primary localized PCa.
METHODS: A cohort of 270 formalin-fixed and paraffin-embedded (FFPE) primary PCa samples from patients with more than 5 years' follow-up was collected. IGF-1R, IGF-1, IGFBP-3 and INSR expression was analyzed using quantitative RT-PCR. The T2E status and immunohistochemical ERG findings were considered in the analyses. The association with both biochemical and clinical progression-free survival (BPFS and PFS, respectively) was evaluated for the different molecular subtypes using the Kaplan-Meier proportional risk log-rank test and the Cox proportional hazards model.
RESULTS: An association between IGF-1R overexpression and better BPFS was found in T2E-negative patients (35.3% BPFS, p-value = 0.016). Multivariate analysis demonstrated that IGF-1R expression constitutes an independent variable in T2E-negative patients [HR: 0.41. CI 95% (0.2-0.82), p = 0.013]. These data were confirmed using immunohistochemistry of ERG as subrogate of T2E. High IGF-1 expression correlated with prolonged BPFS and PFS independent of the T2E status.
CONCLUSIONS: IGF-1R, a reported target of T2E, constitutes an independent factor for good prognosis in T2E-negative PCa. Quantitative evaluation of IGF-1/IGF-1R expression combined with molecular assessment of T2E status or ERG protein expression represents a useful marker for tumor progression in localized PCa.

Li T, Wang J, Liu P, et al.
Insulin-like growth factor 2 axis supports the serum-independent growth of malignant rhabdoid tumor and is activated by microenvironment stress.
Oncotarget. 2017; 8(29):47269-47283 [PubMed] Free Access to Full Article Related Publications
Malignant rhabdoid tumors (MRTs) are rare, lethal, pediatric tumors predominantly found in the kidney, brain and soft tissues. MRTs are driven by loss of tumor suppressor SNF5/INI1/SMARCB1/BAF47. The prognosis of MRT is poor using currently available treatments, so new treatment targets need to be identified to expand treatment options for patients experiencing chemotherapy resistance. The growth hormone insulin-like growth factor 2 (IGF2) signaling pathway is a promising target to overcome drug resistance in many cancers. Here, we evaluated the role of IGF2 axis in MRT cell proliferation. We showed that microenvironment stress, including starvation treatment and chemotherapy exposure, lead to elevated expression of IGF2 in the SNF5-deficient MRT cell line. The autocrine IGF2, in turn, activated insulin-like growth factor 1 receptor (IGF1R), insulin receptor (INSR), followed by PI3K/AKT pathway and RAS/ERK pathway to promote cancer cell proliferation and survival. We further demonstrated that impairment of IGF2 signaling by IGF2 neutralizing antibody, IGF1R inhibitor NVP-AEW541 or AKT inhibitor MK-2206 2HCl treatment prevented MRT cell growth in vitro. Taken together, our characterization of this axis defines a novel mechanism for MRT cell growth in the microenvironment of stress. Our results also demonstrated the necessity to test the treatment effect targeting this axis in future research.

Chan JY, Hackel BJ, Yee D
Targeting Insulin Receptor in Breast Cancer Using Small Engineered Protein Scaffolds.
Mol Cancer Ther. 2017; 16(7):1324-1334 [PubMed] Free Access to Full Article Related Publications
Insulin receptor (InsR) and the type I insulin-like growth factor (IGF1R) are homologous receptors necessary for signal transduction by their cognate ligands insulin, IGF-I and IGF-II. IGF1R mAbs, intended to inhibit malignant phenotypic signaling, failed to show benefit in patients with endocrine-resistant tumors in phase III clinical trials. Our previous work showed that in tamoxifen-resistant cells, IGF1R expression was lacking, but InsR inhibition effectively blocked growth. In endocrine-sensitive breast cancer cells, insulin was not growth stimulatory, likely due to the presence of hybrid InsR/IGF1R, which has high affinity for IGF-I, but not insulin. Combination inhibition of InsR and IGF1R showed complete suppression of the system in endocrine-sensitive breast cancer cells. To develop InsR-binding agents, we employed a small protein scaffold, T7 phage gene 2 protein (Gp2) with the long-term goal of creating effective InsR inhibitors and diagnostics. Using yeast display and directed evolution, we identified three Gp2 variants (Gp2 #1, #5, and #10) with low nanomolar affinity and specific binding to cell surface InsR. These Gp2 variants inhibited insulin-mediated monolayer proliferation in both endocrine-sensitive and resistant breast cancer, but did not downregulate InsR expression. Gp2 #5 and Gp2 #10 disrupted InsR function by inhibiting ligand-induced receptor activation. In contrast, Gp2 #1 did not block InsR phosphorylation. Notably, Gp2 #1 binding was enhanced by pretreatment of cells with insulin, suggesting a unique receptor-ligand-binding mode. These Gp2 variants are the first nonimmunoglobulin protein scaffolds to target insulin receptor and present compelling opportunity for modulation of InsR signaling.

