Gene Summary

Gene:IGFBP7; insulin-like growth factor binding protein 7
Summary:This gene encodes a member of the insulin-like growth factor (IGF)-binding protein (IGFBP) family. IGFBPs bind IGFs with high affinity, and regulate IGF availability in body fluids and tissues and modulate IGF binding to its receptors. This protein binds IGF-I and IGF-II with relatively low affinity, and belongs to a subfamily of low-affinity IGFBPs. It also stimulates prostacyclin production and cell adhesion. Alternatively spliced transcript variants encoding different isoforms have been described for this gene, and one variant has been associated with retinal arterial macroaneurysm (PMID:21835307). [provided by RefSeq, Dec 2011]
Databases:OMIM, HGNC, GeneCard, Gene
Protein:insulin-like growth factor-binding protein 7
Source:NCBIAccessed: 28 February, 2015


What does this gene/protein do?
Show (9)

Cancer Overview

Research Indicators

Publications Per Year (1990-2015)
Graph generated 28 February 2015 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 28 February, 2015 using data from PubMed, MeSH and CancerIndex

Specific Cancers (5)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: IGFBP7 (cancer-related)

Ji Q, Zhang L, Liu X, et al.
Long non-coding RNA MALAT1 promotes tumour growth and metastasis in colorectal cancer through binding to SFPQ and releasing oncogene PTBP2 from SFPQ/PTBP2 complex.
Br J Cancer. 2014; 111(4):736-48 [PubMed] Article available free on PMC after 12/08/2015 Related Publications
BACKGROUND: Metastasis associated with lung adenocarcinoma transcript-1 (MALAT1) is a functional long non-coding RNA (lncRNA), which is highly expressed in several tumours, including colorectal cancer (CRC). Its biological function and mechanism in the prognosis of human CRC is still largely under investigation.
METHODS: This study aimed to investigate the new effect mechanism of MALAT1 on the proliferation and migration of CRC cells in vitro and in vivo, and detect the expression of MALAT1, SFPQ (also known as PSF (PTB-associated splicing factor)), and PTBP2 (also known as PTB (polypyrimidine-tract-binding protein)) in CRC tumour tissues, followed by correlated analysis with clinicopathological parameters.
RESULTS: We found that overexpression of MALAT1 could promote cell proliferation and migration in vitro, and promote tumour growth and metastasis in nude mice. The underlying mechanism was associated with tumour suppressor gene SFPQ and proto-oncogene PTBP2. In CRC, MALAT1 could bind to SFPQ, thus releasing PTBP2 from the SFPQ/PTBP2 complex. In turn, the increased SFPQ-detached PTBP2 promoted cell proliferation and migration. SFPQ critically mediated the regulatory effects of MALAT1. Moreover, in CRC tissues, MALAT1 and PTBP2 were overexpressed, both of which were associated closely with the invasion and metastasis of CRC. However, the SFPQ showed unchanged expression either in CRC tissues or adjacent normal tissues.
CONCLUSIONS: Our findings implied that MALAT1 might be a potential predictor for tumour metastasis and prognosis. Furthermore, the interaction between MALAT1 and SFPQ could be a novel therapeutic target for CRC.

Verhagen HJ, de Leeuw DC, Roemer MG, et al.
IGFBP7 induces apoptosis of acute myeloid leukemia cells and synergizes with chemotherapy in suppression of leukemia cell survival.
Cell Death Dis. 2014; 5:e1300 [PubMed] Related Publications
Despite high remission rates after chemotherapy, only 30-40% of acute myeloid leukemia (AML) patients survive 5 years after diagnosis. This extremely poor prognosis of AML is mainly caused by treatment failure due to chemotherapy resistance. Chemotherapy resistance can be caused by various features including activation of alternative signaling pathways, evasion of cell death or activation of receptor tyrosine kinases such as the insulin growth factor-1 receptor (IGF-1R). Here we have studied the role of the insulin-like growth factor-binding protein-7 (IGFBP7), a tumor suppressor and part of the IGF-1R axis, in AML. We report that IGFBP7 sensitizes AML cells to chemotherapy-induced cell death. Moreover, overexpression of IGFBP7 as well as addition of recombinant human IGFBP7 is able to reduce the survival of AML cells by the induction of a G2 cell cycle arrest and apoptosis. This effect is mainly independent from IGF-1R activation, activated Akt and activated Erk. Importantly, AML patients with high IGFBP7 expression have a better outcome than patients with low IGFBP7 expression, indicating a positive role for IGFBP7 in treatment and outcome of AML. Together, this suggests that the combination of IGFBP7 and chemotherapy might potentially overcome conventional AML drug resistance and thus might improve AML patient survival.

Liu L, Yang Z, Zhang W, et al.
Decreased expression of IGFBP7 was a poor prognosis predictor for gastric cancer patients.
Tumour Biol. 2014; 35(9):8875-81 [PubMed] Related Publications
Increasing evidence indicated that insulin-like growth factor binding protein 7 (IGFBP7) was regarded as a potential tumor suppressor in various human cancers, but its role in gastric cancer is still largely unknown. In the present study, we performed a retrospective study which includes 247 gastric cancer patients. Among them, the IGFBP7 expression was detected by qRT-PCR in 138 cases of gastric cancer and adjacent non-tumor tissues and was further correlated with the expression of p53, Ki-67, and the clinicopathologic features. The results indicated that both IGFBP7 mRNA and protein in gastric cancer tissues were significantly lower than those in the adjacent non-tumor tissues. Additionally, the expression of IGFBP7 was correlated with the depth of invasion, lymph node metastasis, and TNM stage. Interestingly, the expression of IGFBP7 was negatively associated with Ki-67 (r = -0.227, P < 0.001) but positively associated with p53 (r = 0.140, P = 0.028). Univariate analysis showed that low expression of IGFBP7 was associated with poor prognosis (P < 0.001), and multivariate analysis showed that IGFBP7 (HR = 1.87; 95 % CI 1.65-2.17), distant metastasis (HR = 2.68; 95 % CI 1.58-4.56), and tumor size (HR = 1.45; 95 % CI 0.90-2.32) were independent prognostic factors for gastric cancer patients. These results demonstrated that IGFBP7 was downregulated in gastric cancer, and its low expression was potentially correlated with increased cancer cell proliferation and could be used to predicate poor prognosis in these patients.

