CRY2

Gene Summary

Gene:CRY2; cryptochrome circadian clock 2
Aliases: HCRY2, PHLL2
Location:11p11.2
Summary:This gene encodes a flavin adenine dinucleotide-binding protein that is a key component of the circadian core oscillator complex, which regulates the circadian clock. This gene is upregulated by CLOCK/ARNTL heterodimers but then represses this upregulation in a feedback loop using PER/CRY heterodimers to interact with CLOCK/ARNTL. Polymorphisms in this gene have been associated with altered sleep patterns. The encoded protein is widely conserved across plants and animals. Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Feb 2014]
Databases:OMIM, VEGA, HGNC, Ensembl, GeneCard, Gene
Protein:cryptochrome-2
HPRD
Source:NCBIAccessed: 27 February, 2015

Ontology:

What does this gene/protein do?
Show (24)
Pathways:What pathways are this gene/protein implicaed in?
Show (1)

Cancer Overview

Research Indicators

Publications Per Year (1990-2015)
Graph generated 27 February 2015 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • RTPCR
  • Single Nucleotide Polymorphism
  • Young Adult
  • Gene Silencing
  • Alleles
  • Translocation
  • Breast Cancer
  • Hepatocellular Carcinoma
  • Transcription
  • Liver Cancer
  • Mutagens
  • Cryptochromes
  • Circadian Rhythm
  • Genetic Variation
  • Prostate Cancer
  • Up-Regulation
  • Case-Control Studies
  • Apoptosis
  • Biological Models
  • Period Circadian Proteins
  • Genetic Predisposition
  • Messenger RNA
  • Cell Cycle Proteins
  • China
  • Tumor Markers
  • Sodium Chloride
  • Circadian Rhythm Signaling Peptides and Proteins
  • Risk Factors
  • Genotype
  • Chromosome 11
  • Signal Transduction
  • Nuclear Proteins
  • Oligonucleotide Array Sequence Analysis
  • Circadian Clocks
  • Cancer Gene Expression Regulation
  • Adenocarcinoma
  • Transcription Factors
  • Flavoproteins
  • Cell Cycle
  • CLOCK Proteins
Tag cloud generated 27 February, 2015 using data from PubMed, MeSH and CancerIndex

Specific Cancers (3)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: CRY2 (cancer-related)

Mo W, Liu Y, Bartlett PF, He R
Transcriptome profile of human neuroblastoma cells in the hypomagnetic field.
Sci China Life Sci. 2014; 57(4):448-61 [PubMed] Related Publications
Research has shown that the hypomagnetic field (HMF) can affect embryo development, cell proliferation, learning and memory, and in vitro tubulin assembly. In the present study, we aimed to elucidate the molecular mechanism by which the HMF exerts its effect, by comparing the transcriptome profiles of human neuroblastoma cells exposed to either the HMF or the geomagnetic field. A total of 2464 differentially expressed genes (DEGs) were identified, 216 of which were up-regulated and 2248 of which were down-regulated after exposure to the HMF. These DEGs were found to be significantly clustered into several key processes, namely macromolecule localization, protein transport, RNA processing, and brain function. Seventeen DEGs were verified by real-time quantitative PCR, and the expression levels of nine of these DEGs were measured every 6 h. Most notably, MAPK1 and CRY2, showed significant up- and down-regulation, respectively, during the first 6 h of HMF exposure, which suggests involvement of the MAPK pathway and cryptochrome in the early bio-HMF response. Our results provide insights into the molecular mechanisms underlying the observed biological effects of the HMF.

Hu ML, Yeh KT, Lin PM, et al.
Deregulated expression of circadian clock genes in gastric cancer.
BMC Gastroenterol. 2014; 14:67 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Gastric cancer (GC), an aggressive malignant tumor of the alimentary tract, is a leading cause of cancer-related death. Circadian rhythm exhibits a 24-hour variation in physiological processes and behavior, such as hormone levels, metabolism, gene expression, sleep and wakefulness, and appetite. Disruption of circadian rhythm has been associated with various cancers, including chronic myeloid leukemia, head and neck squamous cell carcinoma, hepatocellular carcinoma, endometrial carcinoma, and breast cancer. However, the expression of circadian clock genes in GC remains unexplored.
METHODS: In this study, the expression profiles of eight circadian clock genes (PER1, PER2, PER3, CRY1, CRY2, CKIϵ, CLOCK, and BMAL1) of cancerous and noncancerous tissues from 29 GC patients were investigated using real-time quantitative reverse-transcriptase polymerase chain reaction and validated through immunohistochemical analysis.
RESULTS: We found that PER2 was significantly up-regulated in cancer tissues (p < 0.005). Up-regulated CRY1 expression was significantly correlated with more advanced stages (stage III and IV) (p < 0.05).
CONCLUSIONS: Our results suggest deregulated expressions of circadian clock genes exist in GC and circadian rhythm disturbance may be associated with the development of GC.

