HCK

Gene Summary

Gene:HCK; HCK proto-oncogene, Src family tyrosine kinase
Aliases: JTK9, p59Hck, p61Hck
Location:20q11-q12
Summary:The protein encoded by this gene is a member of the Src family of tyrosine kinases. This protein is primarily hemopoietic, particularly in cells of the myeloid and B-lymphoid lineages. It may help couple the Fc receptor to the activation of the respiratory burst. In addition, it may play a role in neutrophil migration and in the degranulation of neutrophils. Multiple isoforms with different subcellular distributions are produced due to both alternative splicing and the use of alternative translation initiation codons, including a non-AUG (CUG) codon. [provided by RefSeq, Feb 2010]
Databases:OMIM, VEGA, HGNC, Ensembl, GeneCard, Gene
Protein:tyrosine-protein kinase HCK
HPRD
Source:NCBIAccessed: 20 August, 2015

Ontology:

What does this gene/protein do?
Show (42)
Pathways:What pathways are this gene/protein implicaed in?
Show (2)

Cancer Overview

Research Indicators

Publications Per Year (1990-2015)
Graph generated 20 August 2015 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 20 August, 2015 using data from PubMed, MeSH and CancerIndex

Specific Cancers (6)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: HCK (cancer-related)

Huang C, Sheng Y, Jia J, Chen L
Identification of melanoma biomarkers based on network modules by integrating the human signaling network with microarrays.
J Cancer Res Ther. 2014; 10 Suppl:C114-24 [PubMed] Related Publications
BACKGROUND: Melanoma is a leading cause of cancer death. Thus, accurate prognostic biomarkers that will assist rational treatment planning need to be identified.
METHODS: Microarray analysis of melanoma and normal tissue samples was performed to identify differentially expressed modules (DEMs) from the signaling network and ultimately detect molecular markers to support histological examination. Network motifs were extracted from the human signaling network. Then, significant expression-correlation differential modules were identified by comparing the network module expression-correlation differential scores under normal and disease conditions using the gene expression datasets. Finally, we obtained DEMs by the Wilcoxon rank test and considered the average gene expression level in these modules as the classification features for diagnosing melanoma.
RESULTS: In total, 99 functional DEMs were identified from the signaling network and gene expression profiles. The area under the curve scores for cancer module genes, melanoma module genes, and whole network modules are 92.4%, 90.44%, and 88.45%, respectively. The classification efficiency rates for nonmodule features are 71.04% and 79.38%, which correspond to the features of cancer genes and melanoma cancer genes, respectively. Finally, we acquired six significant molecular biomarkers, namely, module 10 (CALM3, Ca 2+ , PKC, PDGFRA, phospholipase-g, PIB5PA, and phosphatidylinositol-3-kinase), module 14 (SRC, Src homology 2 domain-containing [SHC], SAM68, GIT1, transcription factor-4, CBLB, GRB2, VAV2, LCK, YES, PTCH2, downstream of tyrosine kinase [DOK], and KIT), module 16 (ELK3, p85beta, SHC, ZFYVE9, TGFBR1, TGFBR2, CITED1, SH3KBP1, HCK, DOK, and KIT), module 45 (RB, CCND3, CCNA2, CDK4, and CDK6), module 75 (PCNA, CDK4, and CCND1), and module 114 (PSD93, NMDAR, and FYN).
CONCLUSION: We explored the gene expression profile and signaling network in a global view and identified DEMs that can be used as diagnostic or prognostic markers for melanoma.

Martínez R, Carmona FJ, Vizoso M, et al.
DNA methylation alterations in grade II- and anaplastic pleomorphic xanthoastrocytoma.
BMC Cancer. 2014; 14:213 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Pleomorphic xanthoastrocytoma (PXA) is a rare WHO grade II tumor accounting for less than 1% of all astrocytomas. Malignant transformation into PXA with anaplastic features, is unusual and correlates with poorer outcome of the patients.
METHODS: Using a DNA methylation custom array, we have quantified the DNA methylation level on the promoter sequence of 807 cancer-related genes of WHO grade II (n = 11) and III PXA (n = 2) and compared to normal brain tissue (n = 10) and glioblastoma (n = 87) samples. DNA methylation levels were further confirmed on independent samples by pyrosequencing of the promoter sequences.
RESULTS: Increasing DNA promoter hypermethylation events were observed in anaplastic PXA as compared with grade II samples. We further validated differential hypermethylation of CD81, HCK, HOXA5, ASCL2 and TES on anaplastic PXA and grade II tumors. Moreover, these epigenetic alterations overlap those described in glioblastoma patients, suggesting common mechanisms of tumorigenesis.
CONCLUSIONS: Even taking into consideration the small size of our patient populations, our data strongly suggest that epigenome-wide profiling of PXA is a valuable tool to identify methylated genes, which may play a role in the malignant progression of PXA. These methylation alterations may provide useful biomarkers for decision-making in those patients with low-grade PXA displaying a high risk of malignant transformation.

Ichim CV
Kinase-independent mechanisms of resistance of leukemia stem cells to tyrosine kinase inhibitors.
Stem Cells Transl Med. 2014; 3(4):405-15 [PubMed] Free Access to Full Article Related Publications
Tyrosine kinase inhibitors such as imatinib mesylate have changed the clinical course of chronic myeloid leukemia; however, the observation that these inhibitors do not target the leukemia stem cell implies that patients need to maintain lifelong therapy. The mechanism of this phenomenon is unclear: the question of whether tyrosine kinase inhibitors are inactive inside leukemia stem cells or whether leukemia stem cells do not require breakpoint cluster region (Bcr)-Abl signaling is currently under debate. Herein, I propose an alternative model: perhaps the leukemia stem cell requires Bcr-Abl, but is dependent on its kinase-independent functions. Kinases such as epidermal growth factor receptor and Janus kinase 2 possess kinase-independent roles in regulation of gene expression; it is worth investigating whether Bcr-Abl has similar functions. Mechanistically, Bcr-Abl is able to activate the Ras, phosphatidylinositol 3-kinase/Akt, and/or the Src-kinase Hck/Stat5 pathways in a scaffolding-dependent manner. Whereas the scaffolding activity of Bcr-Abl with Grb2 is dependent on autophosphorylation, kinases such as Hck can use Bcr-Abl as substrate, inducing phosphorylation of Y177 to enable scaffolding ability in the absence of Bcr-Abl catalytic activity. It is worth investigating whether leukemia stem cells exclusively express kinases that are able to use Bcr-Abl as substrate. A kinase-independent role for Bcr-Abl in leukemia stem cells would imply that drugs that target Bcr-Abl's scaffolding ability or its DNA-binding ability should be used in conjunction with current therapeutic regimens to increase their efficacy and eradicate the stem cells of chronic myeloid leukemia.

