Gene Summary

Gene:CSF1R; colony stimulating factor 1 receptor
Summary:The protein encoded by this gene is the receptor for colony stimulating factor 1, a cytokine which controls the production, differentiation, and function of macrophages. This receptor mediates most if not all of the biological effects of this cytokine. Ligand binding activates the receptor kinase through a process of oligomerization and transphosphorylation. The encoded protein is a tyrosine kinase transmembrane receptor and member of the CSF1/PDGF receptor family of tyrosine-protein kinases. Mutations in this gene have been associated with a predisposition to myeloid malignancy. The first intron of this gene contains a transcriptionally inactive ribosomal protein L7 processed pseudogene oriented in the opposite direction. Alternative splicing results in multiple transcript variants. Expression of a splice variant from an LTR promoter has been found in Hodgkin lymphoma (HL), HL cell lines and anaplastic large cell lymphoma. [provided by RefSeq, Mar 2017]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:macrophage colony-stimulating factor 1 receptor
Source:NCBIAccessed: 01 September, 2019


What does this gene/protein do?
Show (43)
Pathways:What pathways are this gene/protein implicaed in?
Show (4)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 01 September 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 01 September, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (4)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: CSF1R (cancer-related)

Bencheikh L, Diop MK, Rivière J, et al.
Dynamic gene regulation by nuclear colony-stimulating factor 1 receptor in human monocytes and macrophages.
Nat Commun. 2019; 10(1):1935 [PubMed] Free Access to Full Article Related Publications
Despite their location at the cell surface, several receptor tyrosine kinases (RTK) are also found in the nucleus, as either intracellular domains or full length proteins. However, their potential nuclear functions remain poorly understood. Here we find that a fraction of full length Colony Stimulating Factor-1 Receptor (CSF-1R), an RTK involved in monocyte/macrophage generation, migrates to the nucleus upon CSF-1 stimulation in human primary monocytes. Chromatin-immunoprecipitation identifies the preferential recruitment of CSF-1R to intergenic regions, where it co-localizes with H3K4me1 and interacts with the transcription factor EGR1. When monocytes are differentiated into macrophages with CSF-1, CSF-1R is redirected to transcription starting sites, colocalizes with H3K4me3, and interacts with ELK and YY1 transcription factors. CSF-1R expression and chromatin recruitment is modulated by small molecule CSF-1R inhibitors and altered in monocytes from chronic myelomonocytic leukemia patients. Unraveling this dynamic non-canonical CSF-1R function suggests new avenues to explore the poorly understood functions of this receptor and its ligands.

Li Y, Lv X, Ge X, et al.
Mutational spectrum and associations with clinical features in patients with acute myeloid leukaemia based on next‑generation sequencing.
Mol Med Rep. 2019; 19(5):4147-4158 [PubMed] Free Access to Full Article Related Publications
The aim of the present study was to examine the associations between 112 acute myeloid leukaemia (AML)‑associated genes and the prognosis and clinical features of AML using bioinformatics analysis in 62 patients with AML. A total of 61 gene mutations were identified, and ≥1 mutations were detected in 96.77% of the patients. A total of 11 frequent mutations were identified, including nucleophosmin 1 (NPM1), Fms related tyrosine kinase 3 (FLT3), DNA methyltransferase 3α (DNMT3A) and Notch 2 (NOTCH2), with a mutation rate of ≥10%. The FLT3 mutation was significantly associated with the white blood cell count at the time of diagnosis, and DNMT3A was significantly associated with the French‑American‑British subtype and cytogenetics of patients with AML. The FLT3, NPM1 and DNMT3A mutations were significantly associated with a poor overall survival (OS) in patients with AML. In addition, the co‑mutation of DNMT3A‑CCAAT enhancer binding protein α (CEBPA) was observed to be significantly associated with a poor OS in patients with AML. Furthermore, the functional enrichment analysis revealed that the co‑mutations of FLT3‑NOTCH2, SETBP1‑CREBBP and DNMT3A‑CEBPA were significantly enriched in processes of 'negative regulation of cell differentiation' and 'immune system development', indicating that these mutations may serve crucial roles in the diagnosis and treatment of AML.

Salvagno C, Ciampricotti M, Tuit S, et al.
Therapeutic targeting of macrophages enhances chemotherapy efficacy by unleashing type I interferon response.
Nat Cell Biol. 2019; 21(4):511-521 [PubMed] Article available free on PMC after 18/09/2019 Related Publications
Recent studies have revealed a role for macrophages and neutrophils in limiting chemotherapy efficacy; however, the mechanisms underlying the therapeutic benefit of myeloid-targeting agents in combination with chemotherapy are incompletely understood. Here, we show that targeting tumour-associated macrophages by colony-stimulating factor-1 receptor (CSF-1R) blockade in the K14cre;Cdh1

Ko YC, Hu CY, Liu ZH, et al.
Int J Mol Sci. 2019; 20(5) [PubMed] Article available free on PMC after 18/09/2019 Related Publications
Internal tandem duplication of FLT3 juxtamembrane domain (FLT3-ITD)-positive acute myeloid leukemia (AML) leads to poor clinical outcomes after chemotherapy. We aimed to establish a cytarabine-resistant line from