Madden MH, Anic GM, Thompson RC, et al.
Circadian pathway genes in relation to glioma risk and outcome.
Cancer Causes Control. 2014; 25(1):25-32 [PubMed] Free Access to Full Article Related Publications
PURPOSE: There is growing evidence that circadian disruption may alter risk and aggressiveness of cancer. We evaluated common genetic variants in the circadian gene pathway for associations with glioma risk and patient outcome in a US clinic-based case-control study.
METHODS: Subjects were genotyped for 17 candidate single nucleotide polymorphisms in ARNTL, CRY1, CRY2, CSNK1E, KLHL30, NPAS2, PER1, PER3, CLOCK, and MYRIP. Unconditional logistic regression was used to estimate age and gender-adjusted odds ratios (OR) and 95 % confidence intervals (CI) for glioma risk under three inheritance models (additive, dominant, and recessive). Proportional hazards regression was used to estimate hazard ratios for glioma-related death among 441 patients with high-grade tumors. Survival associations were validated using The Cancer Genome Atlas (TCGA) dataset.
RESULTS: A variant in PER1 (rs2289591) was significantly associated with overall glioma risk (per variant allele OR 0.80; 95 % CI 0.66-0.97; p trend = 0.027). The variant allele for CLOCK rs11133391 under a recessive model increased risk of oligodendroglioma (OR 2.41; 95 % CI 1.31-4.42; p = 0.005), though not other glioma subtypes (p for heterogeneity = 0.0033). The association remained significant after false discovery rate adjustment (p = 0.008). Differential associations by gender were observed for MYRIP rs6599077 and CSNK1E rs1534891 though differences were not significant after adjustment for multiple testing. No consistent mortality associations were identified. Several of the examined genes exhibited differential expression in glioblastoma multiforme versus normal brain in TCGA data (MYRIP, ARNTL, CRY1, KLHL30, PER1, CLOCK, and PER3), and expression of NPAS2 was significantly associated with a poor patient outcome in TCGA patients.
CONCLUSION: This exploratory analysis provides some evidence supporting a role for circadian genes in the onset of glioma and possibly the outcome of glioma.

Kelleher FC, Rao A, Maguire A
Circadian molecular clocks and cancer.
Cancer Lett. 2014; 342(1):9-18 [PubMed] Related Publications
Physiological processes such as the sleep-wake cycle, metabolism and hormone secretion are controlled by a circadian rhythm adapted to 24h day-night periodicity. This circadian synchronisation is in part controlled by ambient light decreasing melatonin secretion by the pineal gland and co-ordinated by the suprachiasmatic nucleus of the hypothalamus. Peripheral cell autonomous circadian clocks controlled by the suprachiasmatic nucleus, the master regulator, exist within every cell of the body and are comprised of at least twelve genes. These include the basic helix-loop-helix/PAS domain containing transcription factors; Clock, BMal1 and Npas2 which activate transcription of the periodic genes (Per1 and Per2) and cryptochrome genes (Cry1 and Cry2). Points of coupling exist between the cellular clock and the cell cycle. Cell cycle genes which are affected by the molecular circadian clock include c-Myc, Wee1, cyclin D and p21. Therefore the rhythm of the circadian clock and cancer are interlinked. Molecular examples exist including activation of Per2 leads to c-myc overexpression and an increased tumor incidence. Mice with mutations in Cryptochrome 1 and 2 are arrhythmic (lack a circadian rhythm) and arrhythmic mice have a faster rate of growth of implanted tumors. Epidemiological finding of relevance include 'The Nurses' Health Study' where it was established that women working rotational night shifts have an increased incidence of breast cancer. Compounds that affect circadian rhythm exist with attendant future therapeutic possibilities. These include casein kinase I inhibitors and a candidate small molecule KL001 that affects the degradation of cryptochrome. Theoretically the cell cycle and malignant disease may be targeted vicariously by selective alteration of the cellular molecular clock.

Mannic T, Meyer P, Triponez F, et al.
Circadian clock characteristics are altered in human thyroid malignant nodules.
J Clin Endocrinol Metab. 2013; 98(11):4446-56 [PubMed] Related Publications
CONTEXT: The circadian clock represents the body's molecular time-keeping system. Recent findings revealed strong changes of clock gene expression in various types of human cancers.
OBJECTIVE: Due to emerging evidence on the connection between the circadian oscillator, cell cycle, and oncogenic transformation, we aimed to characterize the circadian clockwork in human benign and malignant thyroid nodules.
DESIGN: Clock transcript levels were assessed by quantitative RT-PCR in thyroid tissues. To provide molecular characteristics of human thyroid clockwork, primary thyrocytes established from normal or nodular thyroid tissue biopsies were subjected to in vitro synchronization with subsequent clock gene expression analysis by circadian bioluminescence reporter assay and by quantitative RT-PCR.
RESULTS: The expression levels of the Bmal1 were up-regulated in tissue samples of follicular thyroid carcinoma (FTC), and in papillary thyroid carcinoma (PTC), as compared with normal thyroid and benign nodules, whereas Cry2 was down-regulated in FTC and PTC. Human thyrocytes derived from normal thyroid tissue exhibited high-amplitude circadian oscillations of Bmal1-luciferase reporter expression and endogenous clock transcripts. Thyrocytes established from FTC and PTC exhibited clock transcript oscillations similar to those of normal thyroid tissue and benign nodules (except for Per2 altered in PTC), whereas cells derived from poorly differentiated thyroid carcinoma exhibited altered circadian oscillations.
CONCLUSIONS: This is the first study demonstrating a molecular makeup of the human thyroid circadian clock. Characterization of the thyroid clock machinery alterations upon thyroid nodule malignant transformation contributes to understanding the connections between circadian clocks and oncogenic transformation. Moreover, it might help in improving the thyroid nodule preoperative diagnostics.