Shinmura K, Kiyose S, Nagura K, et al.
TNK2 gene amplification is a novel predictor of a poor prognosis in patients with gastric cancer.
J Surg Oncol. 2014; 109(3):189-97 [PubMed] Related Publications
BACKGROUNDS AND OBJECTIVES: We previously examined the amplification status of 10 kinase genes (PIK3CA, EPHB3, TNK2, PTK7, EGFR, MET, ERBB2, HCK, SRC, and AURKA) in gastric cancer (GC). This study aimed to determine the prognostic significance of these gene amplifications in GC.
METHODS: A survival analysis was performed for GC patients. Since TNK2 amplification was identified as a prognostic marker in the analysis, we also examined the functional effect of TNK2 overexpression on gastric cells.
RESULTS: A Kaplan-Meier analysis showed that the prognosis of patients with GC exhibiting TNK2 or AURKA amplification was significantly poorer than the prognosis of patients with GC without TNK2 or AURKA amplification. A further multivariate analysis revealed that TNK2 amplification was an independent predictor of a poor survival outcome among patients with GC (hazard ratio, 3.668; 95% confidence interval, 1.513-7.968; P = 0.0056). TNK2-overexpressing GC cells showed an increase in cell migration and non-anchored cell growth. Finally, microarray and pathway analyses revealed the aberrant regulation of some cancer-related pathways in TNK2-overexpressing GC cells.
CONCLUSIONS: These results suggested that TNK2 amplification is an independent predictor of a poor prognosis in patients with GC and leads to an increase in the malignant potential of GC cells.

Baniwal SK, Chimge NO, Jordan VC, et al.
Prolactin-induced protein (PIP) regulates proliferation of luminal A type breast cancer cells in an estrogen-independent manner.
PLoS One. 2014; 8(6):e62361 [PubMed] Free Access to Full Article Related Publications
Prolactin-induced Protein (PIP), an aspartyl protease unessential for normal mammalian cell function, is required for the proliferation and invasion of some breast cancer (BCa) cell types. Because PIP expression is particularly high in the Luminal A BCa subtype, we investigated the roles of PIP in the related T47D BCa cell line. Nucleic acid and antibody arrays were employed to screen effects of PIP silencing on global gene expression and activation of receptor tyrosine kinases (RTKs), respectively. Expression of PIP-stimulated genes, as defined in the T47D cell culture model, was well correlated with the expression of PIP itself across a cohort of 557 mRNA profiles of diverse BCa tumors, and bioinformatics analysis revealed cJUN and cMYC as major nodes in the PIP-dependent gene network. Among 71 RTKs tested, PIP silencing resulted in decreased phosphorylation of focal adhesion kinase (FAK), ephrin B3 (EphB3), FYN, and hemopoietic cell kinase (HCK). Ablation of PIP also abrogated serum-induced activation of the downstream serine/threonine kinases AKT, ERK1/2, and JNK1. Consistent with these results, PIP-depleted cells exhibited defects in adhesion to fibronectin, cytoskeletal stress fiber assembly and protein secretion. In addition, PIP silencing abrogated the mitogenic response of T47D BCa cells to estradiol (E2). The dependence of BCa cell proliferation was unrelated, however, to estrogen signaling because: 1) PIP silencing did not affect the transcriptional response of estrogen target genes to hormone treatment, and 2) PIP was required for the proliferation of tamoxifen-resistant BCa cells. Pharmacological inhibition of PIP may therefore serve the bases for both augmentation of existing therapies for hormone-dependent tumors and the development of novel therapeutic approaches for hormone-resistant BCa.

Chatain N, Ziegler P, Fahrenkamp D, et al.
Src family kinases mediate cytoplasmic retention of activated STAT5 in BCR-ABL-positive cells.
Oncogene. 2013; 32(31):3587-97 [PubMed] Related Publications
Persistent activation of the Abl tyrosine kinase in the BCR-ABL fusion protein is the major cause of chronic myeloid leukemia (CML). Among many other substrates BCR-ABL phosphorylates STAT5 and Src family kinases (SFK). Activated pSTAT5 is essential for initial transformation and maintenance of the disease. Cytokine-induced phosphorylation on tyrosine 694 typically leads to nuclear accumulation of pSTAT5 and target gene expression. We verified that in BCR-ABL-positive progenitor cells from a CML patient and in K562 cells pSTAT5 is cytoplasmic. However, upon ectopic expression of BCR-ABL p210 in non-myeloid cells, co-transfected STAT5A is phosphorylated on Y694 and localized in the nucleus arguing for an additional factor mediating cytoplasmic retention in CML cells. Expression of the SFK v-Src, Hck or Lyn together with STAT5A results in phosphorylation on Y694 and cytoplasmic retention. Upon coexpression of BCR-ABL and individual SFK the cytoplasmic retention of activated STAT5A mediated by v-Src and Hck but not Lyn is dominant over nuclear translocation induced by BCR-ABL. Cytoplasmic retention depends on the kinase activity of SFK and is mediated through the interaction of the SH2 domain of STAT5A with the SFK. Interestingly, nuclear accumulation of STAT5A as a result of activation by FLT3-ITD, an oncogene found in acute myeloid leukemia, cannot be prevented by coexpression of SFK. Importantly, inhibition of SFK in K562 cells restored nuclear accumulation of pSTAT5A, enhanced STAT5 target gene expression and increased colony formation. Thus, SFK mediate cytoplasmic retention of pSTAT5A in BCR-ABL-positive cells. Cytoplasmic pSTAT5A in CML cells might balance the controversial functions of STAT5 in cellular senescence and differentiation versus G1/S progression and survival.