Hua F, Tian Y, Gao Y, et al.
Colony‑stimulating factor 1 receptor inhibition blocks macrophage infiltration and endometrial cancer cell proliferation.
Mol Med Rep. 2019; 19(4):3139-3147 [PubMed] Article available free on PMC after 18/09/2019 Related Publications
Tumor‑associated macrophages (TAMs) promote the progression of endometrial cancer (EC), but the mechanism of TAM in EC cell proliferation remains unclear. It was found that colony stimulating factor (CSF)‑1 and CSF‑1 receptor (CSF‑1R) were highly expressed in EC tissues of patients and two EC cell lines (ECC‑1 and HEC‑1A). Using wound‑healing and chemotactic migration assays to evaluate the role of EC cells in the induction of macrophage migration, it was found that the supernatant of EC cells promoted macrophage cell line (U937) migration; however, the migration capacity of U937 weakened when CSF‑1R was blocked. Subsequently, inhibition of CSF‑1 expression in EC cells also restrained U937 migration. Additionally, blocking CSF‑1R by PLX3397 treatment in U937 cells inhibited EC cell proliferation in a co‑culture system by inhibiting the expression of proliferation‑associated proteins (Janus kinase‑1, phosphoinositide 3‑kinase, AKT, cyclin kinase 2, 4 and retinoblastoma‑associated protein). Together, these results demonstrated that CSF‑1 secreted by EC cells promoted macrophage migration; similarly, CSF‑1‑stimulated macrophages promoted EC cell proliferation. These results suggested that the interaction between CSF‑1 and its receptor served an important role in promoting macrophage infiltration and progression of EC.

Cioccio J, Claxton D
Therapy of acute myeloid leukemia: therapeutic targeting of tyrosine kinases.
Expert Opin Investig Drugs. 2019; 28(4):337-349 [PubMed] Related Publications
INTRODUCTION: Tyrosine kinases (TKs) drive cell survival and proliferation in many normal and malignant cell types. TKs are frequently mutated in acute myeloid leukemia (AML) and hence are increasingly targeted. The management of AML has dramatically improved because of TKI-targeted treatment.
AREAS COVERED: This review provides a biological background for TK inhibitors (TKIs) in AML and reviews their use in the clinic. TK expression and mutation in AML are explored with a focus on TKs associated with specific AML subsets and treatment outcomes. TKIs that specifically target FLT3, c-Kit, and Jak2 are discussed. TKI targeting of specific genes mutated in individual cases and general 'untargeted' use of these agents are highlighted. Lastly, the mechanisms TKI drug resistance in AML are explored
EXPERT OPINION: The use of TKIs in the clinic is improving outcomes for many patients. An improved understanding of tyrosine kinase biology and the expanding use of TKIs are likely to dramatically improve outcomes in the coming decade. TKIs and other targeted agents could gradually supplant the use of cytotoxic chemotherapy for AML.

Abiatari I, Midelashvili T, Motsikulashvili M, et al.
Georgian Med News. 2018; (285):96-100 [PubMed] Related Publications
Aim- pancreatic ductal adenocarcinoma is one of the most aggressive oncological disease with early metastasis and high mortality rate. CSF1R is a gene with progenitor activity, which is also associated with different malignant diseases. In this study our objective was to analyze expression of CSF1R in pancreatic cancer tissues and nerve invasive cancer cells. Quantitative real time polymerase chain reaction (QRT-PCR) was used to analyze the expression of CSF1R mRNA in nine cultured pancreatic cancer cell lines and pancreatic bulk tissues of the normal pancreas, chronic pancreatitis (n=20/20) and pancreatic ductal adenocarcinoma (n=58). Nerve invasive clones of two pancreatic cancer cell lines was also used. QRT-PCR analysis revealed a significant up-regulation of CSF1R mRNA expression in pancreatic adenocarcinoma tissues compared to normal tissues and low expression of this gene indicated a tendency for better survival of pancreatic cancer patients. Expression of CSF1R mRNA was present in all tested pancreatic cancer cell lines with comparably low to moderate expression levels. The CSF1R was significantly overexpressed in nerve invasive pancreatic cancer cells. Increased expression of CSF1R in pancreatic cancer might be related to perineural invasion and poor prognosis. CSF1R might be an important factor during the development and malignant transformation of tissues.

Daver N, Schlenk RF, Russell NH, Levis MJ
Targeting FLT3 mutations in AML: review of current knowledge and evidence.
Leukemia. 2019; 33(2):299-312 [PubMed] Article available free on PMC after 18/09/2019 Related Publications
Genomic investigations of acute myeloid leukemia (AML) have demonstrated that several genes are recurrently mutated, leading to new genomic classifications, predictive biomarkers, and new therapeutic targets. Mutations of the FMS-like tyrosine kinase 3 (FLT3) gene occur in approximately 30% of all AML cases, with the internal tandem duplication (ITD) representing the most common type of FLT3 mutation (FLT3-ITD; approximately 25% of all AML cases). FLT3-ITD is a common driver mutation that presents with a high leukemic burden and confers a poor prognosis in patients with AML. The prognostic value of a FLT3 mutation in the tyrosine kinase domain (FLT3-TKD), which has a lower incidence in AML (approximately 7-10% of all cases), is uncertain. Accumulating evidence demonstrates that FLT3 mutational status evolves throughout the disease continuum. This so-called clonal evolution, together with the identification of FLT3-ITD as a negative prognostic marker, serves to highlight the importance of FLT3-ITD testing at diagnosis and again at relapse. Earlier identification of FLT3 mutations will help provide a better understanding of the patient's disease and enable targeted treatment that may help patients achieve longer and more durable remissions. First-generation FLT3 inhibitors developed for clinical use are broad-spectrum, multikinase inhibitors; however, next-generation FLT3 inhibitors are more specific, more potent, and have fewer toxicities associated with off-target effects. Primary and secondary acquired resistance to FLT3 inhibitors remains a challenge and provides a rationale for combining FLT3 inhibitors with other therapies, both conventional and investigational. This review focuses on the pathological and prognostic role of FLT3 mutations in AML, clinical classification of the disease, recent progress with next-generation FLT3 inhibitors, and mechanisms of resistance to FLT3 inhibitors.