Grundy A, Schuetz JM, Lai AS, et al.
Shift work, circadian gene variants and risk of breast cancer.
Cancer Epidemiol. 2013; 37(5):606-12 [PubMed] Related Publications
Circadian (clock) genes have been linked with several functions relevant to cancer, and epidemiologic research has suggested relationships with breast cancer risk for variants in NPAS2, CLOCK, CRY2 and TIMELESS. Increased breast cancer risk has also been observed among shift workers, suggesting potential interactions in relationships of circadian genes with breast cancer. Relationships with breast cancer of 100 SNPs in 14 clock-related genes, as well as potential interactions with shift work history, were investigated in a case-control study (1042 cases, 1051 controls). Odds ratios in an additive genetic model for European-ancestry participants (645 cases, 806 controls) were calculated, using a two-step correction for multiple testing: within each gene through permutation testing (10,000 permutations), and correcting for the false discovery rate across genes. Interactions of genotypes with ethnicity and shift work (<2 years vs ≥2 years) were evaluated individually. Following permutation analysis, two SNPs (rs3816360 in ARNTL and rs11113179 in CRY1) displayed significant associations with breast cancer and one SNP (rs3027188 in PER1) was marginally significant; however, none were significant following adjustment for the false discovery rate. No significant interaction with shift work history was detected. If shift work causes circadian disruption, this was not reflected in associations between clock gene variants and breast cancer risk in this study. Larger studies are needed to assess interactions with longer durations (>30 years) of shift work that have been associated with breast cancer.

Luo Y, Wang F, Chen LA, et al.
Deregulated expression of cry1 and cry2 in human gliomas.
Asian Pac J Cancer Prev. 2012; 13(11):5725-8 [PubMed] Related Publications
Growing evidence shows that deregulation of the circadian clock plays an important role in the development of malignant tumors, including gliomas. However, the molecular mechanisms of gene chnages controlling circadian rhythm in glioma cells have not been explored. Using real time polymerase chain reaction and immunohistochemistry techniques, we examined the expression of two important clock genes, cry1 and cry2, in 69 gliomas. In this study, out of 69 gliomas, 38 were cry1-positive, and 51 were cry2-positive. The expression levels of cry1 and cry2 in glioma cells were significantly different from the surrounding non-glioma cells (P<0.01). The difference in the expression rate of cry1 and cry 2 in high-grade (grade III and IV) and low-grade (grade 1 and II) gliomas was non-significant (P>0.05) but there was a difference in the intensity of immunoactivity for cry 2 between high-grade gliomas and low-grade gliomas (r=-0.384, P=0.021). In this study, we found that the expression of cry1 and cry2 in glioma cells was much lower than in the surrounding non-glioma cells. Therefore, we suggest that disturbances in cry1 and cry2 expression may result in the disruption of the control of normal circadian rhythm, thus benefiting the survival of glioma cells. Differential expression of circadian clock genes in glioma and non-glioma cells may provide a molecular basis for the chemotherapy of gliomas.

Relles D, Sendecki J, Chipitsyna G, et al.
Circadian gene expression and clinicopathologic correlates in pancreatic cancer.
J Gastrointest Surg. 2013; 17(3):443-50 [PubMed] Related Publications
INTRODUCTION: The circadian rhythm is responsible for physiologic homeostasis, behavior, and components of multiple metabolic processes. Disruption of the circadian rhythm is associated with cancer development, and several circadian clock genes have been implicated in loss of cell cycle control, impaired DNA damage repair, and subsequent tumor formation. Here, we investigated the expression profiles of several circadian clock genes in pancreatic ductal adenocarcinoma (PDA).
METHODS: Quantitative real-time polymerase chain reaction was used to examine the circadian clock genes (brain-muscle-like (Bmal)-ARNTL, circadian locomotor output cycles kaput (Clock), cryptochrome 1 (Cry1), cryptochrome 2 (Cry2), casein kinase 1ε (CK1ε), period 1 (Per1), period 2 (Per2), period 3 (Per3), timeless (Tim), and timeless-interacting protein (Tipin)) in PDA, as well as matching adjacent and benign tissue. Logistic regression models with robust variance were used to analyze the gene expression levels, and Kaplan-Meier survival curves were generated based on gene expression.
RESULTS: In the tumor tissue of PDA patients, compared to their matched adjacent tissue, expression levels of all circadian genes were lower, with statistical significance for Per1, Per2, Per3, Cry1, Cry2, Tipin, Tim, CK1ε, Bmal-ARNTL, and Clock (p < 0.025). PDA tumors also expressed significantly lower levels of the circadian genes when compared to benign lesions for Per1, Per2, Per3, Cry2, Tipin, and CK1ε. A significant association between low levels of expression in the tumors and reduced survival was found with Per1, Per2, Per3, Cry2, Tipin, CK1ε, Clock, and Bmal-ARNTL.
CONCLUSIONS: Our results reveal for the first time a dysregulated transcription of several circadian genes in PDA. Elevation of the gene levels in the benign and matched adjacent tissues may be indicative of their role during the process of tumorigenesis. The potential of using circadian genes as predictive markers of the outcomes and survival and distinguishing PDA from benign pancreas must be studied in larger populations to validate and demonstrate their eventual clinical utility.

