CYP2A6

Gene Summary

Gene:CYP2A6; cytochrome P450 family 2 subfamily A member 6
Aliases: CPA6, CYP2A, CYP2A3, P450PB, CYPIIA6, P450C2A
Location:19q13.2
Summary:This gene, CYP2A6, encodes a member of the cytochrome P450 superfamily of enzymes. The cytochrome P450 proteins are monooxygenases which catalyze many reactions involved in drug metabolism and synthesis of cholesterol, steroids and other lipids. This protein localizes to the endoplasmic reticulum and its expression is induced by phenobarbital. The enzyme is known to hydroxylate coumarin, and also metabolizes nicotine, aflatoxin B1, nitrosamines, and some pharmaceuticals. Individuals with certain allelic variants are said to have a poor metabolizer phenotype, meaning they do not efficiently metabolize coumarin or nicotine. This gene is part of a large cluster of cytochrome P450 genes from the CYP2A, CYP2B and CYP2F subfamilies on chromosome 19q. The gene was formerly referred to as CYP2A3; however, it has been renamed CYP2A6. [provided by RefSeq, Jul 2008]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:cytochrome P450 2A6
Source:NCBIAccessed: 30 August, 2019

Ontology:

What does this gene/protein do?
Show (14)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 30 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 30 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (5)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: CYP2A6 (cancer-related)

Ren X, Ji Y, Jiang X, Qi X
Downregulation of CYP2A6 and CYP2C8 in Tumor Tissues Is Linked to Worse Overall Survival and Recurrence-Free Survival from Hepatocellular Carcinoma.
Biomed Res Int. 2018; 2018:5859415 [PubMed] Free Access to Full Article Related Publications
Objective: This study aimed to evaluate the links between CYP450 family genes in tumor tissues and hepatocellular carcinoma (HCC) outcomes.
Methods: Gene Expression Omnibus (GEO) databases GSE14520 and GSE36376 were used to identify differential expressed CYP450 genes between tumor and nontumor tissues and related to HCC clinicopathological features and survivals.
Results: Seven CYP450 genes including CYP1A2, CYP2A6, CYP2C8, CYP2C9, CYP2E1, CYP3A4, and CYP4A11 were downregulated in tumor tissues, which were validated in both GSE14520 and GSE36376. HCC patients with CYP2A6 and CYP2C8 low levels in tumor tissues suffered from poorer overall survival (OS) compared to those with high CYP2A6 and CYP2C8 in GSE14520 profile (log ranks
Conclusion: Downregulation of CYP2A6 and CYP2C8 in tumor tissues links to poorer OS and RFS in HCC patients.

Elfaki I, Mir R, Almutairi FM, Duhier FMA
Cytochrome P450: Polymorphisms and Roles in Cancer, Diabetes and Atherosclerosis
Asian Pac J Cancer Prev. 2018; 19(8):2057-2070 [PubMed] Free Access to Full Article Related Publications
Cytochromes P450s (CYPs) constitute a superfamily of enzymes that catalyze the metabolism of drugs and other substances. Endogenous substrates of CYPs include eicosanoids, estradiol, arachidonic acids, cholesterol, vitamin D and neurotransmitters. Exogenous substrates of CYPs include the polycyclic aromatic hydrocarbons and about 80% of currently used drugs. Some isoforms can activate procarcinogens to ultimate carcinogens. Genetic polymorphisms of CYPs may affect the enzyme catalytic activity and have been reported among different populations to be associated with various diseases and adverse drug reactions. With regard of drug metabolism, phenotypes for CYP polymorphism range from ultrarapid to poor metabolizers. In this review, we discuss some of the most clinically important CYPs isoforms (CYP2D6, CYP2A6, CYP2C19, CYP2C9, CYP1B1 and CYP1A2) with respect to gene polymorphisms and drug metabolism. Moreover, we review the role of CYPs in renal, lung, breast and prostate cancers and also discuss their significance for atherosclerosis and type 2 diabetes mellitus.

Byun J, Schwartz AG, Lusk C, et al.
Genome-wide association study of familial lung cancer.
Carcinogenesis. 2018; 39(9):1135-1140 [PubMed] Article available free on PMC after 21/09/2019 Related Publications
To identify genetic variation associated with lung cancer risk, we performed a genome-wide association analysis of 685 lung cancer cases that had a family history of two or more first or second degree relatives compared with 744 controls without lung cancer that were genotyped on an Illumina Human OmniExpressExome-8v1 array. To ensure robust results, we further evaluated these findings using data from six additional studies that were assembled through the Transdisciplinary Research on Cancer of the Lung Consortium comprising 1993 familial cases and 33 690 controls. We performed a meta-analysis after imputation of all variants using the 1000 Genomes Project Phase 1 (version 3 release date September 2013). Analyses were conducted for 9 327 222 SNPs integrating data from the two sources. A novel variant on chromosome 4p15.31 near the LCORL gene and an imputed rare variant intergenic between CDKN2A and IFNA8 on chromosome 9p21.3 were identified at a genome-wide level of significance for squamous cell carcinomas. Additionally, associations of CHRNA3 and CHRNA5 on chromosome 15q25.1 in sporadic lung cancer were confirmed at a genome-wide level of significance in familial lung cancer. Previously identified variants in or near CHRNA2, BRCA2, CYP2A6 for overall lung cancer, TERT, SECISPB2L and RTEL1 for adenocarcinoma and RAD52 and MHC for squamous carcinoma were significantly associated with lung cancer.

Ezzeldin N, El-Lebedy D, Darwish A, et al.
Association of genetic polymorphisms CYP2A6*2 rs1801272 and CYP2A6*9 rs28399433 with tobacco-induced lung Cancer: case-control study in an Egyptian population.
BMC Cancer. 2018; 18(1):525 [PubMed] Article available free on PMC after 21/09/2019 Related Publications
BACKGROUND: Several studies have reported the role of CYP2A6 genetic polymorphisms in smoking and lung cancer risk with some contradictory results in different populations. The purpose of the current study is to assess the contribution of the CYP2A6*2 rs1801272 and CYP2A6*9 rs28399433 gene polymorphisms and tobacco smoking in the risk of lung cancer in an Egyptian population.
METHODS: A case-control study was conducted on 150 lung cancer cases and 150 controls. All subjects were subjected to blood sampling for Extraction of genomic DNA and Genotyping of the CYP2A6 gene SNPs (CYP2A6*2 (1799 T > A) rs1801272 and CYP2A6*9 (- 48 T > G) rs28399433 by Real time PCR.
RESULTS: AC and CC genotypes were detected in CYP2A6*9; and AT genotype in CYP2A6*2. The frequency of CYP2A6*2 and CYP2A6*9 were 0.7% and 3.7% respectively in the studied Egyptian population. All cancer cases with slow metabolizer variants were NSCLC. Non-smokers represented 71.4% of the CYP2A6 variants. There was no statistical significant association between risk of lung cancer, smoking habits, heaviness of smoking and the different polymorphisms of CYP2A6 genotypes.
CONCLUSION: The frequency of slow metabolizers CYP2A6*2 and CYP2A6*9 are poor in the studied Egyptian population. Our findings did not suggest any association between CYP2A6 genotypes and risk of lung cancer.

