Gene Summary

Gene:CTTN; cortactin
Aliases: EMS1
Summary:This gene is overexpressed in breast cancer and squamous cell carcinomas of the head and neck. The encoded protein is localized in the cytoplasm and in areas of the cell-substratum contacts. This gene has two roles: (1) regulating the interactions between components of adherens-type junctions and (2) organizing the cytoskeleton and cell adhesion structures of epithelia and carcinoma cells. During apoptosis, the encoded protein is degraded in a caspase-dependent manner. The aberrant regulation of this gene contributes to tumor cell invasion and metastasis. Three splice variants that encode different isoforms have been identified for this gene. [provided by RefSeq, May 2010]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:src substrate cortactin
Source:NCBIAccessed: 31 August, 2019


What does this gene/protein do?
Show (6)
Pathways:What pathways are this gene/protein implicaed in?
Show (2)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 31 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 31 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (7)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: CTTN (cancer-related)

Zhu L, Cho E, Zhao G, et al.
The Pathogenic Effect of Cortactin Tyrosine Phosphorylation in Cutaneous Squamous Cell Carcinoma.
In Vivo. 2019 Mar-Apr; 33(2):393-400 [PubMed] Free Access to Full Article Related Publications
BACKGROUND/AIM: Cortactin (CTTN) has been considered a promising molecular prognostic factor in various types of cancers. In this study, we aimed to investigate the role of CTTN in the pathogenesis of cutaneous squamous cell carcinoma (CSCC).
MATERIALS AND METHODS: CTTN and phospho-CTTN (p-CTTN) expression was determined in 10 healthy controls and 38 CSCC tissue samples by immunohistochemistry. The influence of CTTN on the biological behavior of CSCC cells was also investigated.
RESULTS: p-CTTN expression was significantly increased in CSCC than control samples. In contrast, no significant difference in CTTN expression was found between control and CSCC tissues. Moreover, a significant association was found between recurrence-free survival with p-CTTN expression, but not with CTTN expression. Furthermore, the proliferative, migratory, and invasive abilities of CSCC cells were significantly decreased by CTTN-siRNA transfection.
CONCLUSION: CTTN phosphorylation is strongly associated with CSCC pathogenesis and may serve as a molecular biomarker of CSCC.

Liu Y, Zhu H, Zhang Z, et al.
Effects of a single transient transfection of Ten-eleven translocation 1 catalytic domain on hepatocellular carcinoma.
PLoS One. 2018; 13(12):e0207139 [PubMed] Free Access to Full Article Related Publications
Tumor suppressor genes (TSGs), including Ten-eleven translocation 1 (TET1), are hypermethylated in hepatocellular carcinoma (HCC). TET1 catalytic domain (TET1-CD) induces genome-wide DNA demethylation to activate TSGs, but so far, anticancer effects of TET1-CD are unclear. Here we showed that after HCC cells were transiently transfected with TET1-CD, the methylation levels of TSGs, namely APC, p16, RASSF1A, SOCS1 and TET1, were distinctly reduced, and their mRNA levels were significantly increased and HCC cells proliferation, migration and invasion were suppressed, but the methylation and mRNA levels of oncogenes, namely C-myc, Bmi1, EMS1, Kpna2 and c-fos, were not significantly change. Strikingly, HCC subcutaneous xenografts in nude mice remained to be significantly repressed even 54 days after transient transfection of TET1-CD. So, transient transfection of TET1-CD may be a great advance in HCC treatment due to its activation of multiple TSGs and persistent anticancer effects.

Lien CF, Hwang TZ, Lin TM, et al.
Cortactin as a potential predictor of second esophageal neoplasia in hypopharyngeal carcinoma.
Auris Nasus Larynx. 2019; 46(2):260-266 [PubMed] Related Publications
OBJECTIVE: Hypopharyngeal carcinoma has a very poor prognosis. The high incidence of second esophageal neoplasia is one of the major causes. To establish an efficient follow-up scheme for increasing the diagnostic yield and reducing the adverse impact of second esophageal neoplasia on survival, the purpose of this study was to explore a biomarker to predict second esophageal neoplasia.
METHODS: In this retrospective cohort study, consecutive tissue specimens from those patients who underwent tumor resection between September 2007 and October 2015 were collected. Gene amplification was performed by real-time PCR. The expression of cortactin was evaluated by immunohistochemistry. The predictive risk factors of developing second esophageal neoplasia and prognostic factors related to survival were analyzed.
RESULTS: A total of 187 patients were included with a mean follow-up of 48months (12-118months). Second esophageal tumors were found in 53 (28.3%), including 41 (21.9%) esophageal squamous cell carcinoma and 12 severe dysplasia. The results of multivariate analyses revealed that age (OR 2.81, 95% CI 1.16-6.78), cortactin overexpression (OR 2.49, 95% CI 1.17-5.33), and stage IV versus I (OR 6.49, 95% CI 1.68-25.18) were independent predictors of second esophageal neoplasia, and second esophageal neoplasia (HR 1.78, 95% CI 1.05-3.01) was an independent predictor of overall survival.
CONCLUSION: This is the first report to identify a potential biomarker for predicting second esophageal neoplasia in patients with hypopharyngeal carcinoma. In those patients with cortactin overexpression and younger age (≤60years old), close surveillance for second esophageal neoplasia is required. In addition, the real effect of cortactin overexpression on development of primary esophageal carcinoma is required to be validated in a large cohort study.