Montgomery ND, Turcott CM, Tepperberg JH, et al.
A 137-kb deletion within the Potocki-Shaffer syndrome interval on chromosome 11p11.2 associated with developmental delay and hypotonia.
Am J Med Genet A. 2013; 161A(1):198-202 [PubMed] Related Publications
Potocki-Shaffer syndrome (PSS) is a rare disorder caused by haploinsufficiency of genes located on the proximal short arm of chromosome 11 (11p11.2p12). Classic features include biparietal foramina, multiple exostoses, profound hypotonia, dysmorphic features, and developmental delay/intellectual disability. Fewer than 40 individuals with PSS have been reported, with variable clinical presentations due in part to disparity in deletion sizes. We report on a boy who presented for initial evaluation at age 13 months because of a history of developmental delay, hypotonia, subtle dysmorphic features, and neurobehavioral abnormalities. SNP microarray analysis identified a 137 kb deletion at 11p11.2, which maps within the classically defined PSS interval. This deletion results in haploinsufficiency for all or portions of six OMIM genes: SLC35C1, CRY2, MAPK8IP1, PEX16, GYLTL1B, and PHF21A. Recently, translocations interrupting PHF21A have been associated with intellectual disability and craniofacial anomalies similar to those seen in PSS. The identification of this small deletion in a child with developmental delay and hypotonia provides further evidence for the genetic basis of developmental disability and identifies a critical region sufficient to cause hypotonia in this syndrome. Additionally, this case illustrates the utility of high resolution genomic approaches in correlating clinical phenotypes with specific genes in contiguous gene deletion syndromes.

Doi M
Circadian clock-deficient mice as a tool for exploring disease etiology.
Biol Pharm Bull. 2012; 35(9):1385-91 [PubMed] Related Publications
One of the most significant conceptual changes brought about by the analysis of circadian clock-deficient mice is that abnormalities in the circadian clock are linked not only to sleep arousal disorder but also to a wide variety of common diseases, including hypertension, diabetes, obesity, and cancer. It has recently been shown that the disruption of the two cryptochrome genes Cry1 and Cry2-core elements of the circadian clock-induces salt-dependent hypertension due to abnormally high synthesis of the mineralocorticoid aldosterone by the adrenal gland. This adrenal disorder occurs as a result of increased expression of Hsd3b6, a newly identified steroidogenic enzyme that regulates aldosterone production within the adrenal zona glomerular cells. Importantly, this enzyme is functionally conserved in humans, and the pathophysiologic condition of human idiopathic hyperaldosteronism resembles that of Cry1/2-deficient mice. This review highlights the potential utility of circadian clock-deficient mice as a tool for exploring hitherto unknown disease etiology linked to the circadian clock.

Zhao B, Lu J, Yin J, et al.
A functional polymorphism in PER3 gene is associated with prognosis in hepatocellular carcinoma.
Liver Int. 2012; 32(9):1451-9 [PubMed] Related Publications
BACKGROUND: Previous studies have revealed that circadian genes play important roles in cell proliferation, apoptosis, cell cycle control, DNA damage response and treatment response of chemotherapy agents in cancers.
AIMS: We hypothesized that the polymorphisms in circadian genes may be associated with prognosis of hepatocellular carcinoma (HCC) patients treated with transcatheter arterial chemoembolization (TACE).
METHODS: Twelve functional single nucleotide polymorphisms (SNPs) in circadian negative feedback regulation genes (including CRY1, CRY2, PER1, PER2 and PER3) were genotyped using Sequenom iPLEX genotyping method in 337 HCC patients treated with TACE and analysed for associations with overall survival.
RESULTS: Our data showed that one SNP rs2640908 in PER3 gene was significantly associated with overall survival of HCC patients (P = 0.027). Patients carrying at least one variant allele of rs2640908 (WV + VV) had a significantly decreased risk of death (hazard ratio, 0.71; 95% confidence interval, 0.53-0.90), when compared with those carrying homozygous wild-type alleles (WW). Kaplan-Meier analyses showed a significantly longer median survival time in patients with WV + VV genotypes of SNP rs2640908 than those with WW genotype (11.6 months vs. 8.1 months; log rank P = 0.030). In addition, we also observed a significant difference on the genotype distribution of SNP rs2640908 in patients with and without portal vein thrombus (P = 0.041).
CONCLUSIONS: Our study provides the first evidence that a single functional polymorphism of PER3 gene is significantly associated with overall survival in HCC patients treated with TACE.