Shvachko LP, Zavelevich MP, Gluzman DF, et al.
Vitamin Е activates expression of С/EBP alpha transcription factor and G-CSF receptor in leukemic K562 cells.
Exp Oncol. 2018; 40(4):328-331 [PubMed] Related Publications
BACKGROUND: Chronic myeloid leukemia (CML) is a clonal hematopoietic stem cell disorder associated with the activity of BCR-ABL fusion oncogene. Tyrosine kinase inhibitors are the current treatment of CML, but secondary mutations finally contribute to therapy resistance and blast crisis of the disease. The search for the novel compounds for the effective control of CML is now in the spotlight. The progression of CML to blast crisis is correlated with down-modulation of C/EBP alpha. Therefore, C/EBP alpha may be considered as a putative target in differentiation therapies in myeloid leukemias. The aim of the study was to assess the potential of vitamin E as the possible inducer of C/EBP alpha expression in BCR-ABL-positive CML K562 cells.
MATERIALS AND METHODS: RNA extracted from K562 cells cultured with valproic acid or vitamin E was converted to cDNA, RT-PCR reactions were carried out using HotStarTaq DNA polymerase with primers for C/EBP alpha and granulocyte colony-stimulating factor receptor (G-CSFR).
RESULTS: We have not found detectable expression of C/EBP alpha in K562 cells. Upon 48-h culture with vitamin E at a dose of 100 µM, K562 cells expressed both C/EBP alpha and G-CSFR.
CONCLUSION: Vitamin E restored the expression of C/EBP alpha mRNA in chronic myelogenous leukemia K562 cells. In this setting, G-CSFR expression in vitamin E treated K562 cells seems to suggest the activation to granulocytic differentiation. It should be further elucidated whether such effects of vitamin E on C/EBP alpha transcription factor are direct or mediated indirectly due to antioxidant properties of vitamin E.

Komohara Y, Noyori O, Saito Y, et al.
Potential anti-lymphoma effect of M-CSFR inhibitor in adult T-cell leukemia/lymphoma.
J Clin Exp Hematop. 2018; 58(4):152-160 [PubMed] Article available free on PMC after 18/09/2019 Related Publications
The c-fms proto-oncogene is also known as macrophage colony stimulating factor receptor (M-CSFR) or colony-stimulating factor-1 receptor (CSF-1R), and is expressed on several types of malignant tumor cells and myeloid cells. In the present study, we found that overexpression of M-CSFR was present in adult T-cell leukemia/lymphoma (ATLL) cases. M-CSFR signaling was associated with lymphoma cell proliferation, and M-CSFR inhibition induced apoptosis in lymphoma cells. The ATLL cell line ATL-T expressed M-CSF/CSF-1 and interleukin (IL)-34, which are both M-CSFR ligands. M-CSF and IL-34 expression was seen in ATLL cases, and co-expression of these ligands was detected in 11 of 13 ATLL cases. M-CSFR inhibition suppressed programmed death-1 and -2 ligand in ATL-T cells and macrophages stimulated with conditioned medium from ATL-T cells. Thus, an M-CSFR inhibitor may be useful as additional therapy against ATLL due to direct and indirect mechanisms.

Staudt D, Murray HC, McLachlan T, et al.
Targeting Oncogenic Signaling in Mutant FLT3 Acute Myeloid Leukemia: The Path to Least Resistance.
Int J Mol Sci. 2018; 19(10) [PubMed] Article available free on PMC after 18/09/2019 Related Publications
The identification of recurrent driver mutations in genes encoding tyrosine kinases has resulted in the development of molecularly-targeted treatment strategies designed to improve outcomes for patients diagnosed with acute myeloid leukemia (AML). The receptor tyrosine kinase FLT3 is the most commonly mutated gene in AML, with internal tandem duplications within the juxtamembrane domain (FLT3-ITD) or missense mutations in the tyrosine kinase domain (FLT3-TKD) present in 30⁻35% of AML patients at diagnosis. An established driver mutation and marker of poor prognosis, the FLT3 tyrosine kinase has emerged as an attractive therapeutic target, and thus, encouraged the development of FLT3 tyrosine kinase inhibitors (TKIs). However, the therapeutic benefit of FLT3 inhibition, particularly as a monotherapy, frequently results in the development of treatment resistance and disease relapse. Commonly, FLT3 inhibitor resistance occurs by the emergence of secondary lesions in the

Liu SB, Qiu QC, Bao XB, et al.
Pattern and prognostic value of FLT3-ITD mutations in Chinese de novo adult acute myeloid leukemia.
Cancer Sci. 2018; 109(12):3981-3992 [PubMed] Article available free on PMC after 18/09/2019 Related Publications
FMS-like tyrosine kinase 3 (FLT3) is one of the most frequently mutated genes in hematological malignancies. FLT3 internal tandem duplication (FLT3-ITD) mutations located in juxtamembrane domain (JMD) and tyrosine kinase domain 1 (TKD1) regions account for two-thirds of all FLT3 mutations. The outcome of patients remains unsatisfactory, with low survival rates. It is not yet known whether the different mutations within the FLT3 gene are all associated with patient outcome. In addition, the cause of FLT3-ITD in-frame duplication events remains unknown. Although there are some published studies investigating the FLT3-ITD mutation and its clinical implications in Chinese acute myeloid leukemia (AML) patients, sample sizes tend to be small and detailed molecular profiles of FLT3 mutations are lacking in these studies. In our study, 227 FLT3-ITD sequences were analyzed from 227 Chinese de novo AML patients. ITD were next classified into 3 types based on molecular profiles of insertion DNA sequences: DNA complete duplication (type I), DNA partial duplication (type II) and complete random sequence (type III). From the 154 patients, we confirmed that high ITD allelic ratio (≥.5) and allogeneic stem cell transplant treatment under CR1 are independent prognostic factors. We also presented evidence that ITD integration sites in the hinge region or beta1-sheet region are an unfavorable prognostic factor in adult AML patients with FLT3-ITD mutations. These findings may help to decipher the mechanisms of FLT3-ITD in-frame duplication events and stratify patients when considering different therapeutic combinations.