Li Y, Zhang H, Gong H, et al.
miR-182 suppresses invadopodia formation and metastasis in non-small cell lung cancer by targeting cortactin gene.
J Exp Clin Cancer Res. 2018; 37(1):141 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Metastasis is the leading cause of cancer mortality and is a major hurdle for lung cancer treatment. Invadopodia, which are cancer-specific protrusive structures, play a crucial role in the metastatic cascade through degradation of the basement membrane and surrounding stroma. Cortactin, a critical component of invadopodia, frequently used as an invadopodia marker, a universally important player in invadopodia function, and is frequently overexpressed in cancer, but the exact mechanism of regulation is not yet fully understood.
METHODS: The expression level of CTTN in human non-small cell lung cancer (NSCLC) tissues was detected by qRT-PCR. Cell migration, invasion and invadopodia formation were assessed in vitro by wound-healing, transwell assay and immunofluorescence, respectively. The dual-luciferase reporter assay was used to identify the direct target of miR-182.
RESULTS: Hepatocyte growth factor (HGF) and phorbol 12,13-dibutyrate (PDBu) can induce CTTN expression, motility, and invasion ability, as well as invadopodia formation in non-small cell lung cancer (NSCLC). Moreover, miR-182 suppressed metastasis and invadopodia formation by targeting CTTN in NSCLC. Our qRT-PCR results showed that CTTN expression was inversely correlated with miR-182 expression that suppressed invadopodia formation via suppression of the Cdc42/N-WASP pathway. Furthermore, miR-182 negatively regulated invadopodia function, and suppressed extracellular matrix(ECM) degradation in lung cancer cells by inhibiting cortactin.
CONCLUSION: Collectively, our results demonstrated that miR-182 targeted CTTN gene in NSCLC and suppressed lung cancer invadopodia formation, and thus suppressed lung cancer metastasis. This suggests a therapeutic application of miR-182 in NSCLC.

Walter V, Du Y, Danilova L, et al.
MVisAGe Identifies Concordant and Discordant Genomic Alterations of Driver Genes in Squamous Tumors.
Cancer Res. 2018; 78(12):3375-3385 [PubMed] Free Access to Full Article Related Publications
Integrated analyses of multiple genomic datatypes are now common in cancer profiling studies. Such data present opportunities for numerous computational experiments, yet analytic pipelines are limited. Tools such as the cBioPortal and Regulome Explorer, although useful, are not easy to access programmatically or to implement locally. Here, we introduce the MVisAGe R package, which allows users to quantify gene-level associations between two genomic datatypes to investigate the effect of genomic alterations (e.g., DNA copy number changes on gene expression). Visualizing Pearson/Spearman correlation coefficients according to the genomic positions of the underlying genes provides a powerful yet novel tool for conducting exploratory analyses. We demonstrate its utility by analyzing three publicly available cancer datasets. Our approach highlights canonical oncogenes in chr11q13 that displayed the strongest associations between expression and copy number, including

Villaronga MÁ, Hermida-Prado F, Granda-Díaz R, et al.
Immunohistochemical Expression of Cortactin and Focal Adhesion Kinase Predicts Recurrence Risk and Laryngeal Cancer Risk Beyond Histologic Grading.
Cancer Epidemiol Biomarkers Prev. 2018; 27(7):805-813 [PubMed] Related Publications

Suman P, Mishra S, Chander H
High expression of FBP17 in invasive breast cancer cells promotes invadopodia formation.
Med Oncol. 2018; 35(5):71 [PubMed] Related Publications
Metastatic spread of the cancer is usually the consequence of the activation of signaling pathways that generate cell motility and tissue invasion. Metastasis involves the reorganization of cytoskeleton and cell shape for the swift movement of the cells through extracellular matrix. Previously, we have described the invasive and metastatic role played by one of the members (Toca-1) of CIP4 subfamily of F-BAR proteins. In the present study, we address the role of another member (FBP17) of same family in the invasion breast cancer cells. Here, we report that the formin-binding protein 17 (FBP17) is highly expressed at both mRNA and protein levels in breast cancer cells. The study showed the association of FBP17 with cytoskeletal actin regulatory proteins like dynamin and cortactin. To determine its role in extracellular matrix (ECM) degradation, we achieved stable knockdown of FBP17 in MDA-MB-231 cells. FBP17 knockdown cells showed a defect and were found to be compromised in the degradation of ECM indicating the role of FBP17 in the invasion of breast cancer cells. Our results suggest that FBP17 is highly expressed in breast cancer cells and facilitates the invasion of breast cancer cells.

Marioni G, Brescia G, Nicolè L, et al.
Survivin and cortactin expression in sinonasal schneiderian (inverted) papilloma and associated carcinoma.
Am J Rhinol Allergy. 2018; 32(2):78-81 [PubMed] Related Publications
BACKGROUND: Sinonasal inverted (schneiderian) papilloma (IP) is histologically benign but shows a propensity for malignant transformation. Survivin, a member of the inhibitor of the apoptosis family of proteins that controls cell division, apoptosis, metastasis, and, probably, also neoangiogenesis, is overexpressed in essentially all human cancers. Overexpression of the multidomain protein cortactin has also been associated with increased cell migration, invasion, and metastatic potential in several malignancies.
OBJECTIVE: The aim of the present study was to preliminarily investigate survivin and cortactin expression in a consecutive series of sinonasal IPs, and IP-associated squamous cell carcinomas (SCC).
METHODS: Immunohistochemical expression of nuclear survivin and cortactin was measured in 19 consecutive sinonasal IPs and 3 IP-associated SCCs.
RESULTS: The mean ± standard deviation nuclear survivin expression was 9.4 ± 9.2% and 31.7% ± 15.4% in sinonasal IPs and SCCs, respectively (p < 0.0001). Results of cortactin immunostaining was strongly positive in the cytoplasm of both sinonasal IPs and SCCs: no significant difference emerged between the IP and SCC epithelial components.
CONCLUSION: Nuclear survivin expression was significantly higher in SCCs than in IPs. Prospective, multi-institutional prognostic studies, preferably on an international scale (given the few cases treated at single institutions), are needed to confirm the role of survivin in IP malignant transformation.