Kiyose S, Nagura K, Tao H, et al.
Detection of kinase amplifications in gastric cancer archives using fluorescence in situ hybridization.
Pathol Int. 2012; 62(7):477-84 [PubMed] Related Publications
To test the feasibility of using bacterial artificial chromosomes (BAC) containing kinases for pathological diagnosis using fluorescence in situ hybridization (FISH), 10 BAC probes containing a gene amplified in 5% or more of a pilot cohort were selected from a previous survey using arbitrarily selected BAC clones harboring 100 kinases. In this report, we describe the prevalence and association with the clinicopathological profile of these selected 10 BAC probes in 365 gastric cancer tissues. FISH analyses using these 10 BAC probes containing loci encoding EGFR, ERBB2(HER2), EPHB3, PIK3CA, MET, PTK7, ACK1, STK15, SRC, and HCK showed detectable amplifications in paraffin-embedded tissue in 2.83% to 13.6% of the gastric cancer tissues. Considerable numbers of the cases showed the co-amplification of two or more of the probes that were tested. BAC probes located within a genome neighborhood, such as PIK3CA, EPHB3, and ACK1 at 3q26-29 or HCK, SRC, and STK15 at 20q11-13.1, were often co-amplified in the same cases, but non-random co-amplifications of genes at distant genomic loci were also observed. These findings provide basic information regarding the creation of a strategy for personalizing gastric cancer therapy, especially when using multiple kinase inhibitors.

Dai Y, Tang Y, He F, et al.
Screening and functional analysis of differentially expressed genes in EBV-transformed lymphoblasts.
Virol J. 2012; 9:77 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Epstain-Barr virus (EBV) can transform human B lymphocytes making them immortalized and inducing tumorigenic ability in vitro, but the molecular mechanisms remain unclear. The aim of the present study is to detect and analyze differentially expressed genes in two types of host cells, normal human lymphocytes and coupled EBV-transformed lymphoblasts in vitro using gene chips, and to screen the key regulatory genes of lymphocyte transformation induced by EB virus.
METHODS: Fresh peripheral blood samples from seven healthy donors were collected. EBV was used to transform lymphocytes in vitro. Total RNA was extracted from 7 cases of the normal lymphocytes and transformed lymphoblasts respectively, marked with dihydroxyfluorane after reverse transcription, then hybridized with 4 × 44 K Agilent human whole genome microarray. LIMMA, String, Cytoscape and other softwares were used to screen and analyze differentially expressed genes. Real-time PCR was applied to verify the result of gene expression microarrays.
RESULTS: There were 1745 differentially expressed genes that had been screened, including 917 up-regulated genes and 828 down-regulated genes. According to the results of Generank, String and Cytoscape analyses, 38 genes may be key controlled genes related to EBV-transformed lymphocytes, including 22 up-regulated genes(PLK1, E2F1, AURKB, CDK2, PLCG2, CD80, PIK3R3, CDC20, CDC6, AURKA, CENPA, BUB1B, NUP37, MAD2L1, BIRC5, CDC25A, CCNB1, RPA3, HJURP, KIF2C, CDK1, CDCA8) and 16 down-regulated genes(FYN, CD3D, CD4, CD3G, ZAP70, FOS, HCK, CD247, PRKCQ, ITK, LCP2, CXCL1, CD8A, ITGB5, VAV3, CXCR4), which primarily control biological processes such as cell cycle, mitosis, cytokine-cytokine pathway, immunity response and so on.
CONCLUSIONS: Human lymphocyte transformation induced by EB virus is a complicated process, involving multiple-genes and -pathways in virus-host interactions. Global gene expression profile analysis showed that EBV may transform human B lymphocytes by promoting cell cycle and mitosis, inhibiting cell apoptosis, hindering host immune function and secretion of cytokines.

Zou D, Yang X, Tan Y, et al.
Regulation of the hematopoietic cell kinase (HCK) by PML/RARα and PU.1 in acute promyelocytic leukemia.
Leuk Res. 2012; 36(2):219-23 [PubMed] Related Publications
This study investigates the dynamic regulation of human hematopoietic cell kinase (HCK) in acute promyelocytic leukemia (APL) and the underlying molecular mechanisms. First, the level of HCK in APL blasts was found lower than that in normal granulocytes and monocytes. Second, the HCK promoter was repressed by PML/RARα and this repression required PU.1. PU.1 was capable of transactivating the HCK promoter through a region encompassing three PU.1 motifs. Chromatin immunoprecipitation assays provided evidence that PU.1 and PML/RARα bound to the HCK promoter in vivo. Finally, we found an unequivocal increase of HCK expression upon treatment with all-trans retinoic acid.

Behbahani TE, Thierse C, Baumann C, et al.
Tyrosine kinase expression profile in clear cell renal cell carcinoma.
World J Urol. 2012; 30(4):559-65 [PubMed] Related Publications
PURPOSE: To profile different tyrosine kinase (TK) expression patterns in clear cell renal carcinoma (ccRCC).
METHODS: We analysed mRNA expression levels of 89 receptor and non-receptor TK in corresponding cancer and normal renal tissue from 5 patients with ccRCC using the TaqMan Low-Density Array technology. In order to confirm aberrant TK expressions, a subsequent analysis of 25 ccRCC and corresponding normal renal tissues was performed, applying quantitative real-time PCR. To confirm mRNA expression levels on protein level, we studied ERBB4 and HCK using immunohistochemistry.
RESULTS: A total of 12 TK were significantly upregulated in ccRCC (ABL2, FLT1, BTK, HCK, JAK3, CSF1R, MET, JAK1, MATK, PTPRC, FYN and CSK), coherently 7 TK demonstrated a down-regulation (ERBB4, PDGFRA, NRTK3, SYK, ERBB2, FGFR3 and PTK7). These findings were validated by the utilization of RT-PCR for ABL2, FLT1 BTK, HCK, JAK3, CSF1R, MET, JAK1, MATK and vice versa for ERBB4 and PDGFRA. Immunohistochemistry revealed ERBB4 expression to be significantly lower in ccRCC in comparison to papillary RCC, chromophobe RCC, renal oncocytoma and normal renal tissue (P < 0.001). HCK protein expression was reduced in ccRCC in contrast to papillary RCC (P < 0.001) or oncocytoma (P = 0.023), but similar to chromphobe RCC (P = 0.470), sarcomatoid RCC (P = 0.754) and normal renal tissue (P = 0.083). Neither ERBB4 nor HCK were correlated (P > 0.05) with clinical-pathological parameters.
CONCLUSION: TK constitute valuable targets for pharmaceutical anti-cancer therapy. ERBB4 and HCK depict significantly lower expression levels in renal cancer tissues.