Mazzoccoli G, Piepoli A, Carella M, et al.
Altered expression of the clock gene machinery in kidney cancer patients.
Biomed Pharmacother. 2012; 66(3):175-9 [PubMed] Related Publications
BACKGROUND AND AIM: Kidney cancer is associated with alteration in the pathways regulated by von Hippel-Lindau protein and hypoxia inducible factor α. Tight interrelationships have been evidenced between hypoxia response pathways and circadian pathways. The dysregulation of the circadian clock circuitry is involved in carcinogenesis. The aim of our study was to evaluate the clock gene machinery in kidney cancer.
METHODS: mRNA expression levels of the clock genes ARNTL1, ARNTL2, CLOCK, PER1, PER2, PER3, CRY1, CRY2, TIMELESS, TIPIN and CSNK1E and of the clock controlled gene SERPINE1 were evaluated by DNA microarray assays and by qRT-PCR in primary tumor and matched nontumorous tissue collected from a cohort of 11 consecutive kidney cancer patients.
RESULTS: In kidney tumor tissue, we found down-regulation of PER2 (median=0.658, Q1-Q3=0.562-0.744, P<0.01), TIMELESS (median=0.705, Q1-Q3=0.299-1.330, P=0.04) and TIPIN (median=0.556, Q1-Q3=0.385-1.945, P=0.01), up-regulation of SERPINE1 (median=1.628, Q1-Q3=0.339-4.071, P=0.04), whereas the expression of ARNTL2 (median=0.605, Q1-Q3=0.318-1.738, P=0.74) and CSNK1E (median=0.927, Q1-Q3=0.612-2.321, P=0.33) did not differ. A statistically significant correlation was evidenced between mRNA levels of PER2 and CSNKIE (r=0.791, P<0.01), PER2 and TIPIN (r=0.729, P=0.01), PER2 and SERPINE1 (r=0.704, P=0.01), TIMELESS and TIPIN (r=0.605, P=0.04), TIMELESS and CSNKIE (r=0.637, P=0.03), TIPIN and CSNKIE (r=0.940, P<0.01).
CONCLUSION: In kidney cancer, the circadian clock circuitry is deregulated and the altered expression of the clock genes might be involved in disease onset and progression.

Hsu CM, Lin SF, Lu CT, et al.
Altered expression of circadian clock genes in head and neck squamous cell carcinoma.
Tumour Biol. 2012; 33(1):149-55 [PubMed] Related Publications
Head and neck squamous cell carcinoma (HNSCC) means a group of cancers developed from the upper aerodigestive tract, and 90% of them are squamous cell carcinomas. HNSCC is the tenth most commonly diagnosed form of cancer in males worldwide, but it is the seventh most common cause of cancer-related death. The circadian clock regulates daily rhythmic variations in various physiologic processes including sleep and activity, appetite, hormone levels, metabolism, and gene expression. Many recent studies have demonstrated that the disruption of circadian rhythm is associated with cancer development and tumor progression, such as chronic myeloid leukemia, hepatocellular carcinoma, endometrial carcinoma, and breast cancer. However the direct links between aberrant circadian clock gene expression and human malignancies, including HNSCC, remain largely unknown. In this study, the expression profiles of nine circadian clock genes of cancer tissue and noncancerous part from 40 patients of HNSCC were investigated. The expression of PER1, PER2, PER3, CRY1, CRY2, CKIε, and BMAL1 showed significant downregulation in the cancer tissues (p < 0.005). Downregulated PER3, CRY2, and BMAL1 expression was correlated with more advanced cancer stages (p < 0.05). Downregulated PER3 and upregulated TIM expression correlated with larger tumor size (p < 0.05), and lower expression of PER3 correlated with deeper tumor invasion (p < 0.05). Poor survival was related to lower expression of PER1 (p < 0.05) and PER3 (p < 0.01). These results indicate a possible association of circadian clock gene, especially PER3, expression with the pathogenesis of HNSCC.

Mazzoccoli G, Panza A, Valvano MR, et al.
Clock gene expression levels and relationship with clinical and pathological features in colorectal cancer patients.
Chronobiol Int. 2011; 28(10):841-51 [PubMed] Related Publications
The clock gene machinery controls cellular metabolism, proliferation, and key functions, such as DNA damage recognition and repair. Dysfunction of the circadian clock is involved in tumorigenesis, and altered expression of some clock genes has been found in cancer patients. The aim of this study was to evaluate the expression levels of core clock genes in colorectal cancer (CRC). Quantitative real-time polymerase chain reaction (qPCR) was used to examine ARNTL1, CLOCK, PER1, PER2, PER3, CRY1, CRY2, Timeless (TIM), TIPIN, and CSNK1? expression levels in the tumor tissue and matched apparently healthy mucosa of CRC patients. In the tumor tissue of CRC patients, compared to their matched healthy mucosa, expression levels of ARNTL1 (p=.002), PER1 (p=.002), PER2 (p=.011), PER3 (p=.003), and CRY2 (p=.012) were lower, whereas the expression level of TIM (p=.044) was higher. No significant difference was observed in the expression levels of CLOCK (p=.778), CRY1 (p=.600), CSNK1 (p=.903), and TIPIN (p=.136). As to the clinical and pathological features, a significant association was found between low CRY1 expression levels in tumor mucosa and age (p=.026), and female sex (p=.005), whereas high CRY1 expression levels in tumor mucosa were associated with cancer location in the distal colon (p?=?.015). Moreover, high TIM mRNA levels in the tumor mucosa were prevalent whenever proximal lymph nodes were involved (p= .013) and associated with TNM stages III-IV (p=.005) and microsatellite instability (p=.015). Significantly poorer survival rates were evidenced for CRC patients with lower expression in the tumor tissue of PER1 (p=.010), PER3 (p= .010), and CSNKIE (p=.024). In conclusion, abnormal expression levels of core clock genes in CRC tissue may be related to the process of tumorigenesis and exert an influence on host/tumor interactions.