Siekmann IK, Dierck K, Prall S, et al.
Combined inhibition of receptor tyrosine and p21-activated kinases as a therapeutic strategy in childhood ALL.
Blood Adv. 2018; 2(19):2554-2567 [PubMed] Article available free on PMC after 18/09/2019 Related Publications
Receptor tyrosine kinase (RTK)-dependent signaling has been implicated in the pathogenesis of acute lymphoblastic leukemia (ALL) of childhood. However, the RTK-dependent signaling state and its interpretation with regard to biological behavior are often elusive. To decipher signaling circuits that link RTK activity with biological output in vivo, we established patient-derived xenograft ALL (PDX-ALL) models with dependencies on fms-like tyrosine kinase 3 (FLT3) and platelet-derived growth factor receptor β (PDGFRB), which were interrogated by phosphoproteomics using iTRAQ mass spectrometry. Signaling circuits were determined by receptor type and cellular context with few generic features, among which we identified group I p21-activated kinases (PAKs) as potential therapeutic targets. Growth factor stimulation markedly increased catalytic activities of PAK1 and PAK2. RNA interference (RNAi)-mediated or pharmacological inhibition of PAKs using allosteric or adenosine triphosphate (ATP)-competitive compounds attenuated cell growth and increased apoptosis in vitro. Notably, PAK1- or PAK2-directed RNAi enhanced the antiproliferative effects of the type III RTK and protein kinase C inhibitor midostaurin. Treatment of FLT3- or PDGFRB-dependent ALLs with ATP-competitive PAK inhibitors markedly decreased catalytic activities of both PAK isoforms. In FLT3-driven ALL, this effect was augmented by coadministration of midostaurin resulting in synergistic effects on growth inhibition and apoptosis. Finally, combined treatment of

Ger M, Kaupinis A, Petrulionis M, et al.
Proteomic Identification of FLT3 and PCBP3 as Potential Prognostic Biomarkers for Pancreatic Cancer.
Anticancer Res. 2018; 38(10):5759-5765 [PubMed] Related Publications
BACKGROUND/AIM: Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest types of cancer, particularly due to its aggressive course and challenging diagnostics in early-stage disease. The aim of this study was to discover new potential prognostic and diagnostic pancreatic cancer biomarkers.
MATERIALS AND METHODS: The proteomes of 37 samples from pancreatic cancer, inflammatory or healthy pancreatic tissue derived through in-depth differential proteomic analysis were compared.
RESULTS: A set of candidate proteins as pancreatic cancer-specific diagnostic or prognostic biomarkers were identified. Survival data of patients after two-year follow-up indicated FLT3 and PCBP3 proteins as potential biomarkers for favourable pancreatic cancer prognosis. The levels of PCBP3 correlated with tumour stage and FLT3 levels, were evaluated as independent prognostic marker.
CONCLUSION: FLT3 and PCBP3 represent potential biomarkers for improved individualized pancreatic cancer prognosis. Moreover, FLT3 may play a role in future treatment selection.

Tran HV, Kiemer AK, Helms V
Copy Number Alterations in Tumor Genomes Deleting Antineoplastic Drug Targets Partially Compensated by Complementary Amplifications.
Cancer Genomics Proteomics. 2018 Sep-Oct; 15(5):365-378 [PubMed] Article available free on PMC after 18/09/2019 Related Publications
BACKGROUND/AIM: Genomic DNA copy number alterations (CNAs) are frequent in tumors and have been catalogued by The Cancer Genome Atlas project. Emergence of chemoresistance frequently renders drug therapies ineffective.
MATERIALS AND METHODS: We analyzed how CNAs recurrently found in the genomes of TCGA patients of thirty-one tumor types affect protein targets of antineoplastic (AN) agents.
RESULTS: CNA deletions more frequently affected the targets of AN agents than CNA amplifications. Interestingly, in seven tumors we observed signs of compensatory CNAs. For example, in glioblastoma multiforme, two target genes (FLT1, FLT3) of the experimental drug sorafenib were recurrently deleted, whereas another target (KDR) of sorafenib was recurrently amplified. In renal clear cell carcinoma, the target FLT1 of pazopanib, sunitinib, sorafenib, and axitinib was recurrently deleted, whereas FLT4 bound by the same drugs, was recurrently amplified.
CONCLUSION: Deletions of AN target proteins can be compensated by amplification of alternative targets.

Casar B, Badrock AP, Jiménez I, et al.
RAS at the Golgi antagonizes malignant transformation through PTPRκ-mediated inhibition of ERK activation.
Nat Commun. 2018; 9(1):3595 [PubMed] Article available free on PMC after 18/09/2019 Related Publications
RAS GTPases are frequently mutated in human cancer. H- and NRAS isoforms are distributed over both plasma-membrane and endomembranes, including the Golgi complex, but how this organizational context contributes to cellular transformation is unknown. Here we show that RAS at the Golgi is selectively activated by apoptogenic stimuli and antagonizes cell survival by suppressing ERK activity through the induction of PTPRκ, which targets CRAF for dephosphorylation. Consistently, in contrast to what occurs at the plasma-membrane, RAS at the Golgi cannot induce melanoma in zebrafish. Inactivation of PTPRκ, which occurs frequently in human melanoma, often coincident with TP53 inactivation, accelerates RAS-ERK pathway-driven melanomagenesis in zebrafish. Likewise, tp53 disruption in zebrafish facilitates oncogenesis driven by RAS from the Golgi complex. Thus, RAS oncogenic potential is strictly dependent on its sublocalization, with Golgi complex-located RAS antagonizing tumor development.