Fan W, Ye G
Microarray analysis for the identification of specific proteins and functional modules involved in the process of hepatocellular carcinoma originating from cirrhotic liver.
Mol Med Rep. 2018; 17(4):5619-5626 [PubMed] Article available free on PMC after 21/09/2019 Related Publications
In order to identify the potential pathogenesis of hepatocellular carcinoma (HCC) developing from cirrhosis, a microarray‑based transcriptome profile was analyzed. The GSE63898 expression profile was downloaded from the Gene Expression Omnibus database, which included data from 228 HCC tissue samples and 168 cirrhotic tissue samples. The Robust Multi‑array Average in the Affy package of R was used for raw data processing and Student's t‑test was used to screen differentially expressed genes (DEGs). An enrichment analysis was then conducted using the Database for Annotation, Visualization and Integrated Discovery online tool, and the protein‑protein interaction (PPI) network was constructed using the Search Tool for the Retrieval of Interacting Genes and Cytoscape. Furthermore, the MCODE plug‑in of Cytoscape was used to conduct a sub‑module analysis. A total of 634 DEGs were identified between HCC and cirrhosis, of which 165 were upregulated and 469 were downregulated. According to the cut‑off criteria, the PPI network was constructed and Jun proto‑oncogene, AP‑1 transcription factor subunit (degree, 39), Fos proto‑oncogene, AP‑1 transcription factor subunit (degree, 34) and v‑myc avian myelocytomatosis viral oncogene homolog (degree, 32) were identified as the hub nodes of the PPI network. Based on the sub‑module analysis, four specific modules were identified. In particular, module 1 was significantly enriched in the chemokine signaling pathway, and C‑X‑C motif chemokine ligand 12, C‑C motif chemokine receptor 7 (CCR7) and C‑C motif chemokine ligand 5 (CCL5) were three important proteins in this module. Module 4 was significantly enriched in chemical carcinogenesis, and cytochrome P450 family 2 subfamily E member 1, cytochrome P450 family 2 subfamily C member 9 (CYP2C9) and cytochrome P450 family 2 subfamily A member 6 (CYP2A6) were three important proteins in this module. In conclusion, the present study revealed that CCR7, CCL5, CYP2C9 and CYP2A6 are novel genes identified in the development of HCC; however, the actual functions of these genes require verification.

Untereiner AA, Pavlidou A, Druzhyna N, et al.
Drug resistance induces the upregulation of H
Biochem Pharmacol. 2018; 149:174-185 [PubMed] Article available free on PMC after 21/09/2019 Related Publications
Hydrogen sulfide (H

Wittliff JL, Sereff SB, Daniels MW
Expression of Genes for Methylxanthine Pathway-Associated Enzymes Accompanied by Sex Steroid Receptor Status Impacts Breast Carcinoma Progression.
Horm Cancer. 2017; 8(5-6):298-313 [PubMed] Related Publications
Consumption of methylxanthine alkaloids appears to induce activities by antagonizing adenosine receptors, implicated in breast cancer behavior in vitro. Our goal was to evaluate expression of genes for methylxanthine receptors and metabolizing enzymes to assess risk of breast carcinoma recurrence. Clinical outcomes, estrogen/progestin receptor results, and gene expression assays guided selection. RNA was isolated from laser capture microdissection-procured carcinoma cells for microarray using established protocols. Gene expression levels of eight methylxanthine receptors, eight metabolizing enzymes, and various phosphodiesterases were retrieved from microarray results. Univariable Cox regressions and Kaplan-Meier plots were determined for each gene with R software. Individually, lower expressions of PDE4A, CYP2A6, or CYP2E were related to decreased progression-free survival (PFS) and overall survival (OS). PDE1A over-expression predicted decreased PFS and OS. ADORA2B and RYR1 over-expressions predicted diminished OS. ER+ cancers exhibited lower ADORA1, ADORA2B, and RYR1 and elevated PDE4A, CYP2A6, and CYP2E expressions. Of PR+ carcinomas, diminished ADORA2B and RYR1 and elevated expressions of ADORA3, PDE4A, CYP2C8, and CYP2E were noted. Least absolute shrinkage and selection operator (LASSO) revealed that CYP2E, PDE1A, and PDE4A expressions collectively predicted PFS whereas ADORA1, CYP2E, PDE1A, PDE1B, and PDE4A expressions jointly predicted OS. Models were clinically significant when validated externally. LASSO also derived a six-gene model and five-gene model that predicted PFS of ER- or PR- carcinomas, respectively. Similarly, five-gene and four-gene models predicted OS in ER- or PR- carcinomas, respectively. Collectively, expression of genes involved in methylxanthine action and metabolism in single-cell types predicted clinical outcomes of breast carcinoma indicating promise for developing diagnostics and design of new therapeutics.

Yang L, Zou S, Shu C, et al.
CYP2A6 Polymorphisms Associate with Outcomes of S-1 Plus Oxaliplatin Chemotherapy in Chinese Gastric Cancer Patients.
Genomics Proteomics Bioinformatics. 2017; 15(4):255-262 [PubMed] Article available free on PMC after 21/09/2019 Related Publications
Gastric carcinoma is a heterogeneous malignant disease involving genetic factors. To identify predictive markers for gastric cancer treatment in Chinese patients, we evaluated the association between polymorphisms of the gene encoding cytochrome P450 2A6 (CYP2A6) and outcomes of S-1 plus oxaliplatin (SOX) chemotherapy treatment. Clinical data on 60 consecutive gastric cancer patients receiving SOX regimen were collected prospectively. We sequenced all exons of CYP2A6 and a total of 22 different polymorphisms were detected in the present study. Comprehensive analyses of these genetic polymorphisms were performed to determine their association with both safety and efficacy of SOX regimen. Our results showed that polymorphisms of CYP2A6 were associated with the safety and efficacy of SOX treatment. Among them, missense mutations CYP2A6 rs60823196 and rs138978736 could be possible risk factors (P<0.05) for severe diarrhea induced by SOX, whereas CYP2A6 rs138978736 could be a conceivable predictor for overall survival of patients treated with SOX adjuvant chemotherapy. Further large-scale randomized prospective studies are warranted to confirm these findings.