Pene-Dumitrescu T, Smithgall TE
Expression of a Src family kinase in chronic myelogenous leukemia cells induces resistance to imatinib in a kinase-dependent manner.
J Biol Chem. 2010; 285(28):21446-57 [PubMed] Free Access to Full Article Related Publications
The Bcr-Abl kinase inhibitor imatinib is remarkably effective in chronic myelogenous leukemia (CML), although drug resistance is an emerging problem. Myeloid Src family kinases such as Hck and Lyn are often overexpressed in imatinib-resistant CML cells that lack Bcr-Abl mutations. Here we tested whether Hck overexpression is sufficient to induce imatinib resistance using both wild-type Hck and a mutant (Hck-T338A) that is uniquely sensitive to the pyrazolo-pyrimidine inhibitor, NaPP1. Expression of either kinase in K562 CML cells caused resistance to imatinib-induced apoptosis and inhibition of soft-agar colony formation. Treatment with NaPP1 restored sensitivity to imatinib in cells expressing T338A but not wild-type Hck, demonstrating that resistance requires Hck kinase activity. NaPP1 also reduced Hck-mediated phosphorylation of Bcr-Abl at sites that may affect imatinib sensitivity exclusively in cells expressing Hck-T338A. These data show that elevated Src family kinase activity is sufficient to induce imatinib resistance through a mechanism that may involve phosphorylation of Bcr-Abl.

Saito Y, Kitamura H, Hijikata A, et al.
Identification of therapeutic targets for quiescent, chemotherapy-resistant human leukemia stem cells.
Sci Transl Med. 2010; 2(17):17ra9 [PubMed] Free Access to Full Article Related Publications
Human acute myeloid leukemia (AML) originates from rare leukemia stem cells (LSCs). Because these chemotherapy-resistant LSCs are thought to underlie disease relapse, effective therapeutic strategies specifically targeting these cells may be beneficial. Here, we report identification of a primary human LSC gene signature and functional characterization of human LSC-specific molecules in vivo in a mouse xenotransplantation model. In 32 of 61 (53%) patients with AML, either CD32 or CD25 or both were highly expressed in LSCs. CD32- or CD25-positive LSCs could initiate AML and were cell cycle-quiescent and chemotherapy-resistant in vivo. Normal human hematopoietic stem cells depleted of CD32- and CD25-positive cells maintained long-term multilineage hematopoietic reconstitution capacity in vivo, indicating the potential safety of treatments targeting these molecules. In addition to CD32 and CD25, quiescent LSCs within the bone marrow niche also expressed the transcription factor WT1 and the kinase HCK. These molecules are also promising targets for LSC-specific therapy.

Lierman E, Van Miegroet H, Beullens E, Cools J
Identification of protein tyrosine kinases with oncogenic potential using a retroviral insertion mutagenesis screen.
Haematologica. 2009; 94(10):1440-4 [PubMed] Free Access to Full Article Related Publications
Protein tyrosine kinases form a large family of signaling proteins implicated in both normal and malignant cell signaling. The aim of this study was to identify protein tyro-sine kinases that can transform hematopoietic cells to growth factor independent proliferation when constitutively activated by homodimerization. We used a modified retroviral insertion mutagenesis screen with a retroviral vector containing the homodimerization domain of ETV6 followed by an artificial splice donor site. Integration of this retroviral vector within a gene of the host genome would generate a fusion transcript containing the dimerization domain and part of the disrupted gene. Using this strategy with the IL3 dependent Ba/F3 cell line, we identified 8 different protein tyrosine kinases (Abl1, Fgfr1, Hck, Jak2, Lck, Mertk, Mst1r, Tnk1) that transformed the cells. These results characterize HCK, MERTK, MST1R and TNK1 as potential oncogenes and describe a method to identify gain-of-function fusion genes using a retroviral insertion screen.

Kubo T, Kuroda Y, Shimizu H, et al.
Resequencing and copy number analysis of the human tyrosine kinase gene family in poorly differentiated gastric cancer.
Carcinogenesis. 2009; 30(11):1857-64 [PubMed] Related Publications
The tyrosine kinase (TK) family is an important regulator of signaling pathways that control a variety of physiological and pathological conditions, and a substantial proportion of TK genes are genetically altered in cancer. To clarify the somatic mutation profile of TK genes and discover potential targets for gastric cancer (GC) therapy, we undertook a systematic screening of mutations in the kinase domains of all human TK genes (636 exons of 90 genes) in 17 GC cell lines and 52 microdissected primary GCs with poorly differentiated histology. We identified 26 non-synonymous alterations (22 genes in total) that included 11 sequence alterations in cell lines and 15 somatic mutations in primary tumors. Recurrent mutations were found in four genes including a known oncogene (NTRK3), the Src kinase family (LTK and CSK) and a potential Wnt signal activator (ROR2). In addition, we analyzed copy number alterations of all the TK gene loci in the same cohort samples by array-based comparative genomic hybridization analysis and identified 24 high-level amplifications and two homozygous deletions. Both sequence alteration and frequent copy number aberration were detected in two TK genes (HCK and ERBB2), strongly suggesting that they encode potential oncogenes in GC. Our focused and integrated analyses of systemic resequencing and gene copy number have revealed the novel onco-kinome profile of GC and pave the way to a comprehensive understanding of the GC genome.

Kennah E, Ringrose A, Zhou LL, et al.
Identification of tyrosine kinase, HCK, and tumor suppressor, BIN1, as potential mediators of AHI-1 oncogene in primary and transformed CTCL cells.
Blood. 2009; 113(19):4646-55 [PubMed] Related Publications
AHI-1 is an oncogene often targeted by provirus insertional mutagenesis in murine leukemias and lymphomas. Aberrant expression of human AHI-1 occurs in cutaneous T-cell lymphoma (CTCL) cells and in CD4(+)CD7(-) Sezary cells from patients with Sezary syndrome. Stable knockdown of AHI-1 using retroviral-mediated RNA interference in CTCL cells inhibits their transforming activity in vitro and in vivo. To identify genes involved in AHI-1-mediated transformation, microarray analysis was performed to identify differentially expressed genes in AHI-1-suppressed CTCL cells. Fifteen up-regulated and 6 down-regulated genes were identified and confirmed by quantitative reverse transcription-polymerase chain reaction. Seven were further confirmed in a microarray analysis of CD4(+)CD7(-) Sezary cells from Sezary syndrome patients. HCK and BIN1 emerged as new candidate cooperative genes, with differential protein expression, which correlates with observed transcript changes. Interestingly, changes in HCK phosphorylation and biologic response to its inhibitor, dasatinib, were observed in AHI-1-suppressed or -overexpressed cells. The tumor suppressor BIN1 physically interacts with MYC in CTCL cells, which also exhibit differential MYC protein expression. In addition, aberrant expression of alternative splicing forms of BIN1 was observed in primary and transformed CTCL cells. These findings indicate that HCK and BIN1 may play critical roles in AHI-1-mediated leukemic transformation of human CTCL cells.