Wang W, Jia WD, Hu B, Pan YY
RAB10 overexpression promotes tumor growth and indicates poor prognosis of hepatocellular carcinoma.
Oncotarget. 2017; 8(16):26434-26447 [PubMed] Free Access to Full Article Related Publications
Hepatocellular carcinoma (HCC), one of the most common and lethal cancers worldwide, has a high recurrence rate with current treatment modalities. Identifying biomarkers for early diagnosis and discovering new sufficient molecular targets for the development of targeted therapies are urgently needed. RAB10, a member of the RAS family, has been shown to be highly expressed in HCC. However, the function of RAB10 in HCC is less studied. Here we report that RAB10 acts as an oncogene in HCC. The shRNA-mediated knockdown of RAB10 significantly reduced the proliferation of HCC cells and colony formation, induced cell cycle arrest at G0/G1 phase and increased apoptosis in vitro. In addition, RAB10 knockdown suppressed HCC growth in nude mice. Moreover, RAB10 silencing decreased the phosphorylation of InsR, Met/HGFR, Ron/MST1R, Ret, c-Kit/SCFR, EphA3, EphB4, Tyro3/Dtk, Axl, Tie2/TEK, VEGFR2/KDR, Akt/PKB/Rac, S6 Ribosomal Protein and c-Abl, while the phosphorylation of HSP27, p38 MAPK, Chk2 and TAK1 increased significantly. These results suggest that RAB10 regulates cell survival and proliferation through multiple oncogenic, cell stress and apoptosis pathways. More importantly, high RAB10 expression levels in HCC cells correlated with a poor prognosis in HCC patients. Therefore, our findings revealed an oncogenic role for RAB10 in the pathogenesis of HCC and that RAB10 is a potential molecular target or a biomarker for HCC.

Hu JL, Hu XL, Han Q, et al.
INSR gene polymorphisms correlate with sensitivity to platinum-based chemotherapy and prognosis in patients with epithelial ovarian cancer.
Gene Ther. 2017; 24(7):392-398 [PubMed] Related Publications
This study aimed to investigate the correlation between INSR gene polymorphisms on platinum-based chemotherapy sensitivity and prognosis in epithelial ovarian cancer (EOC). A total of 339 EOC patients receiving postoperative chemotherapy were recruited for the study. Tag single-nucleotide polymorphism of INSR gene was screened from HapMap combined with available literature. Frequency distribution of genotypes and alleles in INSR gene was sequenced by ABI3100-Avant. Compared with CC+GC genotype, INSR rs2252673 GG genotype and rs3745546 CC genotype showed less platinum-based chemotherapy sensitivity in EOC patients (odds ratio (OR)=0.269, 95% confidence interval (CI)=0.159~0.456; OR=0.445, 95% CI=0.214~0.926, respectively), as well as serous EOC patients (OR=0.083, 95% CI=0.024~0.278; OR=0.235, 95%CI=0.053~1.041, respectively). The clinical characteristics including age, clinical stage, histological grade and residual lesion size were significantly related with chemosensitivity to platinum drugs and mortality in EOC patients. According to Kaplan-Meier curve, compared with CC+GC genotype, rs2252673 GG genotype showed significantly decreased survival rate in EOC patients (P<0.05). Cox regression model indicated that rs2252673, age and clinical stage were independent risk factors for the prognosis in EOC (all P<0.05). These findings indicate that INSR rs2252673 and rs3745546 polymorphisms were associated with sensitivity to platinum-based chemotherapy in EOC patients and rs2252673 polymorphism may be an independent risk factor for EOC prognosis.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. INSR, Cancer Genetics Web: http://www.cancer-genetics.org/INSR.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 30 August, 2019     Cancer Genetics Web, Established 1999