Wu MH, Luo JD, Wang WC, et al.
Risk analysis of malignant potential of oral verrucous hyperplasia: A follow-up study of 269 patients and copy number variation analysis.
Head Neck. 2018; 40(5):1046-1056 [PubMed] Related Publications
BACKGROUND: Oral verrucous hyperplasia is commonly observed in the oral cavity of betel quid chewers and is a potential malignant disorder. However, the prognostic factors and genetic alterations of oral verrucous hyperplasia are unclear.
METHODS: We calculate the survival rate and prognostic factors using a Kaplan-Meier analysis and Cox proportional hazards regression model. Copy number variations were analyzed using a single-nucleotide polymorphism (SNP) array.
RESULTS: The 5-year disease-free and cancer-free survival rates of patients with oral verrucous hyperplasia were approximately 40% and 70%, respectively. Heavy betel quid chewing, advanced oral submucous fibrosis, and nonbuccal and nontongue lesions were risk factors for malignant transformation, whereas dysplasia did not affect outcomes. The gene amplification of CTTN, FOLR3, ORAOV1, PPFIA1, and RNF121 were associated with the poor prognosis of oral verrucous hyperplasia.
CONCLUSION: Heavy betel quid chewing, advanced oral submucous fibrosis, and nonbuccal and nontongue lesions are high-risk factors of patients with oral verrucous hyperplasia. The 5-copy number variation-associated genes could be used for early diagnosis and predicting the prognosis.

Liu HY, Zhang CJ
Identification of differentially expressed genes and their upstream regulators in colorectal cancer.
Cancer Gene Ther. 2017; 24(6):244-250 [PubMed] Related Publications
To identify the differentially expressed genes (DEGs) and their transcription factors (TFs) in colorectal cancer (CRC). We performed an integrated analysis of microarray studies. Functional annotation and CRC-specific transcriptional regulatory network construction were performed. Expression of selected DEGs and TFs was verified with The Cancer Genome Atlas (TCGA) data sets and qRT-PCR. SurvMicro was used to analyze the correlation between the overall survival time of CRC patients and the expression of DEGs and TFs. Seven data sets were obtained and 2014 DEGs in CRC were identified. Pathways in cancer and fatty acid metabolism were significantly enriched pathways of upregulated and downregulated DEGs, respectively. Expression of five DEGs (RERGL, ESM1, CA1, ANGPTL7 and TMEFF2) and their five TFs (ZNF354C, ARID3A, NFIC, BRCA1 and ZEB1) was verified by TCGA data sets and qRT-PCR. Their expression in TCGA data sets was same as that in our integrated analysis. Only the expression of EMS1, NFIC, BRCA1 and ZEB1 was inconsistent with integrated analysis and TCGA data sets. Expression of RERGL and BRCA1 was significantly correlated with the overall survival time of CRC patients. These five DEGs may have roles in CRC regulated by their five upstream TFs, which may make a contribution in uncovering the mechanism and providing new strategy of diagnosis and therapies for CRC.

Hu X, Moon JW, Li S, et al.
Amplification and overexpression of
Int J Med Sci. 2016; 13(11):868-874 [PubMed] Free Access to Full Article Related Publications
Esophageal squamous cell carcinoma (ESCC) is a genetically complex tumor type and is a major cause of cancer-related mortality. The combination of genetics, diet, behavior, and environment plays an important role in the carcinogenesis of ESCC. To characterize the genomic aberrations of this disease, we investigated the genomic imbalances in 19 primary ESCC cases using high-resolution array comparative genomic hybridization (CGH). All cases showed either loss or gain of whole chromosomes or segments of chromosome(s) with variable genomic sizes. The copy number alterations per case affected the median 34% (~ 1,034Mb/3,000Mb) of the whole genome. Recurrent gains were 1q21.3-qter, 3q13.11-qter, 5pter-p11, 7pter-p15.3, 7p12.1-p11.2, 7q11-q11.2, 8p12-qter, 11q13.2-q13.3, 12pter-p13.31, 17q24.2, 20q11.21-qter, and 22q11.21-q11.22 whereas the recurrent losses were 3pter-p11.1, 4pter-p12, 4q28.3-q31.22, 4q31.3-q32.1, 9pter-p12, 11q22.3-qter and 13q12.11-q22.1. Amplification of 11q13 resulting in overexpression of

Wu H, Cheng X, Ji X, et al.
Cortactin contributes to the tumorigenicity of colorectal cancer by promoting cell proliferation.
Oncol Rep. 2016; 36(6):3497-3503 [PubMed] Related Publications
Cortactin is a scaffolding protein that regulates Arp2/3-mediated actin polymerization. We showed in a previous study that cortactin was highly expressed in human stage II-III colorectal cancer (CRC) tissues. In the present study, using colony formation and CCK-8 assays, we showed that overexpression of cortactin accelerated the proliferation of CRC cells. Flow cytometric assays revealed that cortactin promoted G1/S phase cell cycle transition. Later, we constructed the phosphorylation mutation of cortactin at the Tyr421 residue. Colony formation and CCK-8 assays showed that cortactin/Tyr421A lost its ability to promote cell proliferation. Western blot analysis indicated that cortactin activated cyclin D1, but not cortactin/Tyr421A. Further study in nude mice revealed that there was a greater decrease in both tumor volume and tumor weight in animals injected with SW480/cortactin/Tyr421A cells than in those injected with SW480/cortactin/WT cells. Thus, the present study demonstrates that the cortactin Tyr421 residue is required to promote cell proliferation both in vitro and in vivo.