Lee JH, Sancar A
Circadian clock disruption improves the efficacy of chemotherapy through p73-mediated apoptosis.
Proc Natl Acad Sci U S A. 2011; 108(26):10668-72 [PubMed] Free Access to Full Article Related Publications
The circadian clock in mammalian organisms is generated by a transcription-translation feedback loop that controls many biochemical pathways at the cellular level and physiology and behavior at the organismal level. Cryptochrome (Cry) is a key protein in the negative arm of the transcription-translation feedback loop. It has been found that Cry mutation in cells with p53-null genotype increased their sensitivity to apoptosis by genotoxic agents. Here we show that this increased sensitivity is due to up-regulation of the p53 gene family member p73 in response to DNA damage. As a consequence, when tumors arising from oncogenic Ras-transformed p53(-/-) and p53(-/-)Cry1(-/-)Cry2(-/-) cells are treated with the anticancer drug oxaliplatin, p53(-/-) tumors continue to grow whereas p53(-/-)Cry1(-/-)Cry2(-/-) tumors exhibit extensive apoptosis and stop growing. This finding provides a mechanistic foundation for overcoming the resistance of p53-deficient tumor cells to apoptosis induced by DNA-damaging agents and suggests that disruption of cryptochrome function may increase the sensitivity of tumors with p53 mutation to chemotherapy.

Yang MY, Yang WC, Lin PM, et al.
Altered expression of circadian clock genes in human chronic myeloid leukemia.
J Biol Rhythms. 2011; 26(2):136-48 [PubMed] Related Publications
Circadian clock genes use transcriptional-translational feedback loops to control circadian rhythms. Recent studies have demonstrated that expression of some circadian clock genes displays daily oscillation in peripheral tissues including peripheral blood and bone marrow. Circadian rhythms regulate various functions of human body, and the disruption of circadian rhythm has been associated with cancer development and tumor progression. However, the direct links between aberrant circadian clock gene expression and human disorders remain largely unknown. In this study, comparisons were made between the expression profiles of 9 circadian clock genes from peripheral blood mononuclear cells (PBMCs) and polymorphonuclear cells (PMNs) from 18 healthy volunteers. Peripheral blood (PB) total leukocytes from 54 healthy volunteers and 95 patients with chronic myeloid leukemia (CML) were also investigated. Similar expression profiles of all 9 circadian clock genes were observed in PBMCs and PMNs of healthy individuals. In PB total leukocytes of healthy individuals, the daily pattern of PER1, PER2, PER3, CRY1, CRY2, and CKIε expression level peaked at 0800 h, and BMAL1 peaked at 2000 h. Daily pattern expression of these 7 genes was disrupted in newly diagnosed pre-imatinib mesylate-treated and blast crisis-phase patients with CML. Partial daily pattern gene expression recoveries were observed in patients with CML with complete cytogenetic response and major molecular response. The expression of CLOCK and TIM did not show a time-dependent variation among the healthy and patients with CML. These results indicate a possible association of the disrupted daily patterns of circadian clock gene expression with the pathogenesis of CML.

Oshima T, Takenoshita S, Akaike M, et al.
Expression of circadian genes correlates with liver metastasis and outcomes in colorectal cancer.
Oncol Rep. 2011; 25(5):1439-46 [PubMed] Related Publications
Circadian rhythms are daily oscillations in various biological processes, generated by the feedback loops of eight core circadian genes: Period1 (Per1), Period2 (Per2), Period3 (Per3), Cryptochrome1 (Cry1), Cryptochrome2 (Cry2), Clock, Bmal1 and Casein Kinase I ε (CKIε). Recent studies have suggested that circadian genes participate in the growth and development of various cancers. This study examined the relations of circadian gene expression to clinicopathological factors and outcomes in patients with colorectal cancer. We studied surgical specimens of cancer tissue and adjacent normal mucosa obtained from 202 patients with untreated colorectal cancer. The relative expression levels of the circadian genes in the specimens were measured by quantitative real-time, reverse-transcription polymerase chain reaction. Expression of the Clock gene and the CKIε gene in cancer tissue were significantly higher compared to that in adjacent normal mucosa. Expression of the Per1 and Per3 genes in cancer tissue was significantly lower compared to that in adjacent normal mucosa. Analysis of the relations between clinicopathological features and expression of the eight circadian genes in cancer tissue showed that high expression of the Bmal1 gene and low expression of the Per1 gene correlated with liver metastasis. On analysis of the relations between outcomes and gene expression, high expression of the Per2 gene was associated with significantly better outcomes than low expression of the Per2 gene. Overexpression of the Bmal1 gene and reduced expression of the Per1 gene may thus be useful predictors of liver metastasis. Moreover, reduced expression of the Per2 gene may be a predictor of outcomes in patients with colorectal cancer.