Manley PW, Caravatti G, Furet P, et al.
Comparison of the Kinase Profile of Midostaurin (Rydapt) with That of Its Predominant Metabolites and the Potential Relevance of Some Newly Identified Targets to Leukemia Therapy.
Biochemistry. 2018; 57(38):5576-5590 [PubMed] Related Publications
The multitargeted protein kinase inhibitor midostaurin is approved for the treatment of both newly diagnosed FLT3-mutated acute myeloid leukemia (AML) and KIT-driven advanced systemic mastocytosis. AML is a heterogeneous malignancy, and investigational drugs targeting FLT3 have shown disparate effects in patients with FLT3-mutated AML, probably as a result of their inhibiting different targets and pathways at the administered doses. However, the efficacy and side effects of drugs do not just reflect the biochemical and pharmacodynamic properties of the parent compound but are often comprised of complex cooperative effects between the properties of the parent and active metabolites. Following chronic dosing, two midostaurin metabolites attain steady-state plasma trough levels greater than that of the parent drug. In this study, we characterized these metabolites and determined their profiles as kinase inhibitors using radiometric transphosphorylation assays. Like midostaurin, the metabolites potently inhibit mutant forms of FLT3 and KIT and several additional kinases that either are directly involved in the deregulated signaling pathways or have been implicated as playing a role in AML via stromal support, such as IGF1R, LYN, PDPK1, RET, SYK, TRKA, and VEGFR2. Consequently, a complex interplay between the kinase activities of midostaurin and its metabolites is likely to contribute to the efficacy of midostaurin in AML and helps to engender the distinctive effects of the drug compared to those of other FLT3 inhibitors in this malignancy.

Barve A, Casson L, Krem M, et al.
Comparative utility of NRG and NRGS mice for the study of normal hematopoiesis, leukemogenesis, and therapeutic response.
Exp Hematol. 2018; 67:18-31 [PubMed] Article available free on PMC after 01/11/2019 Related Publications
Cell-line-derived xenografts (CDXs) or patient-derived xenografts (PDXs) in immune-deficient mice have revolutionized our understanding of normal and malignant human hematopoiesis. Transgenic approaches further improved in vivo hematological research, allowing the development of human-cytokine-producing mice, which show superior human cell engraftment. The most popular mouse strains used in research, the NOG (NOD.Cg-Prkdc

Valdez BC, Tang X, Li Y, et al.
Epigenetic modification enhances the cytotoxicity of busulfan and4-hydroperoxycyclophosphamide in AML cells.
Exp Hematol. 2018; 67:49-59.e1 [PubMed] Article available free on PMC after 01/11/2019 Related Publications
The combination of the DNA-alkylating agents busulfan (Bu) and cyclophosphamide is the most commonly used myeloablative pretransplantation conditioning therapy for myeloid leukemias. However, it is associated with significant nonrelapse mortality, which prohibits dose escalation to control relapse. We hypothesized that combining these two drugs with an epigenetic modifier would increase antileukemic efficacy without jeopardizing patient safety. A preclinical study was performed to determine the synergistic cytotoxicity of Bu, 4-hydroperoxycyclophosphamide (4HC), and the hypomethylating agent decitabine (DAC) in human acute myeloid leukemia (AML) cell lines. Exposure of KBM3/Bu250

Papadopoulos KP, Ben-Ami E, Patnaik A, et al.
Safety and tolerability of quizartinib, a FLT3 inhibitor, in advanced solid tumors: a phase 1 dose-escalation trial.
BMC Cancer. 2018; 18(1):790 [PubMed] Article available free on PMC after 01/11/2019 Related Publications
BACKGROUND: Quizartinib, an inhibitor of class III receptor tyrosine kinases (RTKs), is currently in phase 3 development for the treatment of acute myeloid leukemia (AML) bearing internal tandem duplications in the FLT3 gene. Aberrant RTK signaling is implicated in the pathogenesis of a variety of solid tumors, suggesting that inhibiting quizartinib-sensitive RTKs may be beneficial in precision cancer therapy.
METHODS: This was a phase 1, open-label, modified Fibonacci dose-escalation study of orally administered quizartinib in patients with advanced solid tumors whose disease progressed despite standard therapy or for which there was no available standard treatment. Patients received quizartinib dihydrochloride (henceforth referred to as quizartinib) once daily throughout a 28-day treatment cycle. The primary endpoint was evaluation of the maximum tolerated dose (MTD) of quizartinib. Secondary endpoints included preliminary evidence of antitumor activity and determination of the pharmacokinetic and pharmacodynamic parameters of quizartinib.
RESULTS: Thirteen patients were enrolled. Five patients received a starting dose of quizartinib 135 mg/day; dose-limiting toxicities (DLTs) of grade 3 pancytopenia, asymptomatic grade 3 QTc prolongation, and febrile neutropenia were observed in 1 patient each at this dose. A lower dose of quizartinib (90 mg/day [n = 8]) was administered without DLTs. The most common treatment-related treatment-emergent adverse events (AEs) were fatigue (n = 7, 54%), dysgeusia (n = 5, 38%), neutropenia (n = 3, 23%), and QTc prolongation (n = 3, 23%). Overall, all patients experienced at least 1 AE, and 4 experienced serious AEs (2 patients each in the 135-mg and 90-mg dose groups) including hematologic AEs, infections, and gastrointestinal disorders. Six patients (including 3 patients with gastrointestinal stromal tumors [GIST]) had a best response of stable disease.
CONCLUSION: The MTD of quizartinib in patients with advanced solid tumors was 90 mg/day. Overall, the safety and tolerability of quizartinib were manageable, with no unexpected AEs. Quizartinib monotherapy had limited evidence of activity in this small group of patients with advanced solid tumors.
TRIAL REGISTRATION: Clinical Trials Registration Number: NCT01049893 ; First Posted: January 15, 2010.