Noorlag R, Boeve K, Witjes MJ, et al.
Amplification and protein overexpression of cyclin D1: Predictor of occult nodal metastasis in early oral cancer.
Head Neck. 2017; 39(2):326-333 [PubMed] Related Publications
BACKGROUND: Accurate nodal staging is pivotal for treatment planning in early (stage I-II) oral cancer. Unfortunately, current imaging modalities lack sensitivity to detect occult nodal metastases. Chromosomal region 11q13, including genes CCND1, Fas-associated death domain (FADD), and CTTN, is often amplified in oral cancer with nodal metastases. However, evidence in predicting occult nodal metastases is limited.
METHODS: In 158 patients with early tongue and floor of mouth (FOM) squamous cell carcinomas, both CCND1 amplification and cyclin D1, FADD, and cortactin protein expression were correlated with occult nodal metastases.
RESULTS: CCND1 amplification and cyclin D1 expression correlated with occult nodal metastases. Cyclin D1 expression was validated in an independent multicenter cohort, confirming the correlation with occult nodal metastases in early FOM cancers.
CONCLUSION: Cyclin D1 is a predictive biomarker for occult nodal metastases in early FOM cancers. Prospective research on biopsy material should confirm these results before implementing its use in routine clinical practice. © 2016 Wiley Periodicals, Inc. Head Neck 39: 326-333, 2017.

Watkins RJ, Imruetaicharoenchoke W, Read ML, et al.
Pro-invasive Effect of Proto-oncogene PBF Is Modulated by an Interaction with Cortactin.
J Clin Endocrinol Metab. 2016; 101(12):4551-4563 [PubMed] Free Access to Full Article Related Publications
CONTEXT: Metastatic disease is responsible for the majority of endocrine cancer deaths. New therapeutic targets are urgently needed to improve patient survival rates.
OBJECTIVE: The proto-oncogene PTTG1-binding factor (PBF/PTTG1IP) is overexpressed in multiple endocrine cancers and circumstantially associated with tumor aggressiveness. This study aimed to understand the role of PBF in tumor cell invasion and identify possible routes to inhibit its action. Design, Setting, Patients, and Interventions: Thyroid, breast, and colorectal cells were transfected with PBF and cultured for in vitro analysis. PBF and cortactin (CTTN) expression was determined in differentiated thyroid cancer and The Cancer Genome Atlas RNA-seq data.
PRIMARY OUTCOME MEASURE: Pro-invasive effects of PBF were evaluated by 2D Boyden chamber, 3D organotypic, and proximity ligation assays.
RESULTS: Our study identified that PBF and CTTN physically interact and co-localize, and that this occurs at the cell periphery, particularly at the leading edge of migrating cancer cells. Critically, PBF induces potent cellular invasion and migration in thyroid and breast cancer cells, which is entirely abrogated in the absence of CTTN. Importantly, we found that CTTN is over-expressed in differentiated thyroid cancer, particularly in patients with regional lymph node metastasis, which significantly correlates with elevated PBF expression. Mutation of PBF (Y174A) or pharmacological intervention modulates the PBF: CTTN interaction and attenuates the invasive properties of cancer cells.
CONCLUSION: Our results demonstrate a unique role for PBF in regulating CTTN function to promote endocrine cell invasion and migration, as well as identify a new targetable interaction to block tumor cell movement.

Yamada H, Takeda T, Michiue H, et al.
Actin bundling by dynamin 2 and cortactin is implicated in cell migration by stabilizing filopodia in human non-small cell lung carcinoma cells.
Int J Oncol. 2016; 49(3):877-86 [PubMed] Free Access to Full Article Related Publications
The endocytic protein dynamin participates in the formation of actin-based membrane protrusions such as podosomes, pseudopodia, and invadopodia, which facilitate cancer cell migration, invasion, and metastasis. However, the role of dynamin in the formation of actin-based membrane protrusions at the leading edge of cancer cells is unclear. In this study, we demonstrate that the ubiquitously expressed dynamin 2 isoform facilitates cell migration by stabilizing F-actin bundles in filopodia of the lung cancer cell line H1299. Pharmacological inhibition of dynamin 2 decreased cell migration and filopodial formation. Furthermore, dynamin 2 and cortactin mostly colocalized along F-actin bundles in filopodia of serum-stimulated H1299 cells by immunofluorescent and immunoelectron microscopy. Knockdown of dynamin 2 or cortactin inhibited the formation of filopodia in serum-stimulated H1299 cells, concomitant with a loss of F-actin bundles. Expression of wild-type cortactin rescued the punctate-like localization of dynamin 2 and filopodial formation. The incubation of dynamin 2 and cortactin with F-actin induced the formation of long and thick actin bundles, with these proteins colocalizing at F-actin bundles. A depolymerization assay revealed that dynamin 2 and cortactin increased the stability of F-actin bundles. These results indicate that dynamin 2 and cortactin participate in cell migration by stabilizing F-actin bundles in filopodia. Taken together, these findings suggest that dynamin might be a possible molecular target for anticancer therapy.

Liu YC, Ho HC, Lee MR, et al.
Cortactin is a prognostic marker for oral squamous cell carcinoma and its overexpression is involved in oral carcinogenesis.
Environ Toxicol. 2017; 32(3):799-812 [PubMed] Related Publications
EMS1 (chromosome eleven, band q13, mammary tumor and squamous cell carcinoma-associated gene 1) gene amplification and the concomitant cortactin overexpression have been reported to associate with poor prognosis and tumor metastasis. In this study, we examined cortactin expression by immunohistochemistry in human oral tumors and murine tongue tumors which were induced by the carcinogen 4-nitroquinoline 1-oxide (4-NQO). The immunostaining results show over- to moderate expression of cortactin in 85% (104/122) of oral squamous cell carcinoma (OSCC) tissues and in all 15 leukoplakia tissues examined. Further, statistical analysis indicates that cortactin overexpression appears to be a predictor for shorter survival and poorer prognosis in OSCC patients. In an animal model, cortactin is shown to upregulate in infiltrating squamous cell carcinoma, papilloma, and epithelia with squamous hyperplasia, indicating that cortactin induction is an early event during oral carcinogenesis. It is suggested that cortactin expression is mediated in the progression of pre-malignancy to papilloma, based on earlier cortactin induction in pre-malignancy preceding cyclin D1 in papilloma. In conclusion, cortactin overexpression is frequently observed in human OSCC and mouse tongue tumors. Thus, cortactin may have an important role in the development of oral tumors in human and mice. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 799-812, 2017.