Dai H, Zhang L, Cao M, et al.
The role of polymorphisms in circadian pathway genes in breast tumorigenesis.
Breast Cancer Res Treat. 2011; 127(2):531-40 [PubMed] Related Publications
Disruption of the circadian rhythm or biological clock, which is regulated by a number of clock genes, including circadian locomotor output cycles kaput (CLOCK), period genes (PERs), and cryptochrome genes (CRYs), is a risk factor for breast cancer. We hypothesized that genetic variation in these clock genes may influence breast cancer risk. To test this hypothesis, we designed a hospital-based study that included 1,538 breast cancer patients and 1,605 healthy controls. We genotyped subjects for five single nucleotide polymorphisms (SNPs) and a length variant of the circadian clock genes and evaluated their associations with breast cancer risk. These polymorphisms were determined by TaqMan allelic discrimination assays and the polymerase chain reaction-restriction fragment length polymorphism method. Univariate logistic regression analysis showed that polymorphisms of the CLOCK and CRY1 genes were associated with breast cancer risk. We found that carriers of the CLOCK CT and combined CT+TT genotypes had a significantly higher risk of breast cancer than carriers of the CC genotype (aOR = 1.35, 95% CI = 1.12-1.63 and aOR = 1.30, 95% CI = 1.09-1.56, respectively). Carriers of the CRY1 GT genotype had a decreased risk of breast cancer (aOR = 0.84, 95% CI = 0.71-0.99). We also observed a lower risk of breast cancer in carriers of the CRY2 CC genotype who were ER-positive than in those who were ER-negative (OR = 0.15, 95% CI = 0.04-0.67). When stratified by the CLOCK genotype, patients with the CLOCK CT/ CRY2 CC genotypes had significantly lower cancer risk than those with the GG genotype (aOR = 0.36, 95% CI = 0.14-0.95). Individuals carrying both the CLOCK CC and PER2 AA genotypes had an increased cancer risk (aOR = 2.28, 95% CI = 1.22-4.26). Our study suggests that genetic variants of the circadian rhythm regulatory pathway genes contribute to the differential risk of developing breast cancer in Chinese populations.

Hoffman AE, Zheng T, Ba Y, et al.
Phenotypic effects of the circadian gene Cryptochrome 2 on cancer-related pathways.
BMC Cancer. 2010; 10:110 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Circadian genes continue to gain attention as important transcriptional regulators with the potential to influence a variety of biological pathways, including many cancer-related processes. The core circadian gene cryptochrome 2 (CRY2) is essential for proper circadian timing, and is a key component of the negative arm of the circadian feedback loop. As such, aberrant expression of CRY2 may influence carcinogenic processes and thereby impact cancer susceptibility.
METHODS: We silenced CRY2 in breast cancer cell lines (MCF-7) using small-interfering oligos (siRNA) and measured the impact of CRY2 knockdown on a number of cancer-relevant parameters. Cell cycle distribution, cell viability, and apoptotic response were measured in CRY2 knockdown (CRY2-) and normal (CRY2+) cell populations using flow cytometry in cells with and without exposure to a mutagen challenge. DNA damage accumulation was measured using the single cell gel electrophoresis (comet) assay, and damage was quantified using the Olive tail moment, which considers the amount and distance of DNA migration away from the nucleus, indicative of DNA strand breaks. Expression changes in cancer-relevant transcripts were measured by whole genome microarray. The Student's t-test was used for statistical comparisons, and P-values obtained from the microarray were adjusted for multiple comparisons using the false discovery rate correction, in order to obtain an adjusted Q-value for each observation.
RESULTS: The comet assay results indicated that upon exposure to the same dose of chemical mutagen, CRY2- cells accumulate significantly more unrepaired DNA damage than CRY2+ cells (P = 0.040), suggesting that CRY2 may be important for DNA repair. In addition, a number of transcripts with relevance for DNA damage repair displayed altered expression following CRY2 silencing. These included BCCIP (Q = 0.002), BCL2 (Q = 0.049), CCND1 (Q = 0.009), CDKN1A (Q < 0.001), GADD45A (Q = 0.002), HERC5 (Q < 0.001), MCM5 (Q = 0.042), PPP1R15A (Q < 0.001), SUMO1 (Q < 0.001), and UBA1 (Q = 0.023). However, no significant influence of CRY2 knockdown on cell cycle distributions, cell cycle checkpoints in response to mutagen challenge, or apoptotic response was detected.
CONCLUSIONS: In total, these data suggest a limited, but potentially important role for CRY2 in the regulation of DNA damage repair and the maintenance of genomic stability. Future investigations may focus on identifying the mechanisms by which CRY2 may regulate the expression of transcripts with known relevance for carcinogenesis.