Mo W, Wang X, Wang Y, et al.
Clonal neutrophil infiltrates in concurrent Sweet's syndrome and acute myeloid leukemia: A case report and literature review.
Cancer Genet. 2018; 226-227:11-16 [PubMed] Related Publications
Sweet's syndrome (SS), also known as acute febrile neutrophilic dermatosis is often associated with a hematological malignancy, especially acute myeloid leukemia (AML) and myeloid dysplasia syndrome. Histopathologically, SS is characterized by diffuse infiltrates in the upper dermis, predominantly consisting of mature neutrophils. The origin of neutrophils invading the skin remains unknown. Herein, we report a patient with concurrent acute monoblastic leukemia and SS who initially presented with discrete erythematous papules and nodules on the neck. Single nucleotide polymorphism (SNP) array and next generation sequencing (NGS) revealed a concordant fms-related tyrosine kinase-3 (FLT-3) gene mutation in the bone marrow and skin lesion, indicating that the neutrophilic infiltrates were clonally related to the underlying myeloid neoplasm. This is the first case report of concurrent SS and AML, in which SNP array and NGS analysis were applied to confirm the clonality of the neutrophilic infiltrates.

Ma J, Zhang L, Yang P, et al.
Integrated analysis of long noncoding RNA expression profiles in lymph node metastasis of hepatocellular carcinoma.
Gene. 2018; 676:47-55 [PubMed] Related Publications
BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide, and metastasis of HCC is the leading cause of poor prognosis. Among all the extrahepatic metastases, lymph node metastasis (LNM) is common, second only to lung metastasis. However, the pathogenesis of HCC LNM remains largely unknown.
METHODS: Microarray was performed to investigate the long noncoding RNA (lncRNA) and messenger RNA (mRNA) expression profiles in serum samples from HCC LNM patients (N = 4) and HCC non-LNM controls (N = 5). Subsequently, quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was applied to validate the expression levels of randomly selected differential lncRNAs and mRNAs. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were employed to explore the potential functions of differentially expressed mRNAs. Co-expression networks were further constructed to elucidate the interactions of the differential genes and to speculate on the potential functions of the dominant lncRNAs. In this research, we attempted to illuminate the correlations between lncRNA and HCC LNM.
RESULTS: Compared with the non-LNM group, a total of 234 lncRNAs and 58 mRNAs were obtained as significantly dysregulated genes in LNM group (p < 0.05, fold change ≥ 2). Functional enrichment analyses showed that upregulated mRNAs are mostly enriched for glucose-6-phosphate dehydrogenase activity, biotin binding and AP-3 adaptor complex, while the downregulated mRNAs are enriched for macrophage colony-stimulating factor receptor binding, succinate-CoA ligase activity and palmitoyltransferase activity. In addition, coexpression network revealed that the dominant lncRNAs are potential participants of protein metabolic process, integral component of membrane, RNA binding, Golgi apparatus, as well as focal adhesion pathway.
CONCLUSION: This study first revealed the expression profiles and potential functions of dysregulated lncRNAs and mRNAs in HCC LNM, which may provide novel clues for further studies on HCC LNM.

Zięba S, Kowalik A, Zalewski K, et al.
Somatic mutation profiling of vulvar cancer: Exploring therapeutic targets.
Gynecol Oncol. 2018; 150(3):552-561 [PubMed] Related Publications
BACKGROUND: Vulvar squamous cell carcinoma (VSCC) constitutes over 90% of vulvar cancer. Its pathogenesis can follow two different pathways; high risk human papillomavirus (hrHPV)-dependent and HPV-independent. Due to the rarity of VSCC, molecular mechanisms underlying VSCC development remain largely unknown. The study aimed to identify pathogenic mutations implicated in the two pathways of VSCC development.
METHODS: Using next generation sequencing, 81 VSCC tumors, 52 hrHPV(+) and 29 hrHPV(-), were screened for hotspot mutations in 50 genes covered by the Ion AmpliSeq Cancer Hotspot Panel v2 Kit (Thermo Fisher Scientific).
RESULTS: Mutations of TP53 (46% and 41%, of hrHPV(+) and hrHPV(-) cases respectively) and CDKN2A (p16) (25% and 21%, of hrHPV(+) and hrHPV(-) cases respectively) were the most common genetic alterations identified in VSCC tumors. Further mutations were identified in PIK3CA, FBXW7, HRAS, FGFR3, STK11, AKT1, SMAD4, FLT3, JAK3, GNAQ, and PTEN, albeit at low frequencies. Some of the identified mutations may activate the PI3K/AKT/mTOR pathway. The activation of mTOR was confirmed in the vast majority of VSCC samples by immunohistochemical staining.
CONCLUSIONS: Detecting pathogenic mutations in 13/50 genes examined at comparable frequencies in hrHPV(+) and hrHPV(-) tumors suggest that genetic mechanisms of the two routes of VSCC pathogenesis may be similar, despite being initiated from different premalignant lesions. Importantly, our data provide a rationale for new anti-VSCC therapies targeting the PI3K/AKT/mTOR pathway.