Cheng F, Zhao J, Fooksa M, Zhao Z
A network-based drug repositioning infrastructure for precision cancer medicine through targeting significantly mutated genes in the human cancer genomes.
J Am Med Inform Assoc. 2016; 23(4):681-91 [PubMed] Free Access to Full Article Related Publications
OBJECTIVE: Development of computational approaches and tools to effectively integrate multidomain data is urgently needed for the development of newly targeted cancer therapeutics.
METHODS: We proposed an integrative network-based infrastructure to identify new druggable targets and anticancer indications for existing drugs through targeting significantly mutated genes (SMGs) discovered in the human cancer genomes. The underlying assumption is that a drug would have a high potential for anticancer indication if its up-/down-regulated genes from the Connectivity Map tended to be SMGs or their neighbors in the human protein interaction network.
RESULTS: We assembled and curated 693 SMGs in 29 cancer types and found 121 proteins currently targeted by known anticancer or noncancer (repurposed) drugs. We found that the approved or experimental cancer drugs could potentially target these SMGs in 33.3% of the mutated cancer samples, and this number increased to 68.0% by drug repositioning through surveying exome-sequencing data in approximately 5000 normal-tumor pairs from The Cancer Genome Atlas. Furthermore, we identified 284 potential new indications connecting 28 cancer types and 48 existing drugs (adjusted P < .05), with a 66.7% success rate validated by literature data. Several existing drugs (e.g., niclosamide, valproic acid, captopril, and resveratrol) were predicted to have potential indications for multiple cancer types. Finally, we used integrative analysis to showcase a potential mechanism-of-action for resveratrol in breast and lung cancer treatment whereby it targets several SMGs (ARNTL, ASPM, CTTN, EIF4G1, FOXP1, and STIP1).
CONCLUSIONS: In summary, we demonstrated that our integrative network-based infrastructure is a promising strategy to identify potential druggable targets and uncover new indications for existing drugs to speed up molecularly targeted cancer therapeutics.

García E, Ragazzini C, Yu X, et al.
WIP and WICH/WIRE co-ordinately control invadopodium formation and maturation in human breast cancer cell invasion.
Sci Rep. 2016; 6:23590 [PubMed] Free Access to Full Article Related Publications
Cancer cells form actin-rich degradative protrusions (invasive pseudopods and invadopodia), which allows their efficient dispersal during metastasis. Using biochemical and advanced imaging approaches, we demonstrate that the N-WASP-interactors WIP and WICH/WIRE play non-redundant roles in cancer cell invasion. WIP interacts with N-WASP and cortactin and is essential for invadopodium assembly, whereas WICH/WIRE regulates N-WASP activation to control invadopodium maturation and degradative activity. Our data also show that Nck interaction with WIP and WICH/WIRE modulates invadopodium maturation; changes in WIP and WICH/WIRE levels induce differential distribution of Nck. We show that WIP can replace WICH/WIRE functions and that elevated WIP levels correlate with high invasiveness. These findings identify a role for WICH/WIRE in invasiveness and highlight WIP as a hub for signaling molecule recruitment during invadopodium generation and cancer progression, as well as a potential diagnostic biomarker and an optimal target for therapeutic approaches.

Long HC, Gao X, Lei CJ, et al.
miR-542-3p inhibits the growth and invasion of colorectal cancer cells through targeted regulation of cortactin.
Int J Mol Med. 2016; 37(4):1112-8 [PubMed] Related Publications
Colorectal cancer is one of the most common malignancies. Previous studies have reported that cortactin (CTTN) is often overexpressed in tumors and is associated with metastasis and poor prognosis of patients. The abnormal expression of microRNAs (miRNAs or miRs) is closely related to the development and progression of various types of cancer, including colorectal cancer. However, little is known about the miRNAs targeting cortactin. In the present study, prediction using biological software revealed that cortactin has binding sites for miR-542-3p. Transfection with miR-542-3p mimic demonstrated that miR‑542-3p reduced the expression of cortactin in colorectal cancer cells. Dual luciferase reporter assays further demonstrated that miR-542-3p regulated cortactin in a targeted manner and that miR-542-3p expression was significantly downregulated in colorectal cancer cells. A cell proliferation assay and Transwell migration assay were undertaken: we noted that miR‑542-3p inhibited the proliferation and invasion of colorectal cancer cells while promoting their apoptosis. By contrast, cortactin acted antagonistically. When co-transfected with miR-542-3p mimic and CTTN overexpression vector, the inhibitory effect of miR-542-3p was blocked. This indicates that miR-542-3p regulates CTTN in a targeted manner to modulate the growth and invasion of colorectal cancer cells. The present study thus provides new targets for the prevention and treatment of colorectal cancer.

He J, Zhu G, Gao L, et al.
Fra-1 is upregulated in gastric cancer tissues and affects the PI3K/Akt and p53 signaling pathway in gastric cancer.
Int J Oncol. 2015; 47(5):1725-34 [PubMed] Related Publications
Gastric cancer is an aggressive disease that continues to have a daunting impact on global health. Fra-1 (FOSL1) plays important roles in oncogenesis in various malignancies. We investigated the expression of Fra-1 in gastric cancer (GC) tissues by qPCR, immunohistochemistry (IHC) and western blot technologies. The results showed that Fra-1 was overexpressed in gastric cancer tissues compared with the adjacent non‑cancerous tissues. To explore the possible mechanism of Fra-1 in GC, we elucidated the effect of Fra-1 in the apoptosis and cell cycle of gastric cancer cells, AGS, and found that a considerable decrease in apoptotic cells and increase of S phase rate were observed for AGS cells with Fra-1 overexpession. We identified and confirmed that Fra-1 affected the expression level of CTTN and EZR in vitro through LC-MS/MS analyses and western blot technology. Furthermore, we found that Fra-1 was correlated with dysregulation PI3K/Akt and p53 signaling pathway in gastric cancer tissues in vitro. Moreover, we found that Fra-1 overexpression affected the expression of PI3K, Akt, MDM2 and p53 in vivo. In summary, our results suggest that Fra-1 is upregulated in gastric cancer tissues and plays its function by affecting the PI3K/Akt and p53 signaling pathway in gastric cancer.