Yang W, Wang X, Li X, et al.
The specific methylation characteristics of cancer related genes in Chinese colorectal cancer patients.
Tumour Biol. 2014; 35(8):8267-79 [PubMed] Related Publications
Aberrant DNA methylation at CpG islands has been implicated as a critical player in colorectal cancer (CRC). However, its biological role and clinical significance in carcinogenesis have not been clearly clarified in Chinese CRC patients. In order to examine the methylation status of cancer-related genes in CRC progression, 184 tumor tissues were collected from Chinese patients diagnosed with CRC during 2008-2011. Promoter methylation was assessed by combined bisulphite-restriction analysis, methylation-specific PCR, and bisulphite sequencing PCR . The relationship between the gene promoter methylation status and clinicopathological factors/CRC mortality was examined by using the chi-square test/Cox-proportional hazards models. Promoter hypermethylation of MLH1, p16, SFRP2, PHD3, KLOTHO, and IGFBP7 was observed in 1.6, 10.9, 97.3, 44.0, 59.8, and 88.6 % of CRC samples, respectively. KLOTHO promoter methylation reduced with age (P = 0.018) whereas p16 promoter methylation increased with age (P = 0.044) and was more frequent among males (P = 0.017). Tumor tissues (73.9 %) had concurrent methylation of two or more genes, with the most frequent combination as KLOTHO and IGFBP7 (53.8 %). Concurrent methylation of KLOTHO and IGFBP7 occurred more frequently among patients less than 70 years old (P = 0.035) and those with poor differentiation (P = 0.024). CRC-specific mortality was not associated with promoter methylation and clinicopathological features except for age (P = 0.038; risk ratio (RR), 1.96; 95 % confidence interval (CI), 1.04-3.70) and TNM stage (P = 0.034; RR, 3.47; 95 % CI, 1.10-10.92). Methylation frequencies of MLH1, p16, PHD3, KLOTHO, and IGFBP7 in CRC tissues were significantly higher than that in the paired normal tissues, while promoter hypermethylation of SFRP2 was widespread in normal tissues. In conclusion, we suggest that methylation of some genes (MLH1, PHD3, KLOTHO, p16, and IGFBP7) is important in CRC progression whereas SFRP2 methylation is unlikely to contribute to CRC development in Chinese patients. Besides, by identifying the characteristics of concordant methylation, we confirm the multifactorial nature of tumor progression.

Komiya E, Sato H, Watanabe N, et al.
Angiomodulin, a marker of cancer vasculature, is upregulated by vascular endothelial growth factor and increases vascular permeability as a ligand of integrin αvβ3.
Cancer Med. 2014; 3(3):537-49 [PubMed] Article available free on PMC after 12/08/2015 Related Publications
Angiomodulin (AGM) is a member of insulin-like growth factor binding protein (IGFBP) superfamily and often called IGFBP-rP1 or IGFBP-7. AGM was originally identified as a tumor-derived cell adhesion factor, which was highly accumulated in blood vessels of human cancer tissues. AGM is also overexpressed in cancer-associated fibroblasts (CAFs) and activates fibroblasts. However, some studies have shown tumor-suppressing activity of AGM. To understand the roles of AGM in cancer progression, we here investigated the expression of AGM in benign and invasive breast cancers and its functions in cancer vasculature. Immunohistochemical analysis showed that AGM was highly expressed in cancer vasculature even in ductal carcinoma in situ (DCIS) as compared to normal vasculature, while its expression in CAFs was more prominent in invasive carcinomas than DCIS. In vitro analyses showed that AGM was strongly induced by vascular endothelial cell growth factor (VEGF) in vascular endothelial cells. Although AGM stimulated neither the growth nor migration of endothelial cells, it supported efficient adhesion of endothelial cells. Integrin αvβ3 was identified as a novel major receptor for AGM in vascular endothelial cells. AGM retracted endothelial cells by inducing actin stress fibers and loosened their VE-cadherin-mediated intercellular junction. Consequently, AGM increased vascular permeability both in vitro and in vivo. Furthermore, AGM and integrin αvβ3 were highly expressed and colocalized in cancer vasculature. These results suggest that AGM cooperates with VEGF to induce the aberrant functions of cancer vasculature as a ligand of integrin αvβ3.

Poggi A, Musso A, Dapino I, Zocchi MR
Mechanisms of tumor escape from immune system: role of mesenchymal stromal cells.
Immunol Lett. 2014 May-Jun; 159(1-2):55-72 [PubMed] Related Publications
Tumor microenvironment represents the site where the tumor tries to survive and escape from immune system-mediated recognition. Indeed, to proliferate tumor cells can divert the immune response inducing the generation of myeloid derived suppressor cells and regulatory T cells which can limit the efficiency of effector antitumor lymphocytes in eliminating neoplastic cells. Many components of the tumor microenvironment can serve as a double sword for the tumor and the host. Several types of fibroblast-like cells, which herein we define mesenchymal stromal cells (MSC), secrete extracellular matrix components and surrounding the tumor mass can limit the expansion of the tumor. On the other hand, MSC can interfere with the immune recognition of tumor cells producing immunoregulatory cytokines as transforming growth factor (TGF)ß, releasing soluble ligands of the activating receptors expressed on cytolytic effector cells as decoy molecules, affecting the correct interaction among lymphocytes and tumor cells. MSC can also serve as target for the same anti-tumor effector lymphocytes or simply impede the interaction between these lymphocytes and neoplastic cells. Thus, several evidences point out the role of MSC, both in epithelial solid tumors and hematological malignancies, in regulating tumor cell growth and immune response. Herein, we review these evidences and suggest that MSC can be a suitable target for a more efficient anti-tumor therapy.

Rosmarin D, Palles C, Pagnamenta A, et al.
A candidate gene study of capecitabine-related toxicity in colorectal cancer identifies new toxicity variants at DPYD and a putative role for ENOSF1 rather than TYMS.
Gut. 2015; 64(1):111-20 [PubMed] Article available free on PMC after 12/08/2015 Related Publications
OBJECTIVE: Capecitabine is an oral 5-fluorouracil (5-FU) pro-drug commonly used to treat colorectal carcinoma and other tumours. About 35% of patients experience dose-limiting toxicity. The few proven genetic biomarkers of 5-FU toxicity are rare variants and polymorphisms, respectively, at candidate loci dihydropyrimidine dehydrogenase (DPYD) and thymidylate synthase (TYMS).
DESIGN: We investigated 1456 polymorphisms and rare coding variants near 25 candidate 5-FU pathway genes in 968 UK patients from the QUASAR2 clinical trial.
RESULTS: We identified the first common DPYD polymorphisms to be consistently associated with capecitabine toxicity, rs12132152 (toxicity allele frequency (TAF)=0.031, OR=3.83, p=4.31×10(-6)) and rs12022243 (TAF=0.196, OR=1.69, p=2.55×10(-5)). rs12132152 was particularly strongly associated with hand-foot syndrome (OR=6.1, p=3.6×10(-8)). The rs12132152 and rs12022243 associations were independent of each other and of previously reported DPYD toxicity variants. Next-generation sequencing additionally identified rare DPYD variant p.Ala551Thr in one patient with severe toxicity. Using functional predictions and published data, we assigned p.Ala551Thr as causal for toxicity. We found that polymorphism rs2612091, which lies within an intron of ENOSF1, was also associated with capecitabine toxicity (TAF=0.532, OR=1.59, p=5.28×10(-6)). ENSOF1 is adjacent to TYMS and there is a poorly characterised regulatory interaction between the two genes/proteins. Unexpectedly, rs2612091 fully explained the previously reported associations between capecitabine toxicity and the supposedly functional TYMS variants, 5'VNTR 2R/3R and 3'UTR 6 bp ins-del. rs2612091 genotypes were, moreover, consistently associated with ENOSF1 mRNA levels, but not with TYMS expression.
CONCLUSIONS: DPYD harbours rare and common capecitabine toxicity variants. The toxicity polymorphism in the TYMS region may actually act through ENOSF1.