Wong NKP, Cheung H, Solly EL, et al.
Exploring the Roles of
Int J Mol Sci. 2018; 19(7) [PubMed] Article available free on PMC after 01/11/2019 Related Publications
Angiogenesis, the process of forming new blood vessels, is crucial in the physiological response to ischemia, though it can be detrimental as part of inflammation and tumorigenesis. We have previously shown that high-density lipoproteins (HDL) modulate angiogenesis in a context-specific manner via distinct classical signalling pathways, enhancing hypoxia-induced angiogenesis while suppressing inflammatory-driven angiogenesis. Whether additional novel targets exist to account for these effects are unknown. A microarray approach identified two novel genes, cyclic-adenosine-monophosphate-response-element-binding protein 3 regulatory factor (

Xiang Y, Zhou X
Octamer-binding transcription factor 4 correlates with complex karyotype, FLT3-ITD mutation and poorer risk stratification, and predicts unfavourable prognosis in patients with acute myeloid leukaemia.
Hematology. 2018; 23(10):721-728 [PubMed] Related Publications
Objective To investigate the correlation of octamer-binding transcription factor 4 (OCT4) expression with clinicopathological features and its predictive value for treatment response as well as survival profiles in de novo acute myeloid leukaemia (AML) patients. Method One hundred fifty-two de novo AML patients and 52 non-hematologic malignancy patients were recruited in this prospective cohort study. OCT4 expression was determined in bone marrow sample collected before treatment. Complete response (CR), event free survival (EFS) and overall survival (OS) were evaluated. Results Compared with the controls, OCT4 mRNA expression was higher in AML patients (P < .001), and higher OCT4 expression was correlated with presence of complex karyotype (CK) (P = .037), FLT3-ITD mutation (P = .012) and poorer risk stratification (P < .001) in AML patients. As to predictive value, OCT4 mRNA expression was decreased in patients achieved CR compared to non-CR patients (P = .022). Kaplan-Meier (K-M) curves showed that shorter EFS (9.0 (95% CI (7.7-10.3)) months vs. 25.0 (95% CI (17.5-32.5)) months, P < .001) and shorter OS (20.0 (95% CI (17.8-22.2) months vs. 33.0 months, P < .001) were observed in OCT4 mRNA high expression patients compared to OCT4 mRNA low expression patients. Multivariate Cox's proportional hazards regression analyses revealed that OCT4 mRNA high expression was an independent predictive factor for shorter EFS and OS in AML patients. Conclusion OCT4 correlates with presence of CK, FLT3-ITD mutation and poorer risk stratification, and it could be served as a convincing biomarker for predicting unfavourable prognosis in AML patients.

Akin DF, Oner DA, Kurekci E, Akar N
Determination of CEBPA mutations by next generation sequencing in pediatric acute leukemia.
Bratisl Lek Listy. 2018; 119(6):366-372 [PubMed] Related Publications
OBJECTIVES: The CCAAT/enhancer-binding protein-alpha (CEBPA) is lineage-specific transcription factor in the hematopoietic system. In this study, we aimed on the clinical features and the prognostic significance associated with CEBPA mutations in 30 pediatric patients with acute leukemia.
METHODS: In addition, the association between found variants and mutations of Ten-Eleven-Translocation 2 (TET2), Kirsten rat sarcoma viral oncogene homolog (KRAS), and Casitas B-cell lymphoma (CBL), FLT3 (Fms-Related Tyrosine Kinase), JAK2 (Januse Kinase-2) and Nucleophosmin 1 (NPM1) were analyzed, which are important prognostic risk factors for pediatric acute leukemia patients. The entire CEBPA coding region was screened using the NGS method.
RESULTS: CEBPA mutations were detected in 16 (53.3 %) of 30 patients. In total, ten distinct of nucleotide changes were identified in 30 patients, including 6 novel and 4 known mutations by sequencing the entire CEBPA gene. We found 6 frame shift mutations, 1 missense mutation, 3 synonymous variants. The most common mutation was the c.487del G resulting p.Glu163Ser in 5 cases. Three patients carried CEBPA double mutations.
CONCLUSION: The detected variants in this article seemed to be the first screening results of genes studied by NGS in pediatric acute leukemia patients. Our results also showed some degree of association between FLT3-ITD, TET2, KRAS, CBL and CEBPA mutations (Tab. 4, Fig. 1, Ref. 24).

Cortes JE, Tallman MS, Schiller GJ, et al.
Phase 2b study of 2 dosing regimens of quizartinib monotherapy in
Blood. 2018; 132(6):598-607 [PubMed] Article available free on PMC after 01/11/2019 Related Publications
This randomized, open-label, phase 2b study (NCT01565668) evaluated the efficacy and safety of 2 dosing regimens of quizartinib monotherapy in patients with relapsed/refractory (R/R)