Narisawa-Saito M, Yoshimatsu Y, Ohno S, et al.
An in vitro multistep carcinogenesis model for human cervical cancer.
Cancer Res. 2008; 68(14):5699-705 [PubMed] Related Publications
Human papillomaviruses (HPV) are believed to be the primary causal agents for development of cervical cancer, and deregulated expression of two viral oncogenes E6 and E7 in basal cells, mostly by integration, is considered to be a critical event for disease progression. However, lines of evidence suggest that, besides expression of E6 and E7 genes, additional host genetic alterations are required for cancer development. To directly test this hypothesis, we first transduced HPV16 E6 and E7 with or without hTERT into several lines of normal human cervical keratinocytes (HCK) from independent donors and then searched for additional alterations required for carcinogenesis. Oncogenic Hras(G12V) (Hras) provided marked tumor forming ability in nude mice and ErbB2 or c-Myc (Myc) endowed weaker but significant tumor forming ability. Combined transduction of Myc and Hras to HCKs expressing E6 and E7 resulted in the creation of highly potent tumor-initiating cells. These results show that only one or two genetic changes occurring after deregulated expression of high-risk HPV oncogenes might be sufficient for development of cervical cancer.

Lee F, Fandi A, Voi M
Overcoming kinase resistance in chronic myeloid leukemia.
Int J Biochem Cell Biol. 2008; 40(3):334-43 [PubMed] Related Publications
Imatinib is a small-molecule inhibitor of BCR-ABL tyrosine kinase activity, with proven efficacy and tolerability. Despite imatinib's activity, the development of resistance, whether BCR-ABL dependent or independent, is a concern. BCR-ABL-dependent resistance is commonly a result of mutations in the BCR-ABL gene, which can induce a structural predisposition towards the active conformation of the protein, resulting in a shift in the equilibrium of BCR-ABL from inactive, which imatinib binds, to active, which imatinib is unable to bind. BCR-ABL gene amplification may play a role in the development of imatinib resistance in patients with CML. There are a number of BCR-ABL-independent mechanisms of imatinib resistance, including the efflux protein multidrug resistance protein-1, of which imatinib is a substrate. Another mechanism may be the development of alternative pathways of disease progression, leading to less reliance on BCR-ABL; indeed, the SRC family tyrosine kinases LYN and HCK have been frequently implicated in treatment resistance and progression of CML. Clearly, imatinib resistance requires the development of other treatment options. Dasatinib, with increased binding potency (325-fold greater potency than imatinib for wild-type BCR-ABL), inhibition of both the active and inactive formation of BCR-ABL, and targeting of SRC family kinases, is the only agent approved for the treatment of patients with imatinib-resistant or -intolerant CML and Ph+ ALL. Dasatinib is highly active in all phases of these diseases, and is active in the majority of imatinib-resistant mutations, with the exception of T315I. The development of agents that effectively inhibit T315I mutations suggests that future treatment options will include combination therapy.

Lakshmikuttyamma A, Pastural E, Takahashi N, et al.
Bcr-Abl induces autocrine IGF-1 signaling.
Oncogene. 2008; 27(27):3831-44 [PubMed] Related Publications
Bcr-Abl oncogene is responsible for the initial phase of chronic myelogenous leukemia (CML), which is effectively treated by the Bcr-Abl inhibitor imatinib. Over time patients become resistant to treatment and progress to blast crisis, an event that is driven by additional genetic and epigenetic aberrations. Recently, we showed that Riz1 expression decreases in blast crisis and that re-expression of Riz1 inhibits IGF-1 expression. IGF-1 signaling is required in many stages of hematopoiesis and inappropriate activation of autocrine IGF-1 signaling may facilitate transformation to blast crisis. We observed that in 8 out of 11 matched CML patient biopsies the IGF-1 expression is elevated in blast crisis. We examined mechanisms used by CML blast crisis cell lines to activate IGF-1 expression. We found that Bcr-Abl activates autocrine IGF-1 signaling using Hck and Stat5b. Inhibition of these signaling components using small molecule drugs or shRNA decreases proliferation and enhances apoptosis. Together, our study suggests that aberrant IGF-1 signaling is an important event in blast crisis transformation and it provides a mechanism to explain the activity of IGF-1R and Hck inhibitors in blocking CML blast crisis phenotypes.

Hiyoshi M, Suzu S, Yoshidomi Y, et al.
Interaction between Hck and HIV-1 Nef negatively regulates cell surface expression of M-CSF receptor.
Blood. 2008; 111(1):243-50 [PubMed] Related Publications
Nef is a multifunctional pathogenetic protein of HIV-1, the interaction of which with Hck, a Src tyrosine kinase highly expressed in macrophages, has been shown to be responsible for the development of AIDS. However, how the Nef-Hck interaction leads to the functional aberration of macrophages is poorly understood. We recently showed that Nef markedly inhibited the activity of macrophage colony-stimulating factor (M-CSF), a primary cytokine for macrophages. Here, we show that the inhibitory effect of Nef is due to the Hck-dependent down-regulation of the cell surface expression of M-CSF receptor Fms. In the presence of Hck, Nef induced the accumulation of an immature under-N-glycosylated Fms at the Golgi, thereby down-regulating Fms. The activation of Hck by the direct interaction with Nef was indispensable for the down-regulation. Unexpectedly, the accumulation of the active Hck at the Golgi where Nef prelocalized was likely to be another critical determinant of the function of Nef, because the expression of the constitutive-active forms of Hck alone did not fully down-regulate Fms. These results suggest that Nef perturbs the intracellular maturation and the trafficking of nascent Fms, through a unique mechanism that required both the activation of Hck and the aberrant spatial regulation of the active Hck.