Cho S, Moon H, Loh TJ, et al.
PSF contacts exon 7 of SMN2 pre-mRNA to promote exon 7 inclusion.
Biochim Biophys Acta. 2014; 1839(6):517-25 [PubMed] Related Publications
Spinal muscular atrophy (SMA) is an autosomal recessive genetic disease and a leading cause of infant mortality. Deletions or mutations of SMN1 cause SMA, a gene that encodes a SMN protein. SMN is important for the assembly of Sm proteins onto UsnRNA to UsnRNP. SMN has also been suggested to direct axonal transport of β-actin mRNA in neurons. Humans contain a second SMN gene called SMN2 thus SMA patients produce some SMN but not with sufficient levels. The majority of SMN2 mRNA does not include exon 7. Here we show that increased expression of PSF promotes inclusion of exon 7 in the SMN2 whereas reduced expression of PSF promotes exon 7 skipping. In addition, we present evidence showing that PSF interacts with the GAAGGA enhancer in exon 7. We also demonstrate that a mutation in this enhancer abolishes the effects of PSF on exon 7 splicing. Furthermore we show that the RNA target sequences of PSF and tra2β in exon 7 are partially overlapped. These results lead us to conclude that PSF interacts with an enhancer in exon 7 to promote exon 7 splicing of SMN2 pre-mRNA.

Benini S, Cocchi S, Gamberi G, et al.
Diagnostic utility of molecular investigation in extraskeletal myxoid chondrosarcoma.
J Mol Diagn. 2014; 16(3):314-23 [PubMed] Related Publications
Extraskeletal myxoid chondrosarcoma is characterized by the reciprocal chromosomal translocation t(9;22) and the resultant fused gene EWS RNA-binding protein 1 and nuclear receptor subfamily 4, group A, member 3 (EWSR1-NR4A3). A second cytogenetic rearrangement t(9;17) involves the genes NR4A3 and TAF 15 RNA polymerase II, TATA box binding protein (TBP)-associated factor (TAF15). Less frequent fusion transcript variants of the NR4A3 gene, transcription factor 12 (TCF12)-NR4A3 and TRK-fused gene (TFG)-NR4A3, are associated with t(9;15) and t(9;3) respectively. The samples from 42 patients with extraskeletal myxoid chondrosarcoma were examined for the presence of EWSR1-NR4A3, TAF15-NR4A3, TCF12-NR4A3, and TFG-NR4A3 fusion transcripts by using RT-PCR. Fluorescence in situ hybridization was performed to analyze the status of EWSR1 and NR4A3 genes. The fusion transcripts were detected in 34 of 42 samples (81%); the presence of an EWSR1 or NR4A3 gene rearrangements were detected in 8 of 42 samples (19%) which had tested negative for all fusion transcripts detected by RT-PCR. Of the 34 samples evaluable for fusion transcripts, 23 yielded positive results for EWSR1-NR4A3, 10 for TAF15-NR4A3, and 1 for TCF12-NR4A3. The combination of RT-PCR and fluorescence in situ hybridization on frozen and paraffin-embedded tissue is a sensitive and specific method for molecular detection of recurrent translocations and is an important ancillary method to establish the diagnosis of extraskeletal myxoid chondrosarcoma.

Ferrand N, Gnanapragasam A, Dorothee G, et al.
Loss of WISP2/CCN5 in estrogen-dependent MCF7 human breast cancer cells promotes a stem-like cell phenotype.
PLoS One. 2014; 9(2):e87878 [PubMed] Article available free on PMC after 12/08/2015 Related Publications
It has been proposed that the epithelial-mesenchymal transition (EMT) in mammary epithelial cells and breast cancer cells generates stem cell features. WISP2 (Wnt-1-induced signaling protein-2) plays an important role in maintenance of the differentiated phenotype of estrogen receptor-positive breast cancer cells and loss of WISP2 is associated with EMT. We now report that loss of WISP2 in MCF7 breast cancer cells can also promote the emergence of a cancer stem-like cell phenotype characterized by high expression of CD44, increased aldehyde dehydrogenase activity and mammosphere formation. Higher levels of the stem cell markers Nanog and Oct3/4 were observed in those mammospheres. In addition we show that low-cell inoculums are capable of tumor formation in the mammary fat pad of immunodeficient mice. Gene expression analysis show an enrichment of markers linked to stem cell function such as SOX9 and IGFBP7 which is linked to TGF-β inducible, SMAD3-dependent transcription. Taken together, our data demonstrate that WISP2 loss promotes both EMT and the stem-like cell phenotype.

Rao C, Lin SL, Ruan WJ, et al.
High expression of IGFBP7 in fibroblasts induced by colorectal cancer cells is co-regulated by TGF-β and Wnt signaling in a Smad2/3-Dvl2/3-dependent manner.
PLoS One. 2014; 9(1):e85340 [PubMed] Article available free on PMC after 12/08/2015 Related Publications
Fibroblasts in the tumor microenvironment are a key determinant in cancer progression and may be a promising target for cancer therapy. Insulin-like growth factor binding protein 7 (IGFBP7) is known as a tumor suppressor in colorectal cancer (CRC). The present study investigated the inductive mechanism of IGFBP7 expression in fibroblasts by supernatant from the CRC cell line, SW620. The results showed that the expression of IGFBP7 was up-regulated in the fibroblasts when treated with SW620 supernatant and exogenous TGF-β1. The IGFBP7 induced by SW620 supernatant or TGF-β1 was partially inhibited by the TGF-β1 specific antibody AF and TGF-β1 receptor antagonist SB431542. The Wnt signaling-targeted genes, c-Myc, CCND1 and the proteins Dvl2/3, were all up-regulated in fibroblasts expressing high levels of IGFBP7, and the up-regulation could be inhibited both by the Wnt signaling antagonist Dickkopf-1 (DKK1) and by the TGF-β1 receptor antagonist SB431542. In conclusion, CRC cells promote the high expression of IGFBP7 in fibroblasts, most likely through the co-regulation of TGF-β and Wnt signaling in a Smad2/3-Dvl2/3 dependent manner. Taken together, these data suggest that the fibroblasts could be a novel therapeutic target in tumor therapy.