Murphy SE
Nicotine Metabolism and Smoking: Ethnic Differences in the Role of P450 2A6.
Chem Res Toxicol. 2017; 30(1):410-419 [PubMed] Related Publications
Nicotine is the primary addictive agent in tobacco, and P450 2A6 (gene name: CYP2A6) is the primary catalyst of nicotine metabolism. It was proposed more than 20 years ago that individuals who metabolize nicotine poorly would smoke less, either fewer cigarettes per day or less intensely per cigarette, compared to smokers who metabolize nicotine more efficiently. These poor metabolizers would then be less likely to develop lung cancer due to their lower exposure to the many carcinogens delivered with nicotine in each puff of smoke. Numerous studies have reported that smokers who carry reduced activity or null CYP2A6 alleles do smoke less. Yet only in Asian populations, both Japanese and Chinese, which have a high prevalence of genetic variants, has a link between CYP2A6, smoking dose, and lung cancer been established. In other ethnic groups, it has been challenging to confirm a direct link between P450 2A6-mediated nicotine metabolism and the risk of lung cancer. This challenge is due in part to the difficulty in accurately quantifying smoking dose and accurately predicting or measuring P450 2A6-mediated nicotine metabolism. Biomarkers of nicotine metabolism and smoking exposure, including the ratio of trans-3-hydroxycotine to cotinine, a measure of P450 2A6 activity and plasma cotinine, or urinary total nicotine equivalents (the sum of nicotine and six metabolites) as measures of exposure are useful for addressing this challenge. However, to take full advantage of these biomarkers in the study of ethnic/racial differences in the risk of lung cancer requires the complete characterization of nicotine metabolism across ethnic/racial groups. Variation in metabolism pathways, other than those catalyzed by P450 2A6, can impact biomarkers of both nicotine metabolism and dose. This is clearly important for smokers with low levels of UGT2B10-catalyzed nicotine and cotinine glucuronidation because the UGT2B10 genotype influences plasma cotinine levels. Cotinine is not glucuronidated in 15% of African American smokers (compared to 1% of Whites) due to the prevalence of a UGT2B10 splice variant. This variant contributes significantly to the higher plasma cotinine levels per cigarette in this group and may also influence the accuracy of the 3HCOT to cotinine ratio as a measure of P450 2A6 activity.

Murtha TD, Brown TC, Rubinstein JC, et al.
Overexpression of cytochrome P450 2A6 in adrenocortical carcinoma.
Surgery. 2017; 161(6):1667-1674 [PubMed] Related Publications
BACKGROUND: Cytochrome P450-mediated metabolism of chemotherapeutic agents contributes to chemotherapy resistance in multiple malignancies. Adrenocortical carcinoma is known to have a poor response to adjuvant therapies; however, the mechanism remains unknown. Recent comprehensive genetic analyses of adrenocortical carcinomas demonstrated recurrent copy number gains in multiple cytochrome P450 genes prompting investigation into whether cytochrome P450 overexpression potentiates adrenocortical carcinoma chemoresistance.
METHODS: We determined the expression patterns of 6 cytochrome P450 genes (CYP2A6, CYP2A7, CYP2A13, CYP2B6, CYP2S1, and CYP4F2) predicted to be amplified in adrenocortical carcinoma (n = 29) relative to normal adrenal cortex (n = 10). Gene copy numbers were determined with the TaqMan copy number assay. Gene silencing was performed via small interfering RNA (siRNA) in the adrenocortical carcinoma cell line NCI-H295R and treated with mitotane and cisplatin.
RESULTS: Of the 6 cytochrome P450 genes tested, CYP2A6 was overexpressed with a 55-fold mean increase compared to normal adrenal samples (P < .05). Immunohistochemical analysis confirmed protein overexpression. Copy gains of CYP2A6 were found in 26% (7/27) of adrenocortical carcinoma specimens. Silencing of CYP2A6 in NCI-H295R cells resulted in decreased cell viability and increased chemosensitivity (P < .05).
CONCLUSION: Frequent upregulation in adrenocortical carcinomas and the reversal of chemoresistance in adrenocortical carcinoma cells via enforced silencing suggest a role for CYP2A6 in adrenocortical malignancy.

He MM, Zhang DS, Wang F, et al.
Phase II trial of S-1 plus leucovorin in patients with advanced gastric cancer and clinical prediction by S-1 pharmacogenetic pathway.
Cancer Chemother Pharmacol. 2017; 79(1):69-79 [PubMed] Article available free on PMC after 21/09/2019 Related Publications
BACKGROUND: The first one-arm phase II trial aimed to evaluate and predict efficacy and safety of S-1 plus oral leucovorin (S-1/LV) as first-line chemotherapy for patients with advanced gastric cancer (AGC), using S-1 pharmacogenetic pathway approach.
PATIENTS AND METHODS: A total of 39 patients orally took S-1 at conventional dose and LV simultaneously at a dose of 25 mg twice daily for a week, within a 2-week cycle. The primary endpoint was overall response rate (ORR), while the secondary endpoints were progression-free survival (PFS), time to failure (TTF), overall survival (OS), disease control rate (DCR), and adverse events (AEs). Peripheral blood was sampled prospectively for baseline expression of dihydropyrimidine dehydrogenase (DPD), orotate phosphoribosyltransferase (OPRT), thymidine phosphorylase (TP), and thymidylate synthase (TS), CYP2A6 gene polymorphisms, and 5-FU pharmacokinetics.
RESULTS: The ORR and DCR were 41.0 and 76.9%. The median PFS, TTF, and OS were 4.13, 3.70, and 11.40 months. Grade 3-4 AEs occurred in only 13 patients, and grade 4 AEs occurred in only 1 of them. High OPRT/TS and peritoneal metastasis (vs. liver metastasis) independently predicted responding. High OPRT/DPD independently predicted grade 3-4 AEs. High AUC
CONCLUSIONS: Two-week, oral S-1/LV regimen demonstrated promising efficacy and safety as first-line chemotherapy for AGC. CLINICALTRIALS.
GOV IDENTIFIER: NCT02090153.