Wang L, Zhao K, Ren B, et al.
Expression of cortactin in human gliomas and its effect on migration and invasion of glioma cells.
Oncol Rep. 2015; 34(4):1815-24 [PubMed] Related Publications
The aim of the present study was to investigate the role of cortactin in the infiltrative behavior of glioma cells and the potential mechanism of cortactin in promoting the migration and invasion of glioma cells. The expression of cortactin was detected by immunohistochemistry in 40 human glioma specimens and 8 non-tumor brain specimens. U251, LN229 and SNB19 glioma cells were employed for the in vitro study and assigned into the siRNA-cortactin (transfected with siRNA specific to cortactin), siRNA-NC (transfected with negative control RNA sequence) and siRNA-N (transfected with empty vector) groups. The expression of cortactin in different treated glioma cell groups was detected using western blot analysis and RT-qPCR. The migration and invasion of glioma cells under different treatments were assessed using a wound-healing assay and Transwell-chamber invasion assay, respectively. The lamellipodia of glioma cells following treatment were observed by immunofluorescence (IF) and changes of lamellipodia over time were imaged using an inverted microscope. The distribution of cortactin and the actin-related protein 2/3 (Arp2/3) complex in glioma cells were observed after IF detection. The expression of cortactin in the glioma specimens was significantly higher than that in non-tumor brain tissue (P<0.05) and positively correlated with the malignancy of glioma specimens (r=0.912, P=0.00). The cortactin expression in glioma cells was markedly inhibited (P<0.05) and their migration and invasion ability was also impaired significantly following treatment with siRNA (P<0.05) compared with the other two groups. The size and persistence time of lamellipodia were reduced after cortactin expression was inhibited in glioma cells. Cortactin and the Arp2/3 complex were co-localized in the front of glioma cells, where actin was polymerized and lamellipodia formed. Thus, the results revealed that, cortactin is crucial in invasion and migration of glioma cells, which may promote the migration and invasion of glioma cells by regulating lamellipodia formation, a process requiring the combination of cortactin and the Arp2/3 complex.

Ni QF, Yu JW, Qian F, et al.
Cortactin promotes colon cancer progression by regulating ERK pathway.
Int J Oncol. 2015; 47(3):1034-42 [PubMed] Related Publications
Cortactin is upregulated in various cancers including breast cancer, head and neck squamous cell carcinoma and gastric cancer. However, the role of cortactin in the pathogenesis of colon cancer remains unclear. mRNA expression of cortactin in colon cancer samples and cell lines was detected by quantitative real-time PCR (qRT-PCR), while protein expression of cortactin in colon cancer tissues and adjacent non-cancer tissues was assessed by immunohistochemistry. The role of cortactin in regulation of the proliferation of colon cancer derived cells were investigated both in vitro and in vivo. In the total of 60 paired colon cancer specimens, compared with the adjacent non-cancer tissues, the expression of cortactin mRNA was upregulated in 45 (75.0%). Immunohistochemical analysis showed significantly increased cortactin expression in colon cancer (42/60, 70.0%) compared to control tissues (18/60, 30.0%). Overexpression of cortactin promoted HCT116 cellular colony formation and tumor growth. Conversely, cortactin knockdown inhibited these effects in SW480 cells. Mechanistic analyses indicated that cortactin was able to activate the EGFR-ERK signaling pathway. Additionally, cortactin expression was associated with tumor size, tumor stages and lymphatic invasion, increased cortactin expression predicts poor prognosis in patients with colon cancer. In summary, cortactin demonstrated the promotive effect in human colon cancer cell growth and tumorigenicity. These results indicated that cortactin may serve as an effective target for gene therapy.

Li C, Hashimi SM, Cao S, et al.
Chansu inhibits the expression of cortactin in colon cancer cell lines in vitro and in vivo.
BMC Complement Altern Med. 2015; 15:207 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Chansu is a transitional Chinese medicine that has been used for centuries as therapy for inflammation, anaesthesia and arrhythmia in China and other Asian countries. Recently, it has also been used for anti-cancer purposes. We have previously shown that Chansu has a huge pro-apoptotic potential on colon cancer cells, but to date the detailed mechanism of this action is not well understood.
METHODS: One of the major components of Chansu, Cinobufagin (CBF) was used to treat cancer cells. The expressions of levels of cortactin, an important factor in tumour progression and cancer invasion, were assessed in in vitro and in vivo experiments. Additional analyses were performed in subcellular protein fractions and immune-fluorescent staining was used to define cortactin protein expression and the changes of location in CBF-treated cells.
RESULTS: CBF strongly inhibited the expression of cortactin in HCT116 cells. There were reductions of both mRNA transcription and protein synthesis, which were more significant in the absence of oxygen in vitro. In addition, nuclear translocation of cortactin was observed in HCT116 cells post CBF exposure but not in the negative control, indicating that CBF is likely to interrupt co-localisation of cortactin to cytoskeletal proteins. Most importantly, CBF could diminish the expression of cortactin in human HCT116 xenograft tumours in nude mouse in vivo.
CONCLUSIONS: CBF inhibits cortactin expression and nuclear translocation in colon cancer cells in vitro and in mouse models bearing human colon tumour in vivo, suggesting it might disrupt actin-regulated cell movement. Thus, CBF or Chansu could be developed as an effective anti-cancer therapy to stop local invasion and metastasis.