Smith E, Ruszkiewicz AR, Jamieson GG, Drew PA
IGFBP7 is associated with poor prognosis in oesophageal adenocarcinoma and is regulated by promoter DNA methylation.
Br J Cancer. 2014; 110(3):775-82 [PubMed] Article available free on PMC after 12/08/2015 Related Publications
BACKGROUND: We examined whether silencing of IGFBP7 was associated with survival in patients with oesophageal adenocarcinoma.
METHODS: Protein expression of IGFBP7 was determined using immunohistochemistry in a tissue microarray representing tumours from 65 patients with oesophageal adenocarcinoma who had not had neoadjuvant therapy. DNA methylation of the IGFBP7 promoter was determined with the melt curve analysis in cell lines and patient tissues.
RESULTS: Expression of IGFBP7 was observed in the oesophageal adenocarcinoma of 34 out of 65 (52%) patients and was associated with significantly reduced median (11 vs 92 months) and 5-year survival (25% vs 52%). Multivariate analysis identified expression as an independent prognostic indicator for survival (hazard ratio=3.24, 95% confidence interval=1.58-6.67, P-value=0.0014). Hypermethylation of IGFBP7 was associated with silencing of gene expression in cell lines and patient tissues (P-value=0.0225). Methylation was observed in the squamous mucosa of 2 out of 15 (13%) patients with Barrett's oesophagus and 3 out of 17 (18%) with oesophageal adenocarcinoma. Methylation was observed in 14 out of 18 (78%) of biopsies of Barrett's mucosa and 23 out of 34 (68%) patients with oesophageal adenocarcinoma.
CONCLUSION: Reduced IGFBP7 protein expression was associated with longer survival in patients with oesophageal adenocarcinoma. Methylation of the IGFBP7 promoter was associated with silencing of gene expression and was frequent in Barrett's oesophagus and oesophageal adenocarcinoma.

Xu CZ, Shi RJ, Chen D, et al.
Potential biomarkers for paclitaxel sensitivity in hypopharynx cancer cell.
Int J Clin Exp Pathol. 2013; 6(12):2745-56 [PubMed] Article available free on PMC after 12/08/2015 Related Publications
Paclitaxel has been proved to be active in treatment and larynx preservation of HNSCC, however, the fact that about 20-40% patients do not respond to paclitaxel makes it urgent to figure out the biomarkers for paclitaxel-based treatment in Hypopharynx cancer (HPC) patients to improve the therapy effect. In this work, Fadu cells, treated or untreated with low dose of paclitaxel for 24 h, were applied to DNA microarray chips. The differential expression in mRNAs and miRs was analyzed and the network between expression-altered mRNAs and miRs was constructed. Differentially expressed genes were mainly enriched in superpathway of cholesterol biosynthesis (ACAT2, MSMO1, LSS, FDFT1 and FDPS etc.), complement system (C3, C1R, C1S, CFR and CFB etc.), interferon signaling (IFIT1, IFIT3, IFITM1 and MX1 etc.), mTOR signaling (MRAS, PRKAA2, PLD1, RND3 and EIF4A1 etc.) and IGF1 signaling (MRAS, IGFBP7, JUN and FOS etc.), most of these pathways are implicated in tumorigenesis or chemotherapy resistance. The first three pathways were predicted to be suppressed, while the last two pathways were predicted to be induced by paclitaxel, suggesting the combination therapy with mTOR inhibition and paclitaxel might be better than single one. The dramatically expression-altered miRs were miR-112, miR-7, miR-1304, miR-222*, miR-29b-1* (these five miRs were upregulated) and miR-210 (downregulated). The 26 putative target genes mediated by the 6 miRs were figured out and the miR-gene network was constructed. Furthermore, immunoblotting assay showed that ERK signaling in Fadu cells was active by low dose of paclitaxel but repressed by high dose of paclitaxel. Collectively, our data would provide potential biomarkers and therapeutic targets for paclitaxel-based therapy in HPC patients.

Tsukahara T, Matsuda Y, Haniu H
PSF knockdown enhances apoptosis via downregulation of LC3B in human colon cancer cells.
Biomed Res Int. 2013; 2013:204973 [PubMed] Article available free on PMC after 12/08/2015 Related Publications
Our previous study demonstrated that PTB-associated splicing factor (PSF) is an important regulator of cell death and plays critical roles in the survival and growth of colon cancer cells. However, the molecular mechanism that activates these downstream signaling events remains unknown. To address this issue, we investigated the effects of PSF knockdown in two different colon cancer cell lines, DLD-1 and HT-29. We found that knockdown of PSF markedly decreased the autophagic molecule LC3B in DLD-1 cells but not in HT-29 cells. Furthermore, DLD-1 cells were more susceptible to PSF knockdown-induced cell growth inhibition and apoptosis than HT-29 cells. This susceptibility is probably a result of LC3B inhibition, given the known relationship between autophagy and apoptosis. C3B is associated with a number of physiological processes, including cell growth and apoptotic cell death. Our results suggest that autophagy is inhibited by PSF knockdown and that apoptosis and cell growth inhibition may act together to mediate the PSF-LC3B signaling pathway. Furthermore, we found that the peroxisome proliferator-activated receptor gamma (PPARγ)-PSF complex induced LC3B downregulation in DLD-1 cells. The results of this study identify a new physiological role for the PSF-LC3B axis as a potential endogenous modulator of colon cancer treatment.