Nam S, Williams A, Vultur A, et al.
Dasatinib (BMS-354825) inhibits Stat5 signaling associated with apoptosis in chronic myelogenous leukemia cells.
Mol Cancer Ther. 2007; 6(4):1400-5 [PubMed] Related Publications
Dasatinib (BMS-354825) is a novel, oral, potent, multi-targeted kinase inhibitor of Bcr-Abl and Src family kinases (SFK) and is a promising cancer therapeutic agent. Preclinical data indicate that dasatinib is 325-fold more potent than imatinib against cells expressing wild-type Bcr-Abl, and that dasatinib is active against 18 of 19 Bcr-Abl mutations known to cause imatinib resistance. Phase I clinical data show that dasatinib is well tolerated and highly effective for the treatment of imatinib-resistant/imatinib-intolerant chronic myelogenous leukemia (CML) and Philadelphia chromosome-positive acute lymphoblastic leukemia. However, the molecular mechanism of action of dasatinib is not fully understood. In this study, we confirm that dasatinib inhibits tyrosine phosphorylation of SFKs, including Src, Hck, and Lyn, in K562 human CML cells. Significantly, downstream signal transducer and activator of transcription 5 (Stat5) signaling is also blocked by dasatinib as shown by decreases in levels of phosphorylated Stat5 and Stat5 DNA-binding activities. In addition, dasatinib down-regulates expression of Stat5 target genes, including Bcl-x, Mcl-1, and cyclin D1. Consistent with these results, blockade of Stat5 signaling by dasatinib is accompanied by inhibition of cell proliferation and induction of apoptosis. Surprisingly, Stat5 DNA-binding activities are enhanced with increasing cell density, which is associated with resistance to apoptosis by dasatinib. Our findings indicate that inhibition of Stat5 signaling downstream of Bcr-Abl/SFKs contributes to the action of dasatinib, and, conversely, that increasing cell density up-regulates Stat5 activation and confers resistance to dasatinib. Moreover, the level of phosphorylated Stat5 in CML cells represents a mechanistically relevant biomarker for monitoring inhibition of Bcr-Abl signaling by dasatinib in CML patients using convenient immunocytochemical assays.

Hoshino K, Quintás-Cardama A, Yang H, et al.
Aberrant DNA methylation of the Src kinase Hck, but not of Lyn, in Philadelphia chromosome negative acute lymphocytic leukemia.
Leukemia. 2007; 21(5):906-11 [PubMed] Related Publications
Hck and Lyn are required in Philadelphia chromosome (Ph) positive acute lymphocytic leukemia (ALL). Here, we present evidence that the promoter CpG island of Hck, but not of Lyn, is aberrantly methylated in leukemia. Hck promoter DNA methylation was detected in 13 out of 23 (56.5%) hematopoietic and eight out of 10 (80%) non-hematopoietic cell lines, but not in normal controls. Treatment with 5-aza-2'-deoxycytidine induced demethylation and restoration of Hck mRNA and protein expression. Hck methylation (> or =15%) was detected in nine out of 44 (20%) patients with Ph negative ALL, and in one out 16 (6%) patients with Ph positive ALL, but not in patients with AML or chronic myelogenous leukemia. In this subset of patients, low levels of Hck methylation (10-15%) were observed in 26-30% of patients. Lyn methylation was observed in three out of 28 (10.7%) cell lines, but only in one out of 71 (1.4%) patients. Patients with Ph negative ALL and Hck methylation had a poorer prognosis. These data indicate that Hck may have tumor suppressor properties in BCR-ABL negative leukemia.

Hausherr A, Tavares R, Schäffer M, et al.
Inhibition of IL-6-dependent growth of myeloma cells by an acidic peptide repressing the gp130-mediated activation of Src family kinases.
Oncogene. 2007; 26(34):4987-98 [PubMed] Related Publications
An acidic domain (AD) of gp130 was previously found to interact with the Src family kinase (SFK) Hck. Here, the influence of myristoylated peptides derived from this AD was assessed in the mouse myeloma cell line, 7TD1. The IL-6-dependent growth of 7TD1 cells was reduced by approximately 75%, if 100 microM of myristoylated 18mer peptide (18AD) was included in the growth medium, but was unaffected by a control peptide with scrambled sequence (18sc). A similar differential inhibition by peptides 18AD and 18sc was observed for the erythropoietin-dependent growth of BaF-EH cells expressing chimeric erythropoietin receptor-gp130 and human Hck and for the human myeloma cell line INA-6. While the peptide 18AD concentration inhibiting 50% was approximately 30 microM in 7TD1 and BaF-EH cells, peptide 18AD did not significantly inhibit growth of IL-6-independent MM1.S myeloma and OKT1 hybridoma cells or of BaF-EH cells supplied with IL-3. Treatment with 100 microM peptide 18AD caused the same degree or 60% of apoptosis induction as IL-6 deprivation in 7TD1 or INA-6 cells, respectively. Co-immunoprecipitation experiments revealed that peptide 18AD interfered with the association of Hck and gp130 in 7TD1 lysates in a concentration-dependent manner. IL-6-treatment of INA-6 cells induced the kinase activities of Fyn, Lyn and Hck, but not Src, and the IL-6-induced SFK activities were inhibited by peptide 18AD. Expression in 7TD1 cells of a kinase-inactive Hck mutant (K269R) elicited a dominant-negative effect on cell number increases providing further evidence that SFKs are required for gp130 signalling in myeloma cells.

Loukopoulos P, Shibata T, Katoh H, et al.
Genome-wide array-based comparative genomic hybridization analysis of pancreatic adenocarcinoma: identification of genetic indicators that predict patient outcome.
Cancer Sci. 2007; 98(3):392-400 [PubMed] Related Publications
We analyzed the subchromosomal numerical aberrations of 44 surgically resected pancreatic adenocarcinomas by array-based comparative genomic hybridization. The aberration profile ranged widely between cases, suggesting the presence of multiple or complementary mechanisms of evolution in pancreatic cancer, and was associated with lymph node metastasis and venous or serosal invasion. A large number of small loci, previously uncharacterized in pancreatic cancer, showed non-random loss or gain. Frequent losses at 1p36, 4p16, 7q36, 9q34, 11p15, 11q13, 14q32-33, 16p13, 17p11-13, 17q11-25, 18q21-tel, 19p13, 21q22 and 22q11-12, and gains at 1q25, 2p16, 2q21-37, 3q25, 5p14, 5q11-13, 7q21, 7p22, 8p22, 8q21-23, 10q21, 12p13, 13q22, 15q13-22 and 18q11 were identified. Sixteen loci were amplified recurrently. We identified novel chromosomal alterations that were significantly associated with a range of malignant phenotypes. Gain of LUNX, HCK, E2F1 and DNMT3b at 20q11, loss of p73 at 1p36 and gain of PPM1D at 17q23 independently predicted patient outcome. Expression profiling of amplified genes identified Smurf1 and TRRAP at 7q22.1, BCAS1 at 20q13.2-3, and VCL at 10q22.1 as potential novel oncogenes. Our results contribute to a complete description of genomic structural aberrations and the identification of potential therapeutic targets and genetic indicators that predict patient outcome in pancreatic adenocarcinoma.