Hanniford D, Segura MF, Zhong J, et al.
Identification of metastasis-suppressive microRNAs in primary melanoma.
J Natl Cancer Inst. 2015; 107(3) [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Surgical management of primary melanoma is curative for most patients with clinically localized disease at diagnosis; however, a substantial number of patients recur and progress to advanced disease. Understanding molecular alterations that influence differential tumor progression of histopathologically similar lesions may lead to improved prognosis and therapies to slow or prevent metastasis.
METHODS: We examined microRNA dysregulation by expression profiling of primary melanoma tumors from 92 patients. We screened candidate microRNAs selected by differential expression between recurrent and nonrecurrent tumors or associated with primary tumor thickness (Student's t test, Benjamini-Hochberg False Discovery Rate [FDR] < 0.05), in in vitro invasion assays. We performed in vivo metastasis assays, matrix remodeling experiments, and molecular studies to identify metastasis-regulating microRNAs and their cellular and molecular mechanisms. All statistical tests were two-sided.
RESULTS: We identified two microRNAs (hsa-miR-382, hsa-miR-516b) whose expression was lower in aggressive vs nonaggressive primary tumors, which suppressed invasion in vitro and metastasis in vivo (mean metastatic foci: control: 37.9, 95% confidence interval [CI] = 25.6 to 50.2; miR-382: 19.5, 95% CI = 12.2 to 26.9, P = .009; miR-516b: 12.5, 95% CI = 7.7 to 17.4, P < .001, Student's t test). Mechanistically, miR-382 overexpression inhibits extracellular matrix degradation by melanoma cells. Moreover, we identified actin regulators CTTN, RAC1, and ARPC2 as direct targets of miR-382. Depletion of CTTN partially recapitulates miR-382 effects on matrix remodeling, invasion, and metastasis. Inhibition of miR-382 in a weakly tumorigenic melanoma cell line increased tumor progression and metastasis in vivo.
CONCLUSIONS: Aberrant expression of specific microRNAs that can functionally impact progression of primary melanoma occurs as an early event of melanomagenesis.

Lee OH, Lee J, Lee KH, et al.
Role of the focal adhesion protein TRIM15 in colon cancer development.
Biochim Biophys Acta. 2015; 1853(2):409-21 [PubMed] Related Publications
The tripartite motif containing (TRIM) proteins are a large family of proteins that have been implicated in many biological processes including cell differentiation, apoptosis, transcriptional regulation, and signaling pathways. Here, we show that TRIM15 co-localized to focal adhesions through homo-dimerization and significantly suppressed cell migration. Domain mapping analysis indicated that B-box2 and PRY domains were essential for TRIM15 localization to focal adhesions and inhibition of cell migration. Our protein-protein interaction screen of TRIM15 with the integrin adhesome identified several TRIM15 interacting proteins including coronin 1B, cortactin, filamin binding LIM protein1, and vasodilator-stimulated phosphoprotein, which are involved in actin cytoskeleton dynamics. TRIM15 expression was tissue-restricted and downregulated in colon cancer. Level of TRIM15 expression was associated with colon cancer cell migration, as well as both in vitro and in vivo tumor growth. These data provide novel insights into the role of TRIM15 as an additional component of the integrin adhesome, regulating cell migration, and suggest that TRIM15 may function as a tumor suppressor of colon cancer.

Zhang S, Qi Q
MTSS1 suppresses cell migration and invasion by targeting CTTN in glioblastoma.
J Neurooncol. 2015; 121(3):425-31 [PubMed] Related Publications
Glioblastomas (GBMs) are the highest grade of primary brain tumors with astrocytic similarity and are characterized dispersal of tumor cell. Metastasis suppressor 1 (MTSS1) play an important role in cancer metastasis. Recent studies indicating that MTSS1 as a potential tumor suppressor and its reduced expression associated with poor prognosis in many cancer types. However, the relationship with the prognosis of patients and the molecular mechanism of MTSS1 renders a tumor suppressor effect in GBM is unknown. Here, we showed that low MTSS1 gene expression is associated with poor outcomes in patients with GBM. Overexpression of MTSS1 in U-87 MG cells exhibited inhibited glioma cell growth, colony formation, migration and invasion. Mechanistically, we found that high MTSS1 expression in U-87 MG reduced expression of CTTN. These results implicate that the role of MTSS1 suppresses cell migration and invasion by inhibiting expression of CTTN and as a prognosis biomarker in GBM.

Sepiashvili L, Waggott D, Hui A, et al.
Integrated omic analysis of oropharyngeal carcinomas reveals human papillomavirus (HPV)-dependent regulation of the activator protein 1 (AP-1) pathway.
Mol Cell Proteomics. 2014; 13(12):3572-84 [PubMed] Free Access to Full Article Related Publications
HPV-positive oropharyngeal carcinoma (OPC) patients have superior outcomes relative to HPV-negative patients, but the underlying mechanisms remain poorly understood. We conducted a proteomic investigation of HPV-positive (n = 27) and HPV-negative (n = 26) formalin-fixed paraffin-embedded OPC biopsies to acquire insights into the biological pathways that correlate with clinical behavior. Among the 2,633 proteins identified, 174 were differentially abundant. These were enriched for proteins related to cell cycle, DNA replication, apoptosis, and immune response. The differential abundances of cortactin and methylthioadenosine phosphorylase were validated by immunohistochemistry in an independent cohort of 29 OPC samples (p = 0.023 and p = 0.009, respectively). An additional 1,124 proteins were independently corroborated through comparison to a published proteomic dataset of OPC. Furthermore, utilizing the Cancer Genome Atlas, we conducted an integrated investigation of OPC, attributing mechanisms underlying differential protein abundances to alterations in mutation, copy number, methylation, and mRNA profiles. A key finding of this integration was the identification of elevated cortactin oncoprotein levels in HPV-negative OPCs. These proteins might contribute to reduced survival in these patients via their established role in radiation resistance. Through interrogation of Cancer Genome Atlas data, we demonstrated that activation of the β1-integrin/FAK/cortactin/JNK1 signaling axis and associated differential regulation of activator protein 1 transcription factor target genes are plausible consequences of elevated cortactin protein levels.