Heckmann D, Maier P, Laufs S, et al.
The disparate twins: a comparative study of CXCR4 and CXCR7 in SDF-1α-induced gene expression, invasion and chemosensitivity of colon cancer.
Clin Cancer Res. 2014; 20(3):604-16 [PubMed] Related Publications
PURPOSE: In colorectal cancer, increased expression of the CXC chemokine receptor 4 (CXCR4) has been shown to provoke metastatic disease due to the interaction with its ligand stromal cell-derived factor-1 (SDF-1). Recently, a second SDF-1 receptor, CXCR7, was found to enhance tumor growth in solid tumors. Albeit signaling cascades via SDF-1/CXCR4 have been intensively studied, the significance of the SDF-1/CXCR7-induced intracellular communication triggering malignancy is still only marginally understood.
EXPERIMENTAL DESIGN: In tumor tissue of 52 patients with colorectal cancer, we observed that expression of CXCR7 and CXCR4 increased with tumor stage and tumor size. Asking whether activation of CXCR4 or CXCR7 might result in a similar expression pattern, we performed microarray expression analyses using lentivirally CXCR4- and/or CXCR7-overexpressing SW480 colon cancer cell lines with and without stimulation by SDF-1α.
RESULTS: Gene regulation via SDF-1α/CXCR4 and SDF-1α/CXCR7 was completely different and partly antidromic. Differentially regulated genes were assigned by gene ontology to migration, proliferation, and lipid metabolic processes. Expressions of AKR1C3, AXL, C5, IGFBP7, IL24, RRAS, and TNNC1 were confirmed by quantitative real-time PCR. Using the in silico gene set enrichment analysis, we showed that expressions of miR-217 and miR-218 were increased in CXCR4 and reduced in CXCR7 cells after stimulation with SDF-1α. Functionally, exposure to SDF-1α increased invasiveness of CXCR4 and CXCR7 cells, AXL knockdown hampered invasion. Compared with controls, CXCR4 cells showed increased sensitivity against 5-FU, whereas CXCR7 cells were more chemoresistant.
CONCLUSIONS: These opposing results for CXCR4- or CXCR7-overexpressing colon carcinoma cells demand an unexpected attention in the clinical application of chemokine receptor antagonists such as plerixafor.

Li F, Fan YC, Gao S, et al.
Methylation of serum insulin-like growth factor-binding protein 7 promoter in hepatitis B virus-associated hepatocellular carcinoma.
Genes Chromosomes Cancer. 2014; 53(1):90-7 [PubMed] Related Publications
Methylation of gene promoter CpG islands is an important early event in hepatocellular carcinoma (HCC), and detection of cell-free tumor-specific DNA methylation is becoming a useful noninvasive method for HCC. This study was aimed at determining the diagnostic value of serum insulin-like growth factor-binding protein 7 (IGFBP7) promoter methylation in hepatitis B virus-associated HCC. A total of 217 subjects, including 136 HCC patients, 46 patients with chronic hepatitis B (CHB), and 35 healthy controls (HCs), were included. The methylation status of the serum IGFBP7 gene promoter was determined using methylation-specific PCR. The frequency of serum IGFBP7 promoter methylation in HCC patients (89/136, 65%) was significantly higher than that in CHB patients (8/46, 17%; X(2) = 31.883, P < 0.001) and HCs (5/35, 14%; X(2) = 29.429, P < 0.001). Moreover, elevated IGFBP7 methylation frequency was also observed in HCC patients with vascular invasion compared with those without vascular invasion (84 versus 60%, X(2) = 6.633, P = 0.010). The sensitivities of serum IGFBP7 methylation and alpha-fetoprotein (AFP) in detecting HCC were 65 and 57%, respectively. Of note, the combination of IGFBP7 methylation and AFP showed 85% for sensitivity. These results suggest that methylation of the serum IGFBP7 gene promoter may serve as a useful noninvasive biomarker for HCC diagnosis.

Liu R, Li J, Xie K, et al.
FGFR4 promotes stroma-induced epithelial-to-mesenchymal transition in colorectal cancer.
Cancer Res. 2013; 73(19):5926-35 [PubMed] Related Publications
Tumor cells evolve by interacting with the local microenvironment; however, the tumor-stroma interactions that govern tumor metastasis are poorly understood. In this study, proteomic analyses reveal that coculture with tumor-associated fibroblasts (TAF) induces significant overexpression of FGFR4, but not other FGFRs, in colorectal cancer cell lines. Mechanistic study shows that FGFR4 plays crucial roles in TAF-induced epithelial-to-mesenchymal transition (EMT) in colorectal cancer cell lines. Accumulated FGFR4 in cell membrane phosphorylates β-catenin, leading to translocation of β-catenin into the nucleus. Further, TAF-derived CCL2 and its downstream transcription factor, Ets-1, are prerequisites for TAF-induced FGFR4 upregulation. Furthermore, FGFR4-associated pathways are shown to be preferentially activated in colorectal tumor samples, and direct tumor metastasis in a mouse metastasis model. Our study shows a pivotal role of FGFR4 in tumor-stroma interactions during colorectal cancer metastasis, and suggests novel therapeutic opportunities for the treatment of colorectal cancer.

Alonso EN, Orozco M, Eloy Nieto A, Balogh GA
Genes related to suppression of malignant phenotype induced by Maitake D-Fraction in breast cancer cells.
J Med Food. 2013; 16(7):602-17 [PubMed] Article available free on PMC after 12/08/2015 Related Publications
It is already known that the Maitake (D-Fraction) mushroom is involved in stimulating the immune system and activating certain cells that attack cancer, including macrophages, T-cells, and natural killer cells. According to the U.S. National Cancer Institute, polysaccharide complexes present in Maitake mushrooms appear to have significant anticancer activity. However, the exact molecular mechanism of the Maitake antitumoral effect is still unclear. Previously, we have reported that Maitake (D-Fraction) induces apoptosis in breast cancer cells by activation of BCL2-antagonist/killer 1 (BAK1) gene expression. At the present work, we are identifying which genes are responsible for the suppression of the tumoral phenotype mechanism induced by Maitake (D-Fraction) in breast cancer cells. Human breast cancer MCF-7 cells were treated with and without increased concentrations of Maitake D-Fraction (36, 91, 183, 367 μg/mL) for 24 h. Total RNA were isolated and cDNA microarrays were hybridized containing 25,000 human genes. Employing the cDNA microarray analysis, we found that Maitake D-Fraction modified the expression of 4068 genes (2420 were upmodulated and 1648 were downmodulated) in MCF-7 breast cancer cells in a dose-dependent manner during 24 h of treatment. The present data shows that Maitake D-Fraction suppresses the breast tumoral phenotype through a putative molecular mechanism modifying the expression of certain genes (such as IGFBP-7, ITGA2, ICAM3, SOD2, CAV-1, Cul-3, NRF2, Cycline E, ST7, and SPARC) that are involved in apoptosis stimulation, inhibition of cell growth and proliferation, cell cycle arrest, blocking migration and metastasis of tumoral cells, and inducing multidrug sensitivity. Altogether, these results suggest that Maitake D-Fraction could be a potential new target for breast cancer chemoprevention and treatment.