Kanemoto K, Fukuta K, Kawai N, et al.
Genomic Landscape of Experimental Bladder Cancer in Rodents and Its Application to Human Bladder Cancer: Gene Amplification and Potential Overexpression of Cyp2a5/CYP2A6 Are Associated with the Invasive Phenotype.
PLoS One. 2016; 11(11):e0167374 [PubMed] Article available free on PMC after 21/09/2019 Related Publications
Non-muscle invasive (superficial) bladder cancer is a low-grade malignancy with good prognosis, while muscle invasive (invasive) bladder cancer is a high-grade malignancy with poor prognosis. N-butyl-N-(4-hydroxybutyl)nitrosamine (BBN) induces superficial bladder cancers with papillary morphology in rats and invasive bladder cancers with infiltrating phenotype in mice. In this study, we analyzed genomic landscapes of rodent BBN-induced bladder cancers using array-based comparative genomic hybridization (array CGH). While no significant copy number alterations were detected in superficial bladder tumors in rats, copy number gains in chromosomal regions 2D-E1, 7qA3, 9F2, and 11C-D were detected in invasive bladder tumors in mice. Amplification of representative genes located on 2D-E1 and 7qA3 chromosomal regions was confirmed by quantitative PCR. Cyp2a22 and Cyp2a5 genes but not Cyp2g1, Cyp2a12, and Rab4b genes on mouse chromosome 7qA3 were amplified in invasive bladder cancers. Although the human ortholog gene of Cyp2a22 has not been confirmed, the mouse Cyp2a5 gene is the ortholog of the human CYP2A6 gene located in chromosomal region 19q13.2, and CYP2A6 was identified by database search as one of the closest human homolog to mouse Cyp2a22. Considering a possibility that this region may be related to mouse 7qA3, we analyzed CYP2A6 copy number and expression in human bladder cancer using cell lines and resected tumor specimens. Although only one of eight cell lines showed more than one copy increase of the CYP2A6 gene, CYP2A6 amplification was detected in six out of 18 primary bladder tumors where it was associated with the invasive phenotype. Immunohistochemical analyses of 118 primary bladder tumors revealed that CYP2A6 protein expression was also higher in invasive tumors, especially in those of the scattered type. Together, these findings indicate that the amplification and overexpression of the CYP2A6 gene are characteristic of human bladder cancers with increased malignancy and that CYP2A6 can be a candidate prognostic biomarker in this type of cancer.

Verde Z, Santiago C, Chicharro LM, et al.
Effect of Genetic Polymorphisms and Long-Term Tobacco Exposure on the Risk of Breast Cancer.
Int J Mol Sci. 2016; 17(10) [PubMed] Article available free on PMC after 21/09/2019 Related Publications
INTRODUCTION: Tobacco smoke contains many potentially harmful compounds that may act differently and at different stages in breast cancer development. The focus of this work was to assess the possible role of cigarette smoking (status, dose, duration or age at initiation) and polymorphisms in genes coding for enzymes involved in tobacco carcinogen metabolism (
METHODS: We designed a case control study with 297 patients, 217 histologically verified breast cancers (141 smokers and 76 non-smokers) and 80 healthy smokers in a cohort of Spanish women.
RESULTS: We found an association between smoking status and early age at diagnosis of breast cancer. Among smokers, invasive carcinoma subtype incidence increased with intensity and duration of smoking (all
CONCLUSIONS: Our results support the main effect of CYP1A1 in estrogenic metabolism rather than in tobacco carcinogen activation in breast cancer patients and also confirmed the hypothesis that

Zhou J, Wen Q, Li SF, et al.
Significant change of cytochrome P450s activities in patients with hepatocellular carcinoma.
Oncotarget. 2016; 7(31):50612-50623 [PubMed] Article available free on PMC after 21/09/2019 Related Publications
The lack of information concerning individual variation in drug-metabolizing enzymes is one of the most important obstacles for designing personalized medicine approaches for hepatocellular carcinoma (HCC) patients. To assess cytochrome P450 (CYP) in the metabolism of endogenous and exogenous molecules in an HCC setting, the activity changes of 10 major CYPs in microsomes from 105 normal and 102 HCC liver tissue samples were investigated. We found that CYP activity values expressed as intrinsic clearance (CLint) differed between HCC patients and control subjects. HCC patient samples showed increased CLint for CYP2C9, CYP2D6, and CYP2E1 compared to controls. Meanwhile, CYP1A2, CYP2C8, and CYP2C19 CLint values decreased and CYP2A6, CYP2B6, and CYP3A4/5 activity was unchanged relative to controls. For patients with HCC accompanied by fibrosis or cirrhosis, the same activity changes were seen for the CYP isoforms, except for CYP2D6 which had higher values in HCC patients with cirrhosis. Moreover, CYP2D6*10 (100C>T), CYP2C9*3 (42614 A>C), and CYP3A5*3 (6986A>G) polymorphisms had definite effects on enzyme activities. In the HCC group, the CLint of CYP2D6*10 mutant homozygote was decreased by 95% compared to wild-type samples, and the frequency of this homozygote was 2.8-fold lower than the controls.In conclusion, the activities of CYP isoforms were differentially affected in HCC patients. Genetic polymorphisms of some CYP enzymes, especially CYP2D6*10, could affect enzyme activity. CYP2D6*10 allelic frequency was significantly different between HCC patients and control subjects. These findings may be useful for personalizing the clinical treatment of HCC patients as well as predicting the risk of hepatocarcinogenesis.

Gao J, Zhou J, He XP, et al.
Changes in cytochrome P450s-mediated drug clearance in patients with hepatocellular carcinoma in vitro and in vivo: a bottom-up approach.
Oncotarget. 2016; 7(19):28612-23 [PubMed] Article available free on PMC after 21/09/2019 Related Publications
Hepatocellular carcinoma (HCC) accompanied by severe liver dysfunction is a serious disease, which results in altered hepatic clearance. Generally, maintenance doses depend upon drug clearance, so individual dosage regimens should be customized for HCC patients based on the condition of patients. Based on clearance of CYP isoform-specific substrates at the microsomal level (CLM), microsomal protein per gram of liver (MPPGL), liver weight, hepatic blood flow, hepatic clearance values (CLH) for 10 CYPs in HCC patients (n=102) were extrapolated using a predictive bottom-up pharmacokinetic model. Compared with controls, the CLM values for CYP2C9, 2D6, 2E1 were significantly increased in HCC patients. Additionally, CYP1A2, 2C8, 2C19 CLM values decreased while the values for CYP2A6, 2B6, 3A4/5 were unchanged. The MPPGL values in HCC tissues were significantly reduced. CLH values of HCC patients for CYP1A2, 2A6, 2B6, 2C8, 2C19, and 3A4/5 were significantly reduced, while this for CYP2E1 were markedly increased and those for CYP2C9 and 2D6 did not change. Moreover, disease (fibrosis and cirrhosis) and polymorphisms of the CYP genes have influenced the CLH for some CYPs. Prediction of the effects of HCC on drug clearance may be helpful for the design of clinical studies and the clinical management of drugs in HCC patients.