Narisawa-Saito M, Handa K, Yugawa T, et al.
HPV16 E6-mediated stabilization of ErbB2 in neoplastic transformation of human cervical keratinocytes.
Oncogene. 2007; 26(21):2988-96 [PubMed] Related Publications
Whether ErbB2 receptor tyrosine kinase contributes to cervical cancer is controversial. We have examined the effects of E6 and E7 genes of human papillomaviruses type 16 (HPV-16) on ErbB2 expression in primary human cervical keratinocytes (HCK) immortalized with hTERT (HCK1T). In E6-positive cells (HCK1T-E6 and HCK1T-E6E7), ErbB2 expression levels increased with the cell density. HCK1T-E6E7 showed impaired contact inhibition and anchorage-independent growth in soft agar which were abrogated with introduction of ErbB2-specific short hairpin RNA (shRNA) or an ErbB2 specific inhibitor AG825. Furthermore, increased ErbB2 expression was also observed in HPV16 positive cervical cancer cell lines and this was diminished by introduction of HPV16E6- or E6AP-shRNA. At post-confluence cell densities, ErbB2 protein was stabilized in the presence of E6 whereas increased ErbB2 expression was not obvious with E6 mutants incapable of degrading p53. Furthermore, introduction of p53-shRNA to HCK1T resulted in increased ErbB2 protein stability, indicating possible ErbB2 regulation through p53. Finally, we showed that tumor formation of ErbB2-shRNA introduced SiHa cells were almost abolished. Taken together, these data indicate an important role of ErbB2 regulation by HPV16 E6 in oncogenic transformation of human cervical keratinocytes.

Schoumans J, Johansson B, Corcoran M, et al.
Characterisation of dic(9;20)(p11-13;q11) in childhood B-cell precursor acute lymphoblastic leukaemia by tiling resolution array-based comparative genomic hybridisation reveals clustered breakpoints at 9p13.2 and 20q11.2.
Br J Haematol. 2006; 135(4):492-9 [PubMed] Related Publications
Although the dic(9;20)(p11-13;q11) is a recurrent chromosomal abnormality in paediatric B-cell precursor acute lymphoblastic leukaemia (BCP ALL), occurring in approximately 2% of the cases, its molecular genetic consequences have not been elucidated. In the present study, high-resolution genome-wide array-based comparative genomic hybridisation (array-CGH) and fluorescence in situ hybridisation (FISH) were used to characterise the 9p and 20q breakpoints (BPs) in seven childhood BCP ALLs with dic(9;20), which was shown to be unbalanced in all of them, resulting in loss of 9p13.2-pter. Five of the cases had loss of 20q11.2-qter, whereas two displayed gain of 20cen-pter. All BPs on 9p clustered in a 1.5 Mb segment of the sub-band 9p13.2; in three of the cases, the 20q BPs mapped to three adjacent clones covering a distance of 350 kb at 20q11.2. Thus, the aberration should be designated dic(9;20)(p13.2;q11.2). One of the ALLs, shown to have a complex dic(9;20), was further investigated by FISH, revealing a rearrangement of the haemapoietic cell kinase isoform p61 (HCK) gene at 20q11. The disruption of HCK may result in a fusion gene or in loss of function. Unfortunately, lack of material precluded further analyses of HCK. Thus, it remains to be elucidated whether dic(9;20)(p13.2;q11.2) leads to a chimaeric gene or whether the functionally important outcome is loss of 9p and 20q material.

Choi YL, Kim MK, Suh JW, et al.
Immunoexpression of HBME-1, high molecular weight cytokeratin, cytokeratin 19, thyroid transcription factor-1, and E-cadherin in thyroid carcinomas.
J Korean Med Sci. 2005; 20(5):853-9 [PubMed] Free Access to Full Article Related Publications
To examine the immunohistochemical alterations associated with the histological dedifferentiation of thyroid carcinomas, we performed staining for HBME-1, high molecular weight cytokeratin (HCK), CK 19, thyroid transcription factor-1 (TTF-1) and E-cadherin (E-CD) on 125 various types of thyroid carcinomas. The HBME-1 staining was strong and diffuse in follicular carcinoma (FC), papillary carcinoma (PC), and poorly differentiated carcinoma (PDC), while it was rare in undifferentiated carcinoma (UC) as well as in benign lesions. Strong, diffuse staining for CK19 and HCK was predominantly found in PC, and these markers were not much found in other carcinomas. TTF-1 uniformly stained the tumor cells of all cases of PC, FC and Hurthle cell carcinoma (HC) and 42% of the PDC, while there was only focal staining in one case of the UC. Compared to the strong, diffuse reactivity in the benign lesions, E-CD staining was noted in 67% of PC, 80% of FC, 83% of HC, 58% of PDC and none of the UC. These results suggest that HBME-1 may be a marker for well-differentiated carcinomas while CK19 and HCK are phenotypic markers for papillary carcinoma. The loss or reduced expression of TTF-1 and E-CD may be markers for dedifferentiation.

Suzu S, Harada H, Matsumoto T, Okada S
HIV-1 Nef interferes with M-CSF receptor signaling through Hck activation and inhibits M-CSF bioactivities.
Blood. 2005; 105(8):3230-7 [PubMed] Related Publications
HIV-1 Nef protein is a major determinant of the pathogenicity of the virus. It has been shown that Nef activates Hck, a member of Src family kinase, in monocytes/macrophages and that the interaction is critical for AIDS-like disease progression in a mouse model. However, it was unclear how the molecular interaction in monocytes/macrophages leads to disease progression. Here, we show for the first time that Nef interferes with the macrophage colony-stimulating factor (M-CSF)/M-CSF receptor signal pathway. In this study, we introduced a conditionally active Nef into myeloid leukemia TF-1-fms cells and analyzed their responsiveness to M-CSF. We found that Nef-activated Hck constitutively associated with the M-CSF receptor complex. The formation of the molecular complex should occur under physiologic conditions, that is, on M-CSF stimulation. Because of aberrant molecular association, the tyrosine-phosphorylation/activation of the receptor in response to M-CSF was markedly diminished in Nef-active cells. Consequently, Nef activation caused the inhibition of M-CSF-mediated proliferation of TF-1-fms cells and macrophage differentiation of the cells induced by M-CSF and 12-O-tetradecanoylphorbol 13-acetate. These results indicate that HIV-1 Nef interferes with M-CSF receptor signaling through Hck activation and thereby inhibits M-CSF functions in monocytes/macrophages.