Twelves D, Nerurkar A, Osin P, et al.
DNA promoter hypermethylation profiles in breast duct fluid.
Breast Cancer Res Treat. 2013; 139(2):341-50 [PubMed] Related Publications
DNA methylation of tumor-suppressor genes occurs early in the molecular transformation of precursor events to breast cancer and is therefore of interest to screening in high-risk women. The aim of this study was to use tumor-suppressor genes that have previously been shown to be cancer predictive in tissue to evaluate the potential of DNA methylation assays in cells from duct lavage (DL) fluid. The frequency of target gene DNA methylation in tissue and DL of cancer and healthy control patients was assessed, and an association of DNA methylation between different duct systems in the same breast was explored. The cancer and control groups were identified in the outpatient clinic when surgical treatment was finalized. Tumor, adjacent tissue and bilateral DL samples for comparative DNA methylation studies were obtained during surgery from women with cancer. In the healthy control group, samples of tissue and DL were collected. Reverse transcriptase methylation-specific PCR was conducted on modified DNA purified from 42 cancer biopsies, 41 benign excision cavity biopsies (internal control), 29 benign biopsies (external control), and 119 DL specimens. A validated panel of cancer predictive genes was analyzed in the study bank of tissue and DL samples from cancer and healthy patients. The sensitivity of DNA methylation in DL samples compared with matched cancer tissue was highest for SCGB3A1 (90 %), CDH13 (91 %), and RARB (83 %). The genetic algorithm selected RASSF1A, RARB, and IGFBP7 as the optimum predictor set for detecting DNA methylation in cancer tissue. The optimum area under the ROC curve for DNA methylation in cancer compared with internal control healthy tissue from excision margins was 0.84. The area under the ROC curve for DNA methylation in cancer DL compared with contralateral benign DL was 0.76. DL cytology was not a helpful predictor of breast cancer. This study shows that relative patterns of tumor-suppressor gene hypermethylation in breast cancer tissue are significantly reflected in the DL from the cancer affected breast. Using DL, nonconcordant patterns of DNA methylation between different duct systems confer independent oncologic potential for distinct breast lobes. The approach of DNA methylation in DL may be substantiated by a larger trial of breast cancer biomarkers.

Takayama K, Horie-Inoue K, Katayama S, et al.
Androgen-responsive long noncoding RNA CTBP1-AS promotes prostate cancer.
EMBO J. 2013; 32(12):1665-80 [PubMed] Article available free on PMC after 12/08/2015 Related Publications
High-throughput techniques have identified numerous antisense (AS) transcripts and long non-coding RNAs (ncRNAs). However, their significance in cancer biology remains largely unknown. Here, we report an androgen-responsive long ncRNA, CTBP1-AS, located in the AS region of C-terminal binding protein 1 (CTBP1), which is a corepressor for androgen receptor. CTBP1-AS is predominantly localized in the nucleus and its expression is generally upregulated in prostate cancer. CTBP1-AS promotes both hormone-dependent and castration-resistant tumour growth. Mechanistically, CTBP1-AS directly represses CTBP1 expression by recruiting the RNA-binding transcriptional repressor PSF together with histone deacetylases. CTBP1-AS also exhibits global androgen-dependent functions by inhibiting tumour-suppressor genes via the PSF-dependent mechanism thus promoting cell cycle progression. Our findings provide new insights into the functions of ncRNAs that directly contribute to prostate cancer progression.

Zhong M, Weisman P, Zhu B, et al.
Xp11.2 translocation renal cell carcinoma with PSF-TFE3 rearrangement.
Diagn Mol Pathol. 2013; 22(2):107-11 [PubMed] Related Publications
Xp11.2 translocation renal cell carcinoma (Xp11.2 RCC) is a subtype of RCC characterized by translocations involving a breakpoint at the TFE3 gene (Xp11.2). Moderate to strong nuclear TFE3 immunoreactivity has been recognized as a specific diagnostic marker for this type of tumor. However, exclusive cytoplasmic localization of a TFE3 fusion protein was reported in UOK 145 cells, a cell line derived from an Xp11.2 RCC harboring the PSF-TFE3 translocation. If reproducible using immunohistochemistry (IHC), this finding would have important implications for pathologists in the diagnosis of Xp11.2 RCC, calling into question the specificity of nuclear immunoreactivity for TFE3 in these tumors. The purpose of this study was to determine whether the above-noted cytoplasmic localization of the TFE3 fusion protein could be reproduced using IHC. UOK 145 cells and fresh frozen tissue from 2 clinical cases of Xp11.2 RCC found to harbor the PSF-TFE3 gene rearrangement (by cytogenetic testing) were collected. All samples were subjected to histopathologic evaluation by board-certified pathologists, TFE3 IHC, reverse transcription polymerase chain reaction, and Sanger sequencing analysis. A strong nuclear TFE3 immunoreactivity was demonstrated in all samples including the UOK 145 cell line. No cytoplasmic immunoreactivity was seen. Reverse transcription polymerase chain reaction and Sanger sequencing confirmed the previously reported PSF-TFE3 gene fusion between exon 9 of PSF and exon 6 of TFE3 in the UOK 145 cell line and in one of 2 clinical cases of Xp11.2 RCC. A novel PSF-TFE3 gene fusion between exon 9 of PSF and exon 5 of TFE3 was detected in the second clinical case of Xp11.2 RCC.

Wu CF, Tan GH, Ma CC, Li L
The non-coding RNA llme23 drives the malignant property of human melanoma cells.
J Genet Genomics. 2013; 40(4):179-88 [PubMed] Related Publications
Several lines of evidence support the notion that increased RNA-binding ability of polypyrimidine tract-binding (PTB) protein-associated splicing factor (PSF) and aberrant expression of long non-coding RNAs (lncRNAs) are associated with mouse and human tumors. To identify the PSF-binding lncRNA involved in human oncogenesis, we screened a nuclear RNA repertoire of human melanoma cell line, YUSAC, through RNA-SELEX affinity chromatography. A previously unreported lncRNA, termed as Llme23, was found to bind immobilized PSF resin. The specific binding of Llme23 to both recombinant and native PSF protein was confirmed in vitro and in vivo. The expression of PSF-binding Llme23 is exclusively detected in human melanoma lines. Knocking down Llme23 remarkably suppressed the malignant property of YUSAC cells, accompanied by the repressed expression of proto-oncogene Rab23. These results may indicate that Llme23 can function as an oncogenic RNA and directly associate the PSF-binding lncRNA with human melanoma.