Sawada G, Niida A, Uchi R, et al.
Genomic Landscape of Esophageal Squamous Cell Carcinoma in a Japanese Population.
Gastroenterology. 2016; 150(5):1171-1182 [PubMed] Related Publications
BACKGROUND & AIMS: Esophageal squamous cell carcinoma (ESCC) is the predominant form of esophageal cancer in Japan. Smoking and drinking alcohol are environmental risk factors for ESCC, whereas single nucleotide polymorphisms in ADH1B and ALDH2, which increase harmful intermediates produced by drinking alcohol, are genetic risk factors. We conducted a large-scale genomic analysis of ESCCs from patients in Japan to determine the mutational landscape of this cancer.
METHODS: We performed whole-exome sequence analysis of tumor and nontumor esophageal tissues collected from 144 patients with ESCC who underwent surgery at 5 hospitals in Japan. We also performed single-nucleotide polymorphism array-based copy number profile and germline genotype analyses of polymorphisms in ADH1B and ALDH2. Polymorphisms in CYP2A6, which increase harmful effects of smoking, were analyzed. Functions of TET2 mutants were evaluated in KYSE410 and HEK293FT cells.
RESULTS: A high proportion of mutations in the 144 tumor samples were C to T substitution in CpG dinucleotides (called the CpG signature) and C to G/T substitutions with a flanking 5' thymine (called the APOBEC signature). Based on mutational signatures, patients were assigned to 3 groups, which associated with environmental (drinking and smoking) and genetic (polymorphisms in ALDH2 and CYP2A6) factors. Many tumors contained mutations in genes that regulate the cell cycle (TP53, CCND1, CDKN2A, FBXW7); epigenetic processes (MLL2, EP300, CREBBP, TET2); and the NOTCH (NOTCH1, NOTCH3), WNT (FAT1, YAP1, AJUBA) and receptor-tyrosine kinase-phosphoinositide 3-kinase signaling pathways (PIK3CA, EGFR, ERBB2). Mutations in EP300 and TET2 correlated with shorter survival times, and mutations in ZNF750 associated with an increased number of mutations of the APOBEC signature. Expression of mutant forms of TET2 did not increase cellular levels of 5-hydroxymethylcytosine in HEK293FT cells, whereas knockdown of TET2 increased the invasive activity of KYSE410 ESCC cells. Computational analyses associated the mutations in NFE2L2 we identified with transcriptional activation of its target genes.
CONCLUSIONS: We associated environmental and genetic factors with base substitution patterns of somatic mutations and provide a registry of genes and pathways that are disrupted in ESCCs. These findings might be used to design specific treatments for patients with esophageal squamous cancers.

Park SL, Tiirikainen MI, Patel YM, et al.
Genetic determinants of CYP2A6 activity across racial/ethnic groups with different risks of lung cancer and effect on their smoking intensity.
Carcinogenesis. 2016; 37(3):269-279 [PubMed] Free Access to Full Article Related Publications
Genetic variation in cytochrome P450 2A6 (CYP2A6) gene is the primary contributor to the intraindividual and interindividual differences in nicotine metabolism and has been found to influence smoking intensity. However, no study has evaluated the relationship between CYP2A6 genetic variants and the CYP2A6 activity ratio (total 3-hydroxycotinine/cotinine) and their influence on smoking intensity [total nicotine equivalents (TNE)], across five racial/ethnic groups found to have disparate rates of lung cancer. This study genotyped 10 known functional CYP2A6 genetic or copy number variants in 2115 current smokers from the multiethnic cohort study [African Americans (AA) = 350, Native Hawaiians (NH) = 288, Whites = 413, Latinos (LA) = 437 and Japanese Americans (JA) = 627] to conduct such an investigation. Here, we found that LA had the highest CYP2A6 activity followed by Whites, AA, NH and JA, who had the lowest levels. Adjusting for age, sex, race/ethnicity and body mass index, we found that CYP2A6 diplotypes were predictive of TNE levels, particularly in AA and JA (P trend < 0.0001). However, only in JA did the association remain after accounting for cigarettes per day. Also, it is only in this population that the lower activity ratio supports lower TNE levels, carcinogen exposure and thereby lower risk of lung cancer. Despite the association between nicotine metabolism (CYP2A6 activity phenotype and diplotypes) and smoking intensity (TNE), CYP2A6 levels did not correlate with the higher TNE levels found in AA nor the lower TNE levels found in LA, suggesting that other factors may influence smoking dose in these populations. Therefore, further study in these populations is recommended.

Rumiato E, Boldrin E, Malacrida S, et al.
A germline predictive signature of response to platinum chemotherapy in esophageal cancer.
Transl Res. 2016; 171:29-37.e1 [PubMed] Related Publications
Platinum-based neoadjuvant therapy is the standard treatment for esophageal cancer (EC). At present, no reliable response markers exist, and patient therapeutic outcome is variable and very often unpredictable. The aim of this study was to understand the contribution of host constitutive DNA polymorphisms in discriminating between responder and nonresponder patients. DNA collected from 120 EC patients treated with platinum-based neoadjuvant chemotherapy was analyzed using drug metabolism enzymes and transporters (DMET) array platform that interrogates polymorphisms in 225 genes of drug metabolism and disposition. Four gene variants of DNA repair machinery, 2 in ERCC1 (rs11615; rs3212986), and 2 in XPD (rs1799793; rs13181) were also studied. Association analysis was performed with pTest software and corrected by permutation test. Predictive models of response were created using the receiver-operating characteristics curve approach and adjusted by the bootstrap procedure. Sixteen single nucleotide polymorphisms (SNPs) of the DMET array resulted significantly associated with either good or poor response; no association was found for the 4 variants mapping in DNA repair genes. The predictive power of 5 DMET SNPs mapping in ABCC2, ABCC3, CYP2A6, PPARG, and SLC7A8 genes was greater than that of clinical factors alone (area under the curve [AUC] = 0.74 vs 0.62). Interestingly, their combination with the clinical variables significantly increased the predictivity of the model (AUC = 0.78 vs 0.62, P = 0.0016). In conclusion, we identified a genetic signature of response to platinum-based neoadjuvant chemotherapy in EC patients. Our results also disclose the potential benefit of combining genetic and clinical variables for personalized EC management.

Kumondai M, Hosono H, Orikasa K, et al.
Genetic Polymorphisms of CYP2A6 in a Case-Control Study on Bladder Cancer in Japanese Smokers.
Biol Pharm Bull. 2016; 39(1):84-9 [PubMed] Related Publications
Several of the procarcinogens inhaled in tobacco smoke, the primary risk factor for bladder cancer, are activated by CYP2A6. The association between the whole-gene deletion of CYP2A6 (CYP2A6*4) and a reduced risk of bladder cancer was suggested in Chinese Han smokers. However, there is no evidence for association between the risk of bladder cancer and CYP2A6 genotypes in the Japanese population. Using genomic DNA from smokers of the Japanese population (163 bladder cancer patients and 116 controls), we conducted a case-control study to assess the association between CYP2A6 polymorphisms and the risk of bladder cancer. Determination of CYP2A6 genotypes was carried out by amplifying each exon of CYP2A6 using polymerase chain reaction (PCR) and Sanger sequencing. The CYP2A6*4 allele was identified by an allele-specific PCR assay. Bladder cancer risk was evaluated using the activity score (AS) system based on CYP2A6 genotypes. The odds ratios (95% confidence interval) for the AS 0, AS 0.5, AS 1.0, and AS 1.5 groups were 0.46 (0.12-1.83), 0.43 (0.15-1.25), 0.86 (0.40-1.86), and 1.36 (0.60-3.06), respectively. In conclusion, although decreased CYP2A6 AS tended to reduce the risk of bladder cancer in Japanese smokers, no significant association was recognized in this population. However, given the relatively small size of the sample, further study is required to conclude the lack of a statistically significant association between CYP2A6 genotypes and the risk of bladder cancer.