Li M, Su Y, Zhang F, et al.
A dual-targeting reconstituted high density lipoprotein leveraging the synergy of sorafenib and antimiRNA21 for enhanced hepatocellular carcinoma therapy.
Acta Biomater. 2018; 75:413-426 [PubMed] Related Publications
Sorafenib (So) is a multi-target kinase inhibitor extensively used in clinic for hepatocellular carcinoma therapy. It demonstrated strong inhibition both in tumor proliferation and tumor angiogenesis, while hampered by associated cutaneous side-effect and drug resistance. The knockdown of miR-21 with antisense oligonucleotides (antimiRNA21) was regarded as an efficient strategy for increasing tumor sensibility to chemotherapy, which could be employed to appreciate the efficacy of So. Herein, we successfully formulated a dual-targeting delivery system for enhanced hepatocellular carcinoma therapy by encapsulating So and antimiRNA21 in RGD pentapeptide-modified reconstituted high-density lipoprotein (RGD-rHDL/So/antimiRNA21). The RGD and apolipoprotein A-I (ApoA-I) on nanoparticles (NPs) could drive the system simultaneously to tumor neovascular and parenchyma by binding to the overexpressed ανβ3-integrin and SR-B1 receptors, achieving precise delivery of therapeutics to maximize the efficacy. A series in vitro and in vivo experiments revealed that co-delivery of So and antimiRNA21 by RGD-rHDL significantly strengthened the anti-tumor and anti-angiogenic effect of So with negligible toxicity towards major organs, reversed drug-resistance and was capable of remodeling tumor environments. The constructed RGD-rHDL/So/antimiRNA21 with improved efficacy and excellent tumor targeting ability provided new idea for chemo-gene combined therapy in hepatocellular carcinoma.
STATEMENT OF SIGNIFICANCE: Sorafenib (So) is a multi-target kinase inhibitor which was approved by FDA as first-line drug for hepatocellular carcinoma (HCC) therapy. However, long term application of So in clinic was hampered by serious dermal toxicity and drug resistance. Although numerous researchers were devoted to finding alternatives or therapies as combination treatments with So to reach more desired therapeutic efficacy, the therapeutic options were still limited. The present study prepares RGD pentapeptide decorated biomimic reconstituted high-density lipoprotein (rHDL) loaded with So and antimiRNA21 (RGD-rHDL/So/antimiRNA21) for enhanced HCC therapy. The RGD-rHDL/So/antimiRNA21 NPs offer an effective platform for anti-tumor and anti-angiogenesis therapy in HCC and provide new approach to reverse drug-resistance of So for feasible clinical application.

Zhang Y, Wang F, Chen X, et al.
Mutation profiling of 16 candidate genes in de novo acute myeloid leukemia patients.
Front Med. 2019; 13(2):229-237 [PubMed] Related Publications
This retrospective analysis aimed to investigate the mutation profile of 16 common mutated genes in de novo acute myeloid leukemia (AML) patients. A total of 259 patients who were diagnosed of de novo AML were enrolled in this study. Mutation profiling of 16 candidate genes were performed in bone marrow samples by using Sanger sequencing.We identified at least 1 mutation in 199 of the 259 samples (76.8%), and 2 or more mutations in 31.7% of samples. FLT3-ITD was the most common mutated gene (16.2%, 42/259), followed by CEBPA (15.1%, 39/259), NRAS (14.7%, 38/259), and NPM1 (13.5%, 35/259). Concurrence was observed in 97.1% of the NPM1 mutated cases and in 29.6% of the double mutated CEBPA cases. Distinct patterns of co-occurrence were observed for different hotspot mutations within the IDH2 gene: R140 mutations were associated with NPM1 and/or FLT3-ITD mutations, whereas R172 mutations co-occurred with DNMT3A mutations only. Concurrence was also observed in 86.6% of epigenetic regulation genes, most of which co-occurred with NPM1 mutations. The results showed certain rules in the mutation profiling and concurrence of AML patients, which was related to the function classification of genes. Defining the mutation spectrum and mutation pattern of AML will contribute to the comprehensive assessment of patients and identification of new therapeutic targets.

Ardestani MT, Kazemi A, Chahardouli B, et al.
FLT3-ITD Compared with DNMT3A R882 Mutation Is a More Powerful Independent Inferior Prognostic Factor in Adult Acute Myeloid Leukemia Patients After Allogeneic Hematopoietic Stem Cell Transplantation: A Retrospective Cohort Study
Turk J Haematol. 2018; 35(3):158-167 [PubMed] Article available free on PMC after 01/11/2019 Related Publications
Objective: This study aimed to evaluate DNMT3A exon 23 mutations and their prognostic impacts in the presence of NPM1 and FLT3 mutations in acute myeloid leukemia (AML) patients who underwent allogeneic hematopoietic stem cell transplantation (HSCT).
Materials and Methods: This study comprised 128 adult AML patients referred to the Hematology-Oncology and Stem Cell Research Center of Shariati Hospital. NPM1 and FLT3-ITD mutations were detected by fragment analysis. For DNMT3A exon 23 mutation analysis, we used Sanger sequencing. Overall survival (OS) and relapse-free survival (RFS) curves were estimated by the Kaplan-Meier method and the log-rank test was used to calculate differences between groups.
Results: The prevalence of DNMT3A exon 23 mutations was 15.6% and hotspot region R882 mutations were prominent. RFS and OS were compared in patients with and without DNMT3A exon 23 mutations using univariate analysis and there was no significant difference between these groups of patients. On the contrary, the FLT3-ITD mutation significantly reduced the OS (p=0.009) and RFS (p=0.006) in AML patients after allogeneic HSCT. In the next step, patients with AML were divided into four groups regarding FLT3-ITD and DNMT3A mutations. Patients with DNMT3A R882mut/FLT3-ITDpos had the worst OS and RFS. These results indicate that DNMT3A mutations alone do not affect the clinical outcomes of AML patients undergoing allogeneic HSCT, but when accompanied by FLT3-ITD mutations, the OS was significantly reduced (5-year OS 0% for DNMT3A R882mut/FLT3-ITDpos patients vs. 62% DNMT3A R882wt/FLT3-ITDneg, p=0.025) and the relapse rate increased.
Conclusion: It can be deduced that DNMT3A R882mut/FLT3-ITDpos is an unfavorable prognostic factor in AML patients even after allogeneic HSCT.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. CSF1R, Cancer Genetics Web: http://www.cancer-genetics.org/CSF1R.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 01 September, 2019     Cancer Genetics Web, Established 1999