Hochberg M, Gilead L, Markel G, et al.
Insulin-like growth factor-binding protein-7 (IGFBP7) transcript: A-to-I editing events in normal and cancerous human keratinocytes.
Arch Dermatol Res. 2013; 305(6):519-28 [PubMed] Related Publications
Non-melanoma skin cancers (NMSC) are the most common malignancies in caucasians worldwide. Insulin-like growth factor-binding protein-7 (IGFBP7) was suggested to function as a tumor suppressor gene in several cancers, and to play a role in the proliferation of keratinocytes. A-to-I RNA editing is a post-transcriptional mechanism frequently used to expand and diversify transcriptome and proteome repertoire in eukaryotic cells. A-to-I RNA editing can alter codons, substitute amino acids and affect protein sequence, structure, and function. Two editing sites were identified within the IGFBP7 transcript. To evaluate the expression and editing of IGFBP7 mRNA in NMSC compared to normal epidermis. We examined the expression and mRNA editing level of IGFBP7 in 22 basal cell carcinoma (BCC), 15 squamous cell carcinoma (SCC), and 18 normal epidermis samples that were surgically removed from patients by the Mohs Micrographic Surgery procedure. We studied the effect of IGFBP7 editing on an immortalized HaCaT keratinocyte cell model. IGFBP7 mRNA is over expressed in BCC and SCC compared to normal epidermis. Moreover, the IGFBP7 transcript is highly edited in normal epidermis, but its editing is significantly reduced in BCC and SCC. The edited form of IGFBP7 can inhibit proliferation and induce senescence in cultured keratinocytes. This study describes for the first time A-to-I editing in the coding sequence of a tumor suppressor gene in humans, and suggests that IGFBP7 editing serves as a fine-tuning mechanism to maintain the equilibrium between proliferation and senescence in normal skin.

Tsukahara T, Haniu H, Matsuda Y
PTB-associated splicing factor (PSF) is a PPARγ-binding protein and growth regulator of colon cancer cells.
PLoS One. 2013; 8(3):e58749 [PubMed] Article available free on PMC after 12/08/2015 Related Publications
Peroxisome proliferator-activated receptor gamma (PPARγ) is a nuclear receptor that plays an essential role in cell proliferation, apoptosis, and inflammation. It is over-expressed in many types of cancer, including colon, stomach, breast, and lung cancer, suggesting that regulation of PPARγ might affect cancer pathogenesis. Here, using a proteomic approach, we identify PTB-associated splicing factor (PSF) as a novel PPARγ-interacting protein and demonstrate that PSF is involved in several important regulatory steps of colon cancer cell proliferation. To investigate the relationship between PSF and PPARγ in colon cancer, we evaluated the effects of PSF expression in DLD-1 and HT-29 colon cancer cell lines, which express low and high levels of PPARγ, respectively PSF affected the ability of PPARγ to bind, and expression of PSF siRNA significantly suppressed the proliferation of colon cancer cells. Furthermore, PSF knockdown induced apoptosis via activation of caspase-3. Interestingly, DLD-1 cells were more susceptible to PSF knockdown-induced cell death than HT-29 cells. Our data suggest that PSF is an important regulator of cell death that plays critical roles in the survival and growth of colon cancer cells. The PSF-PPARγ axis may play a role in the control of colorectal carcinogenesis. Taken together, this study is the first to describe the effects of PSF on cell proliferation, tumor growth, and cell signaling associated with PPARγ.

Heesch S, Neumann M, Schwartz S, et al.
Acute leukemias of ambiguous lineage in adults: molecular and clinical characterization.
Ann Hematol. 2013; 92(6):747-58 [PubMed] Related Publications
Acute leukemias of ambiguous lineage represent a heterogeneous group of rare, poorly characterized leukemias with adverse outcome. No larger studies have yet performed a combined approach of molecular and clinical characterization of acute undifferentiated leukemia (AUL) and biphenotypic acute leukemia (BAL) in adults. Here we describe 16 adults with AUL and 26 with BAL and performed mutational as well as expression studies of genes with prognostic impact in acute leukemia (BAALC, ERG, MN1, WT1, and IGFBP7). AUL showed overexpression of these genes compared to T-lymphoblastic leukemia (T-ALL), B-precursor ALL, and to acute myeloid leukemia (AML). Genotype alterations were not detectable in AUL. BAL samples were characterized by frequent WT1 mutations (18 %) and BCR-ABL translocations (30 %). ALL-based treatment protocols induced complete remissions in 40 % and AML-like therapies in 22 % of AUL/BAL patients. The outcome in both groups was very poor; a long-term survival was only observed in patients undergoing allogeneic stem cell transplantation (SCT). Our findings indicate that AUL and BAL share important molecular and high-risk features of both myeloid and lymphoid leukemias. BAL patients exhibited genetic alterations, which can be targeted therapeutically. Importantly, ALL therapy might be more effective than AML protocols and AUL/BAL patients should be considered for allogeneic SCT.

Suzuki M, Shiraishi K, Eguchi A, et al.
Aberrant methylation of LINE-1, SLIT2, MAL and IGFBP7 in non-small cell lung cancer.
Oncol Rep. 2013; 29(4):1308-14 [PubMed] Article available free on PMC after 12/08/2015 Related Publications
Genome-wide DNA hypomethylation and gene hypermethylation play important roles in instability and carcino-genesis. Methylation in long interspersed nucleotide element 1 (LINE-1) is a good indicator of the global DNA methylation level within a cell. Slit homolog 2 (SLIT2), myelin and lymphocyte protein gene (MAL) and insulin-like growth factor binding protein 7 (IGFBP7) are known to be hypermethylated in various malignancies. The aim of the present study was to assess the precise methylation levels of LINE-1, SLIT2, MAL and IGFBP7 in non-small cell lung cancer (NSCLC) using a pyrosequencing assay. Methylation of all regions was examined in 56 primary NSCLCs using a pyrosequencing assay. Changes in mRNA expression levels of SLIT2, MAL and IGFBP7 were measured before and after treatment with a demethylating agent. Methylation of these genes was also examined in 9 lung cancer cell lines using RT-PCR and a pyrosequencing assay. Frequencies of hypomethylation of LINE-1 and hypermethylation of SLIT2, MAL and IGFBP7, defined by predetermined cut off values, were 55, 64, 46 and 54% in NSCLCs, respectively and exhibited tumor-specific features. The hypermethylation of all genes was well correlated with changes in expression. The methylation level and frequency of MAL were significantly higher in smokers and in patients without EGFR mutations. Through accurate measurement of methylation levels using pyrosequencing, hypomethylation of LINE-1 and hypermethylation of SLIT2, MAL and IGFBP7 were frequently detected in NSCLCs and associated with various clinical features. Analysis of the methylation profiles of these genes may, therefore, provide novel opportunities for the therapy of NSCLCs.