He X, Feng S
Role of Metabolic Enzymes P450 (CYP) on Activating Procarcinogen and their Polymorphisms on the Risk of Cancers.
Curr Drug Metab. 2015; 16(10):850-63 [PubMed] Related Publications
Cytochrome P450 (CYP450) enzymes are the most important metabolizing enzyme family exists among all organs. Apart from their role in the deactivation of most endogenous compounds and xenobiotics, they also mediate most procarcinogens oxidation to ultimate carcinogens. There are several modes of CYP450s activation of procarcinogens. 1) Formation of epoxide and diol-epoxides intermediates, such as CYP1A1 and CYP1B1 mediates PAHs oxidation to epoxide intermediates; 2) Formation of diazonium ions, such as CYP2A6, CYP2A13 and CYP2E1 mediates activation of most nitrosamines to unstable metabolites, which can rearrange to give diazonium ions. 3) Formation of reactive semiquinones and quinines, such as CYP1A1 and CYP1B1 transformation of estradiol to catechol estrogens, subsequently formation semiquinones; 4) Formation of toxic O-esterification, such as CYP1A1 and CYP1A2 metabolizes PhIP to N(2)-acetoxy-PhIP and N(2)-sulfonyloxy-PhIP, which are carcinogenic metabolites. 5) Formation of free radical, such as CYP2E1 is involved in activation tetrachloromethane to free radicals. While for CYP2B6 and CYP2D6, only a minor role has been found in procarcinogens activation. In addition, as the gene polymorphisms reflected, the polymorphisms of CYP1A1 (-3801T/C and -4889A/G), CYP1A2 (- 163C/A and -2467T/delT), CYP1B1 (-48G/C, -119G/T and -432G/C), CYP2E1 (-1293G/C and -1053 C/T) have been associated with an increased risk of lung cancer. The polymorphisms CYP1A1 (-3801T/C and -4889A/G), and CYP2E1 (PstI/Rsa and 9-bp insertion) have an association with higher risk colon cancers, whereas CYP1A2 (-163C/A and -3860G/A) polymorphism is found to be among the protective factors. The polymorphisms CYP1A1 (-3801T/C and -4889A/G), CYP1B1 -432G/C, CYP2B6 (-516G/T and -785A/G) may increase the risk of breast cancer. In conclusion, CYP1A1, CYP1A2, CYP1B1, CYP2A6, and CYP2E1 are responsible for most of the procarcinogens activation, and their gene polymorphisms are associated with the risk of cancers.

Awan FM, Naz A, Obaid A, et al.
Identification of Circulating Biomarker Candidates for Hepatocellular Carcinoma (HCC): An Integrated Prioritization Approach.
PLoS One. 2015; 10(9):e0138913 [PubMed] Free Access to Full Article Related Publications
Hepatocellular carcinoma (HCC) is the world's third most widespread cancer. Currently available circulating biomarkers for this silently progressing malignancy are not sufficiently specific and sensitive to meet all clinical needs. There is an imminent and pressing need for the identification of novel circulating biomarkers to increase disease-free survival rate. In order to facilitate the selection of the most promising circulating protein biomarkers, we attempted to define an objective method likely to have a significant impact on the analysis of vast data generated from cutting-edge technologies. Current study exploits data available in seven publicly accessible gene and protein databases, unveiling 731 liver-specific proteins through initial enrichment analysis. Verification of expression profiles followed by integration of proteomic datasets, enriched for the cancer secretome, filtered out 20 proteins including 6 previously characterized circulating HCC biomarkers. Finally, interactome analysis of these proteins with midkine (MDK), dickkopf-1 (DKK-1), current standard HCC biomarker alpha-fetoprotein (AFP), its interacting partners in conjunction with HCC-specific circulating and liver deregulated miRNAs target filtration highlighted seven novel statistically significant putative biomarkers including complement component 8, alpha (C8A), mannose binding lectin (MBL2), antithrombin III (SERPINC1), 11β-hydroxysteroid dehydrogenase type 1 (HSD11B1), alcohol dehydrogenase 6 (ADH6), beta-ureidopropionase (UPB1) and cytochrome P450, family 2, subfamily A, polypeptide 6 (CYP2A6). Our proposed methodology provides a swift assortment process for biomarker prioritization that eventually reduces the economic burden of experimental evaluation. Further dedicated validation studies of potential putative biomarkers on HCC patient blood samples are warranted. We hope that the use of such integrative secretome, interactome and miRNAs target filtration approach will accelerate the selection of high-priority biomarkers for other diseases as well, that are more amenable to downstream clinical validation experiments.

Marin JJ, Al-Abdulla R, Lozano E, et al.
Mechanisms of Resistance to Chemotherapy in Gastric Cancer.
Anticancer Agents Med Chem. 2016; 16(3):318-34 [PubMed] Related Publications
Although surgical resection is the standard curative therapy for gastric cancer, these tumors are often diagnosed at an advanced stage, when surgery is not recommended. Alternative treatments such as radiotherapy and chemotherapy achieve only very modest results. There is therefore an urgent need to advance in this field of oncologic gastroenterology. The poor response of gastric cancer to chemotherapy is usually due to a combination of mechanisms of chemoresistance (MOC), which may include a reduction in drug uptake (MOC-1a), enhanced drug efflux (MOC-1b), a reduced proportion of active agents in tumor cells due to a reduction in pro-drug activation or an enhancement in drug inactivation (MOC-2), changes in the expression/function of the molecular targets of anticancer drugs (MOC-3), an enhanced ability of cancer cells to repair anticancer drug-induced DNA damage (MOC-4), and decreased expression/function of pro-apoptotic factors or up-regulation of anti-apoptotic genes (MOC-5). Two major goals of modern pharmacology aimed at overcoming this situation are the prediction of a lack of response to chemotherapy and the identification of the underlying mechanisms accounting for primary or acquired refractoriness to anticancer drugs. These are important issues if we are to select the best pharmacological regime for each patient and develop novel strategies to overcome chemoresistance. The present review reports updated information regarding the mechanisms of chemoresistance (from MOC-1 to MOC-5) in gastric cancer, the advances made in the prediction of the failure of chemotherapeutic treatment, and novel strategies based on gene therapy currently being developed to treat these tumors.