Su CM, Su YH, Chiu CF, et al.
Vascular endothelial growth factor-C upregulates cortactin and promotes metastasis of esophageal squamous cell carcinoma.
Ann Surg Oncol. 2014; 21 Suppl 4:S767-75 [PubMed] Related Publications
BACKGROUND: Vascular endothelial growth factor-C (VEGF-C) plays an important role during cancer progression and metastasis through activation of VEGF receptors. However, the role of VEGF-C in esophageal squamous cell carcinoma (ESCC) remains unclear.
METHODS: The expression of VEGF-C in advanced stages of esophageal cancer was examined by immunohistochemistry and its expression was correlated with the protein level of cortactin (CTTN) by Western blot. Knockdown and overexpression of the CTTN protein were respectively performed to investigate the effects on VEGF-C-enhanced ESCC migration/invasion by in vitro transwell assay, cell tracing assay, and tumor growth/experimental metastasis in animal models.
RESULTS: The expression of VEGF-C was positively correlated with tumor status and poor clinical prognosis in patient with esophageal cancer. VEGF-C-upregulated CTTN expression contributed the migration/invasive abilities of ESCC cell lines through Src-mediated downregulation of miR-326. Moreover, knockdown of CTTN expression significantly abolished VEGF-C-induced tumor growth and experimental lung metastasis in vivo.
CONCLUSIONS: Upregulation of CTTN is critical for VEGF-C-mediated tumor growth and metastasis of ESCC. These finding suggest that VEGF-C upregulated CTTN expression through Src-mediated downregulation of miR-326. CTTN may be a crucial mediator of VEGF-C-involved ESCC metastasis, which provides a potential target for diagnosis and individualized treatment in clinical practice.

Hong CC, Chen PS, Chiou J, et al.
miR326 maturation is crucial for VEGF-C-driven cortactin expression and esophageal cancer progression.
Cancer Res. 2014; 74(21):6280-90 [PubMed] Related Publications
Esophageal cancer is an aggressive human malignancy with increasing incidence in the developed world. VEGF-C makes crucial contributions to esophageal cancer progression that are not well understood. Here, we report the discovery of regulatory relationship in esophageal cancers between the expression of VEGF-C and cortactin (CTTN), a regulator of the cortical actin cytoskeleton. Upregulation of CTTN expression by VEGF-C enhanced the invasive properties of esophageal squamous cell carcinoma in vitro and tumor metastasis in vivo. Mechanistic investigations showed that VEGF-C increased CTTN expression by downregulating Dicer-mediated maturation of miR326, thereby relieving the suppressive effect of miR326 on CTTN expression. Clinically, expression of Dicer and miR326 correlated with poor prognosis in patients with esophageal cancer. Our findings offer insights into how VEGF-C enhances the robust invasive and metastatic properties of esophageal cancer, which has potential implications for the development of new biomarkers or therapies in this setting.

Wei J, Zhao ZX, Li Y, et al.
Cortactin expression confers a more malignant phenotype to gastric cancer SGC-7901 cells.
World J Gastroenterol. 2014; 20(12):3287-300 [PubMed] Free Access to Full Article Related Publications
AIM: To study the effects of cortactin on the tumor biology of SGC-7901 cells and identify the mechanism involved in the process.
METHODS: Cell lines in which cortactin was stably overexpressed or knocked down as well as the respective control cell lines were established by standard molecular methods. The effects of cortactin on the proliferation, migration and invasion capacity of SGC-7901 cells were assessed by the MTT assay, colony formation, flow cytometry, transwell migration and matrigel invasion. Nude mouse models were also used to assess the role of cortactin in the growth and metastasis of SGC-7901 cells in vivo. Western blotting analysis was performed to detect the expression of epidermal growth factor receptor (EGFR) and downstream molecules.
RESULTS: Cell lines in which cortactin was stably overexpressed or knocked down as well as control cell lines were successfully established and designated as LV5-cortactin-SGC, LV5-SGC, LV3-shRNA-SGC and LV3-SGC. Cortactin overexpression promoted SGC-7901 cell migration (340.7 ±12.6 vs 229.1 ± 23.2, P < 0.01) and invasion (71.6 ± 5.2 vs 48.4 ± 3.6, P < 0.01). Cortactin downregulation impaired SGC-7901 cell migration (136.2 ± 19.8 vs 225 ± 17) and invasion (29.2 ± 5.2 vs 49.6 ± 3.8, P < 0.01). The results from the MTT and colony formation assays results indicated increased LV5-cortactin-SGC cell proliferation and decreased LV3-shRNA-SGC cell proliferation compared to the control cells. Flow cytometry analysis demonstrated that cortactin overexpression promoted the proliferation index of SGC-7901 cells, and the results were reversed when cortactin was downregulated. Mouse tumor models confirmed that cortactin expression increased SGC-7901 cell proliferation and metastasis in vivo. Western blotting analysis revealed that cortactin elevated EGFR expression and activated the downstream molecules.
CONCLUSION: Cortactin expression promoted the migration, invasion and proliferation of SGC-7901 cells both in vivo and in vitro. The EGFR signaling pathway is mechanistically involved.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. CTTN, Cancer Genetics Web: http://www.cancer-genetics.org/CTTN.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 31 August, 2019     Cancer Genetics Web, Established 1999