Neumann M, Coskun E, Fransecky L, et al.
FLT3 mutations in early T-cell precursor ALL characterize a stem cell like leukemia and imply the clinical use of tyrosine kinase inhibitors.
PLoS One. 2013; 8(1):e53190 [PubMed] Article available free on PMC after 12/08/2015 Related Publications
Early T-cell precursor acute lymphoblastic leukemia (ETP-ALL) has been identified as high-risk subgroup of acute T-lymphoblastic leukemia (T-ALL) with a high rate of FLT3-mutations in adults. To unravel the underlying pathomechanisms and the clinical course we assessed molecular alterations and clinical characteristics in a large cohort of ETP-ALL (n = 68) in comparison to non-ETP T-ALL adult patients. Interestingly, we found a high rate of FLT3-mutations in ETP-ALL samples (n = 24, 35%). Furthermore, FLT3 mutated ETP-ALL was characterized by a specific immunophenotype (CD2+/CD5-/CD13+/CD33-), a distinct gene expression pattern (aberrant expression of IGFBP7, WT1, GATA3) and mutational status (absence of NOTCH1 mutations and a low frequency, 21%, of clonal TCR rearrangements). The observed low GATA3 expression and high WT1 expression in combination with lack of NOTCH1 mutations and a low rate of TCR rearrangements point to a leukemic transformation at the pluripotent prothymocyte stage in FLT3 mutated ETP-ALL. The clinical outcome in ETP-ALL patients was poor, but encouraging in those patients with allogeneic stem cell transplantation (3-year OS: 74%). To further explore the efficacy of targeted therapies, we demonstrate that T-ALL cell lines transfected with FLT3 expression constructs were particularly sensitive to tyrosine kinase inhibitors. In conclusion, FLT3 mutated ETP-ALL defines a molecular distinct stem cell like leukemic subtype. These data warrant clinical studies with the implementation of FLT3 inhibitors in addition to early allogeneic stem cell transplantation for this high risk subgroup.

Kashyap MK, Pawar HA, Keerthikumar S, et al.
Evaluation of protein expression pattern of stanniocalcin 2, insulin-like growth factor-binding protein 7, inhibin beta A and four and a half LIM domains 1 in esophageal squamous cell carcinoma.
Cancer Biomark. 2012-2013; 12(1):1-9 [PubMed] Related Publications
The pathogenesis of esophageal squamous cell carcinoma (ESCC) involves both genetic and environmental factors. Previously, we have carried out gene and protein expression profiling of ESCC using DNA microarrays and mass spectrometry-based quantitative proteomics, respectively. These studies resulted in identification of several potential biomarkers of ESCC, some with known reports of differential expression in the scientific literature and others that were novel observations from our studies. We report systematic validation of selected markers from our studies on a larger cohort of cancer tissue sections by immunohistochemical labeling of tissue microarrays. We have validated expression of insulin-like growth factor-binding protein 7 (IGFBP7), stanniocalcin 2 (STC2), inhibin beta A (INHBA) and four and a half LIM domains 1 (FHL1). Immunohistochemical labeling with anti-stanniocalcin 2 antibody demonstrated its overexpression in 132/140 (94%) cases, IGFBP7 showed overexpression in 127/140 (91%) cases and overexpression of INHBA was observed in 62/105 (59%) of ESCC cases. In contrast, FHL1 expression was observed only in 12/143 (8%) of ESCC cases suggesting its possible involvement in tumor suppression. These data suggest that IGFBP7, INHBA, STC2 and FHL1 might play an important role in ESCC tumorigenesis, which can be explored in future studies. Overall, our findings open up new avenues for development of novel therapeutics and/or diagnostic approaches in ESCC.

Chen D, Siddiq A, Emdad L, et al.
Insulin-like growth factor-binding protein-7 (IGFBP7): a promising gene therapeutic for hepatocellular carcinoma (HCC).
Mol Ther. 2013; 21(4):758-66 [PubMed] Article available free on PMC after 12/08/2015 Related Publications
Hepatocellular carcinoma (HCC) is a highly fatal disease mandating development of novel, targeted therapies to elicit prolonged survival benefit to the patients. Insulin-like growth factor-binding protein-7 (IGFBP7), a secreted protein belonging to the IGFBP family, functions as a potential tumor suppressor for HCC. In the present study, we evaluated the therapeutic efficacy of a replication-incompetent adenovirus expressing IGFBP7 (Ad.IGFBP7) in human HCC. Ad.IGFBP7 profoundly inhibited viability and induced apoptosis in multiple human HCC cell lines by inducing reactive oxygen species (ROS) and activating a DNA damage response (DDR) and p38 MAPK. In orthotopic xenograft models of human HCC in athymic nude mice, intravenous administration of Ad.IGFBP7 profoundly inhibited primary tumor growth and intrahepatic metastasis. In a nude mice subcutaneous model, xenografts from human HCC cells were established in both flanks and only left-sided tumors received intratumoral injection of Ad.IGFBP7. Growth of both left-sided injected tumors and right-sided uninjected tumors were markedly inhibited by Ad.IGFBP7 with profound suppression of angiogenesis. These findings indicate that Ad.IGFBP7 might be a potent therapeutic eradicating both primary HCC and distant metastasis and might be an effective treatment option for terminal HCC patients.

Ohe C, Kuroda N, Hes O, et al.
A renal epithelioid angiomyolipoma/perivascular epithelioid cell tumor with TFE3 gene break visualized by FISH.
Med Mol Morphol. 2012; 45(4):234-7 [PubMed] Related Publications
We present a case of renal epithelioid angiomyolipoma (eAML)/perivascular epithelioid cell tumor (PEComa) with a TFE3 gene break visible by fluorescence in situ hybridization (FISH). Histologically, the tumor was composed of mainly epithelioid cells forming solid arrangements with small foci of spindle cells. In a small portion of the tumor, neoplastic cells displayed nuclear pleomorphism, such as polygonal and enlarged vesicular nuclei with prominent nucleoli. Marked vascularity was noticeable in the background, and perivascular hyaline sclerosis was also seen. Immunohistochemically, neoplastic cells were diffusely positive for α-smooth muscle actin and melanosome in the cytoplasm. Nuclei of many neoplastic cells were positive for TFE3. FISH analysis of the TFE3 gene break using the Poseidon TFE3 (Xp11) Break probe revealed positive results. Reverse transcriptase-polymerase chain reactions (RT-PCR) for ASPL/TFE3, PRCC/TFE3, CLTC/TFE3, PSF/TFE3, and NonO/TFE3 gene fusions all revealed negative results. This is the first reported case of renal eAML/PEComa with a TFE3 gene break, and it has unique histological findings as compared to previously reported TFE3 gene fusion-positive PEComas. Pathologists should recognize that PEComa with TFE3 gene fusion can arise even in the kidney.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. IGFBP7, Cancer Genetics Web: http://www.cancer-genetics.org/IGFBP7.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 28 February, 2015     Cancer Genetics Web, Established 1999