Hosono H, Kumondai M, Arai T, et al.
CYP2A6 genetic polymorphism is associated with decreased susceptibility to squamous cell lung cancer in Japanese smokers.
Drug Metab Pharmacokinet. 2015; 30(4):263-8 [PubMed] Related Publications
Cytochrome P450 2A6 (CYP2A6) is an enzyme involved in the metabolism of tobacco carcinogens, which are important risk factors in lung cancer. We and others have previously reported that CYP2A6*4, a whole-gene deletion polymorphism, is associated with lower risk of lung cancer than the wild-type allele. However, the genotyping method used in these previous studies considered only the CYP2A6*4 allele; this lead to insufficient classification of the CYP2A6 genotype, thereby underestimating the frequencies of the deficient alleles. In this study, CYP2A6 genotypes of Japanese smokers (110 individuals with squamous cell lung cancer (SQCC) and 132 sex-matched cancer-free controls) were determined using a sequencing-based approach to determine CYP2A6 haplotypes. The risk of SQCC was evaluated using the activity score (AS) system to predict CYP2A6 phenotype from its genotype. The risk of developing SQCC was significantly lower in the poor metabolizers assigned as AS 0.5 (adjusted odds ratio [OR] = 0.13, 95% CI = 0.04-0.45, P = 0.001) and AS 0 (adjusted OR = 0.15, 95% CI = 0.03-0.82, P = 0.028) than in the extensive metabolizers assigned as AS 2.0. In conclusion, CYP2A6 genetic polymorphisms may play important roles in the development of SQCC in Japanese smokers.

Wassenaar CA, Ye Y, Cai Q, et al.
CYP2A6 reduced activity gene variants confer reduction in lung cancer risk in African American smokers--findings from two independent populations.
Carcinogenesis. 2015; 36(1):99-103 [PubMed] Free Access to Full Article Related Publications
We investigated genetic variation in CYP2A6 in relation to lung cancer risk among African American smokers, a high-risk population. Previously, we found that CYP2A6, a nicotine/nitrosamine metabolism gene, was associated with lung cancer risk in European Americans, but smoking habits, lung cancer risk and CYP2A6 gene variants differ significantly between European and African ancestry populations. Herein, African American ever-smokers, drawn from two independent lung cancer case-control studies, were genotyped for reduced activity CYP2A6 alleles and grouped by predicted metabolic activity. Lung cancer risk in the Southern Community Cohort Study (n = 494) was lower among CYP2A6 reduced versus normal metabolizers, as estimated by multivariate conditional logistic regression [odds ratio (OR) = 0.44; 95% confidence interval (CI) = 0.26-0.73] and by unconditional logistic regression (OR = 0.62; 95% CI = 0.41-0.94). The association was replicated in an independent study from MD Anderson Cancer Center (n = 407) (OR = 0.64; 95% CI = 0.42-0.98), and pooling the studies yielded an OR of 0.64 (95% CI = 0.48-0.86). Exploratory analyses revealed a significant interaction between CYP2A6 genotype and sex on the risk for lung cancer (Southern Community Cohort Study: P = 0.04; MD Anderson: P = 0.03; Pooled studies: P = 0.002) with a CYP2A6 effect in men only. These findings support a contribution of genetic variation in CYP2A6 to lung cancer risk among African American smokers, particularly men, whereby CYP2A6 genotypes associated with reduced metabolic activity confer a lower risk of developing lung cancer.

Kim IW, Han N, Kim MG, et al.
Copy number variability analysis of pharmacogenes in patients with lymphoma, leukemia, hepatocellular, and lung carcinoma using The Cancer Genome Atlas data.
Pharmacogenet Genomics. 2015; 25(1):1-7 [PubMed] Related Publications
OBJECTIVE: Individual differences in drug efficacy and toxicity remain an important clinical concern. We investigated copy number variation (CNV) frequencies for pharmacogenes using The Cancer Genome Atlas dataset.
MATERIALS AND METHODS: One hundred and fifty-two pharmacogenes were selected from liver hepatocellular carcinoma, lung squamous cell carcinoma (LUSC), acute myeloid leukemia, and lymphoid neoplasm diffuse large B-cell lymphoma (DLBL). The germ line and somatic CNV frequencies were analyzed.
RESULTS: We found CNVs with more than 1% frequency in drug-metabolizing enzymes including CYP2A6, CYP2D6, GSTP1, CYP2E1, GSTM1, GSTT1, and SULT1A1, drug transporters such as SLC19A1 and SLC28A1, and targets such as FHIT in normal tissue or blood. GSTM1 had the highest frequency for gene gain (45.45, 39.18, 31.01, and 34.77%, respectively) and for gene loss (18.18, 29.38, 20.89, and 26.68%, respectively) in DLBL, acute myeloid leukemia, liver hepatocellular carcinoma, and LUSC. P2RY12 and P2RY1 had the highest frequency for gene gain in LUSC (26.95 and 26.68%, respectively) whereas ABCB1 and ABL2 had the highest frequency for gene gain in DLBL (27.27%) in cancer tissue or blood.
CONCLUSION: Germ line and somatic CNVs of pharmacogenes may play a role in determining individual variations in drug responses. Inclusion of CNVs in pharmacogenetic variations holds promise as biomarkers that can increase the benefits and reduce the risks of drug therapy on an individual level.

Ren F, Wang DB, Li T, et al.
Identification of differentially methylated genes in the malignant transformation of ovarian endometriosis.
J Ovarian Res. 2014; 7:73 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Key roles for epigenetic mechanisms in tumorigenesis are well accepted, while the relationship between gene methylation and malignant transformation of ovarian endometriosis (EMS) was seldom reported. In this study, we aimed to screen for aberrantly methylated genes associated with the malignant transformation of ovarian EMS and to preliminarily verify the reliability of screened results by detecting the methylation status and protein expression of the candidate gene in a larger scale of formaldehyde-fixed and paraffin-embedded (FFPE) samples.
METHODS: Methylated CpG island amplification coupled with representational difference analysis (MCA-RDA) was performed on 3 couples of endometriosis-associated ovarian carcinoma (EAOC) fresh samples to identify differentially methylated candidate genes related to malignant transformation of ovarian EMS; Methylation-specific PCR (MSP) and immunohistochemistry were performed in 30 EAOC samples to detected the methylation status and protein expression of RASSF2 gene to verify the reliability of MCA-RDA results.
RESULTS: Nine differentially methylated genes were obtained by MCA-RDA as candidate genes for malignant transformation of EMS; Methylation frequency of RASSF2 in the neoplastic tissues of EAOC group was higher than that in the ectopic endometria (p < 0.05). While protein expression of RASSF2 in the neoplastic tissues was lower than that in the ectopic endometria of the EAOC group (p < 0.05) Absence of protein expression of RASSF2 was significantly correlated with the promoter methylation of the gene (p < 0.05).
CONCLUSIONS: RASSF2, RUNX3, GSTZ1, CYP2A, GBGT1, NDUFS1, SPOCK2, ADAM22, and TRIM36 were candidate genes for malignant transformation of ovarian EMS and epigenetic inactivation of RASSF2 by promoter hypermethylation is an early event in malignant transformation of ovarian EMS. The screen results were reliable and worthy of further study.