Donato NJ, Wu JY, Stapley J, et al.
BCR-ABL independence and LYN kinase overexpression in chronic myelogenous leukemia cells selected for resistance to STI571.
Blood. 2003; 101(2):690-8 [PubMed] Related Publications
Clinical studies have shown that the tyrosine kinase inhibitor STI571 effectively controls BCR-ABL-positive chronic myelogenous leukemia (CML). However, disease progression while on STI571 therapy has been reported, suggesting de novo or intrinsic resistance to BCR-ABL-targeted therapy. To investigate possible mediators of acquired STI571 resistance, K562 cells resistant to 5 microM STI571 (K562-R) were cloned and compared to the parental cell population. K562-R cells had reduced BCR-ABL expression and limited activation of BCR-ABL signaling cascades (Stat 5, CrkL, MAPK). STI571 failed to activate caspase cascades or to suppress expression of survival genes (bcl-xL) in resistant cells. Gene sequencing and tyrosine kinase activity measurements demonstrated that K562-R cells retained wild-type and active BCR-ABL tyrosine kinase that was inhibitable by in vitro incubation with STI571, suggesting that BCR-ABL was not coupled to proliferation or survival of K562-R cells. The src-related kinase LYN was highly overexpressed and activated in K562-R cells, and its inhibition reduced proliferation and survival of K562-R cells while having limited effects of K562 cells. Specimens taken from patients with advanced CML that progressed on STI571 therapy also were analyzed for LYN kinase expression, and they were found to be elevated to a level similar to that of K562-R cells. Comparison of samples from patients taken prior to and following STI571 failure suggested that expression and/or activation of LYN/HCK occurs during disease progression. Together, these results suggest that acquired STI571 resistance may be associated with BCR-ABL independence and mediated in part through overexpression of other tyrosine kinases.

Islam TC, Lindvall J, Wennborg A, et al.
Expression profiling in transformed human B cells: influence of Btk mutations and comparison to B cell lymphomas using filter and oligonucleotide arrays.
Eur J Immunol. 2002; 32(4):982-93 [PubMed] Related Publications
We have used both Clontech Atlas Human Hematology/Immunology cDNA microarrays, containing 588 genes, and Affymetrix oligonucleotide U95Av2 human array complementary to more than 12,500 genes to get a global view of genes expressed in Epstein-Barr virus (EBV)-transformed B cells and genes regulated by Bruton's tyrosine kinase (Btk). We compared EBV-transformed wild-type (WT) B cells from a healthy individual, WT1 and an X-linked agammaglobulinemia (XLA) patient cell line, XLA1, using the Clontech filters arrays. Eleven genes were > or =1.9-fold induced in absence of functional Btk. Furthermore, we analyzed a second patient cell line, XLA2, and compared this to two WT cell lines using oligonucleotide arrays. A total of 391 genes were found to be differentially expressed, including kinases and transcriptions factors. Furthermore, one expressed sequence tag and eight complementary DNA clones with unknown function were down-regulated in XLA2, indicating their biological role. Higher-fold inductions, Fyn (39.5), Hck (15.5) and Cyp1B1 (5.8), were observed using oligonucleotide array and were confirmed using real-time PCR for Fyn (20.8), Hck (6.7) and Cyp1B1 (10). Two genes, B cell translocation gene1 (BTG1) and B cell-specific OCT binding factor-1 (OBF-1) were induced > or =1.9-fold in both XLA1 and XLA2 analyzed by Atlas filter arrays andAffymetrix chips, respectively. Data from both filter and oligonucleotide arrays were compared to the gene clusters of a previously published lymphoma expression profile by linking to the UniGene transcript database. Our findings demonstrate for the first time the use of microarray to study the influence of Btk mutations and the use of functional annotation and validation of expression data by comparison of microarray analyses.

Dan Q, Sanchez R, Delgado C, et al.
Non-immunogenic murine hepatocellular carcinoma Hepa1-6 cells expressing the membrane form of macrophage colony stimulating factor are rejected in vivo and lead to CD8+ T-cell immunity against the parental tumor.
Mol Ther. 2001; 4(5):427-37 [PubMed] Related Publications
Hepatocellular carcinoma is a lethal disease and methods that develop effective cellular-based immunotherapy are needed. We retrovirally transduced non-immunogenic mouse Hepa1-6 hepatoma cells with the gene encoding the membrane form of macrophage colony stimulating factor (mM-CSF). Excess recombinant M-CSF and phagocytosis-inhibiting chemicals blocked macrophage-mediated killing of cloned mM-CSF transfected Hepa1-6 hepatoma cells. Macrophages derived from Hck(-/-)Fgr(-/-) and Lyn(-/-) triple knockout mice, which are incapable of performing phagocytosis, failed to kill the mM-CSF transduced cells. The mM-CSF transfected tumor clones failed to grow when injected into C57BL/6 or C57L/J mice. Splenocytes from these vaccinated mice displayed cytotoxicity against parental Hepa1-6 cells, but not against B16 and CT-26 tumor cells in vitro. Mice that rejected the mM-CSF transfected Hepa1-6 tumor subsequently rejected parental Hepa1-6 cells but not the B16 melanoma cells when rechallenged. Elimination of the CD8+ effector cells by an anti-CD8 antibody and complement treatment prevented the adoptive transfer of anti-Hepa1-6-specific immunity into naive animals. Thus, mM-CSF provides a method of generating effective anti-tumor immune responses by macrophages and cytotoxic T cells against the parental Hepa1-6 cells. Our work suggests that mM-CSF transduced hepatoma cells could be used as a tumor vaccine to stimulate immune responses against hepatocellular carcinoma.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. HCK, Cancer Genetics Web: http://www.cancer-genetics.org/HCK.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 20 August, 2015     Cancer Genetics Web, Established 1999