Robles AI, Yang P, Jen J, et al.
A DRD1 polymorphism predisposes to lung cancer among those exposed to secondhand smoke during childhood.
Cancer Prev Res (Phila). 2014; 7(12):1210-8 [PubMed] Free Access to Full Article Related Publications
Lung cancer has a familial component which suggests a genetic contribution to its etiology. Given the strong evidence linking smoking with lung cancer, we studied miRNA-related loci in genes associated with smoking behavior. CHRNA, CHRNB gene families, CYP2A6, and DRD1 (dopamine receptor D1) were mined for SNPs that fell within the seed region of miRNA binding sites and then tested for associations with risk in a three-stage validation approach. A 3'UTR (untranslated region) SNP in DRD1 was associated with a lower risk of lung cancer among individuals exposed to secondhand smoke during childhood [OR, 0.69; 95% confidence interval (CI), 0.60-0.79; P < 0.0001]. This relationship was evident in both ever (OR, 0.74; 95% CI, 0.62-0.88; P = 0.001) and never smokers (OR, 0.61; 95% CI, 0.47-0.79; P < 0.0001), European American (OR, 0.65; 95% CI, 0.53-0.80; P < 0.0001), and African American (OR, 0.73; 95% CI, 0.62-0.88; P = 0.001) populations. Although much remains undefined about the long-term risks associated with exposure to secondhand smoke and heterogeneity between individuals in regard to their susceptibility to the effects of secondhand smoke, our data show an interaction between an SNP in the 3'UTR of DRD1 and exposure to secondhand smoke during childhood. Further work is needed to explore the mechanistic underpinnings of this SNP and the nature of the interaction between DRD1 and exposure to secondhand smoke during childhood.

Hocevar BA, Kamendulis LM, Pu X, et al.
Contribution of environment and genetics to pancreatic cancer susceptibility.
PLoS One. 2014; 9(3):e90052 [PubMed] Free Access to Full Article Related Publications
Several risk factors have been identified as potential contributors to pancreatic cancer development, including environmental and lifestyle factors, such as smoking, drinking and diet, and medical conditions such as diabetes and pancreatitis, all of which generate oxidative stress and DNA damage. Oxidative stress status can be modified by environmental factors and also by an individual's unique genetic makeup. Here we examined the contribution of environment and genetics to an individual's level of oxidative stress, DNA damage and susceptibility to pancreatic cancer in a pilot study using three groups of subjects: a newly diagnosed pancreatic cancer group, a healthy genetically-unrelated control group living with the case subject, and a healthy genetically-related control group which does not reside with the subject. Oxidative stress and DNA damage was evaluated by measuring total antioxidant capacity, direct and oxidative DNA damage by Comet assay, and malondialdehyde levels. Direct DNA damage was significantly elevated in pancreatic cancer patients (age and sex adjusted mean ± standard error: 1.00 ± 0.05) versus both healthy unrelated and related controls (0.70 ± 0.06, p<0.001 and 0.82 ± 0.07, p = 0.046, respectively). Analysis of 22 selected SNPs in oxidative stress and DNA damage genes revealed that CYP2A6 L160H was associated with pancreatic cancer. In addition, DNA damage was found to be associated with TNFA -308G>A and ERCC4 R415Q polymorphisms. These results suggest that measurement of DNA damage, as well as select SNPs, may provide an important screening tool to identify individuals at risk for development of pancreatic cancer.

Lin CY, Pan TS, Ting CC, et al.
Cytochrome p450 metabolism of betel quid-derived compounds: implications for the development of prevention strategies for oral and pharyngeal cancers.
ScientificWorldJournal. 2013; 2013:618032 [PubMed] Free Access to Full Article Related Publications
Betel quid (BQ) products, with or without tobacco, have been classified by the International Agency for Research on Cancer (IARC) as group I human carcinogens that are associated with an elevated risk of oral potentially malignant disorders (OPMDs) and cancers of the oral cavity and pharynx. There are estimated 600 million BQ users worldwide. In Taiwan alone there are 2 million habitual users (approximately 10% of the population). Oral and pharyngeal cancers result from interactions between genes and environmental factors (BQ exposure). Cytochrome p450 (CYP) families are implicated in the metabolic activation of BQ- and areca nut-specific nitrosamines. In this review, we summarize the current knowledge base regarding CYP genetic variants and related oral disorders. In clinical applications, we focus on cancers of the oral cavity and pharynx and OPMDs associated with CYP gene polymorphisms, including CYP1A1, CYP2A6, CYP2E1, and CYP26B1. Our discussion of CYP polymorphisms provides insight into the importance of screening tests in OPMDs patients for the prevention of oral and pharyngeal cancers. Future studies will establish a strong foundation for the development of chemoprevention strategies, polymorphism-based clinical diagnostic tools (e.g., specific single-nucleotide polymorphism (SNP) "barcodes"), and effective treatments for BQ-related oral disorders.

Kim SY, S Hong Y, K Shim E, et al.
S-1 plus irinotecan and oxaliplatin for the first-line treatment of patients with metastatic colorectal cancer: a prospective phase II study and pharmacogenetic analysis.
Br J Cancer. 2013; 109(6):1420-7 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: S-1 is an oral fluoropyrimidine that mimics infusional 5-fluorouracil. The aim of this phase II trial was to explore the clinical efficacy of the triplet regimen TIROX, which consists of S-1, irinotecan and oxaliplatin.
METHODS: Forty-two chemo-naive patients with metastatic colorectal cancer (mCRC) were planned to be enrolled and be treated with irinotecan 150 mg m(-2) followed by oxaliplatin 85 mg m(-2) on day 1 and S-1 80 mg m(-2) per day from day 1 to 14 every 3 weeks. Polymorphisms in the UGT1A1, UGT1A6, UGT1A7 and CYP2A6 genes were analysed.
RESULTS: Between July 2007 and February 2008, 43 patients were enrolled. An objective response was noted in 29 patients (67.4%, 95% confidence interval: 53.4-81.4), of which 2 achieved durable complete responses. The median progression-free survival was 10.0 months and the median overall survival was 19.2 months. Significant grade 3 or 4 adverse events were neutropenia (45.2%), febrile neutropenia (9.5%), diarrhoea (7.1%) and vomiting (9.5%). Increased gastrointestinal toxicities were associated with the presence of UGT1A6*2 or UGT1A7*3 and an improved tumour response was noted in those without variant alleles of CYP2A6 or UGT1A1*60.
CONCLUSION: The combination of S-1, irinotecan and oxaliplatin showed favourable efficacy and tolerability in untreated patients with mCRC.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. CYP2A6, Cancer Genetics Web: http://www.cancer-genetics.org/CYP2A6.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 30 August, 2019     Cancer Genetics Web, Established 1999