Hoffman AE, Zheng T, Yi CH, et al.
The core circadian gene Cryptochrome 2 influences breast cancer risk, possibly by mediating hormone signaling.
Cancer Prev Res (Phila). 2010; 3(4):539-48 [PubMed] Free Access to Full Article Related Publications
As transcriptional regulators, circadian genes have the potential to influence a variety of biological pathways, including many cancer-related processes. Cryptochrome 2 (CRY2) is essential for proper circadian timing and is a key component of the circadian regulatory feedback loop. Here, we report findings from genetic, epigenetic, loss-of-function, and transcriptional profiling analyses of CRY2 in breast cancer. Six single-nucleotide polymorphisms in CRY2 were identified for genotyping in a case-control population (n = 441 cases and n = 479 controls), and three single-nucleotide polymorphisms (rs11038689, rs7123390, and rs1401417) were significantly associated with postmenopausal breast cancer risk, with significant effect modification by menopausal status [dominant model for rs11038689: odds ratio (OR), 0.71; 95% confidence interval (95% CI), 0.51-0.99; P for trend = 0.028; homozygous variants for rs7123390: OR, 0.44; 95% CI, 0.22-0.86; P for trend = 0.028; and rs1401417: OR, 0.44; 95% CI, 0.21-0.92; P for trend = 0.017]. Interestingly, this association was only evident in women with estrogen and progesterone receptor (ER/PR)-negative breast tumors but not with ER/PR-positive tumors. Breast cancer patients also had significantly higher levels of CRY2 promoter methylation relative to controls, which is consistent with tissue array data showing lower levels of CRY2 expression in tumor tissue relative to adjacent normal tissue. Furthermore, in vitro analyses identified several breast cancer-relevant genes that displayed altered expression following CRY2 knockdown. These findings suggest a role for CRY2 in breast tumorigenesis and provide further evidence that the circadian system may be an important modulator of hormone-related cancer susceptibility.

Zhu Y, Stevens RG, Hoffman AE, et al.
Testing the circadian gene hypothesis in prostate cancer: a population-based case-control study.
Cancer Res. 2009; 69(24):9315-22 [PubMed] Free Access to Full Article Related Publications
Circadian genes are responsible for maintaining the ancient adaptation of a 24-hour circadian rhythm and influence a variety of cancer-related biological pathways, including the regulation of sex hormone levels. However, few studies have been undertaken to investigate the role of circadian genes in the development of prostate cancer, the most common cancer type among men (excluding nonmelanoma skin cancer). The current genetic association study tested the circadian gene hypothesis in relation to prostate cancer by genotyping a total of 41 tagging and amino acid-altering single nucleotide polymorphisms (SNP) in 10 circadian-related genes in a population-based case-control study of Caucasian men (n = 1,308 cases and 1,266 controls). Our results showed that at least one SNP in nine core circadian genes (rs885747 and rs2289591 in PER1; rs7602358 in PER2; rs1012477 in PER3; rs1534891 in CSNK1E; rs12315175 in CRY1; rs2292912 in CRY2; rs7950226 in ARNTL; rs11133373 in CLOCK; and rs1369481, rs895521, and rs17024926 in NPAS2) was significantly associated with susceptibility to prostate cancer (either overall risk or risk of aggressive disease), and the risk estimate for four SNPs in three genes (rs885747 and rs2289591 in PER1, rs1012477 in PER3, and rs11133373 in CLOCK) varied by disease aggressiveness. Further analyses of haplotypes were consistent with these genotyping results. Findings from this candidate gene association study support the hypothesis of a link between genetic variants in circadian genes and prostate cancer risk, warranting further confirmation and mechanistic investigation of circadian biomarkers in prostate tumorigenesis.

Hoffman AE, Zheng T, Stevens RG, et al.
Clock-cancer connection in non-Hodgkin's lymphoma: a genetic association study and pathway analysis of the circadian gene cryptochrome 2.
Cancer Res. 2009; 69(8):3605-13 [PubMed] Free Access to Full Article Related Publications
Circadian genes have the potential to influence a variety of cancer-related biological pathways, including immunoregulation, which may influence susceptibility to non-Hodgkin's lymphoma (NHL). However, few studies have examined the role of circadian genes in lymphomagenesis. The current study examined Cryptochrome 2 (CRY2), a core circadian gene and transcriptional repressor, as a potential circadian biomarker for NHL. We first performed genetic association analyses of tagging single nucleotide polymorphisms (SNP) in CRY2 and NHL risk using DNA samples from a population-based case-control study (n = 455 cases and 527 controls). Three SNPs were found to be significantly associated with risk of NHL when combining all subtypes [dbSNP IDs, odds ratios (ORs), and 95% confidence intervals: rs11038689, OR, 2.34 (1.28-4.27), P = 0.006; rs7123390, OR, 2.40 (1.39-4.13), P = 0.002; and rs1401417, OR, 2.97 (1.57-5.63, P = 0.001)]. Each of these associations remained significant when restricting the analysis to B-cell cases and when further restricting to follicular lymphomas. An analysis of CRY2 diplotypes confirmed these significant findings. To further determine the functional effect of CRY2, we silenced the gene in vitro and performed a whole genome expression microarray. A pathway-based analysis showed that genes significantly altered by CRY2 knockdown formed networks associated with immune response and hematologic system development. In addition, these genes were predicted to have significant effects on several disease processes, including cancer (B-H P = 3.75E(-9)) and hematologic disease (B-H P = 8.01E(-8)). In conclusion, both genetic association and functional analyses suggest that the circadian gene CRY2 may play an important role in NHL development.

Chu LW, Zhu Y, Yu K, et al.
Correlation between circadian gene variants and serum levels of sex steroids and insulin-like growth factor-I.
Cancer Epidemiol Biomarkers Prev. 2008; 17(11):3268-73 [PubMed] Related Publications
A variety of biological processes, including steroid hormone secretion, have circadian rhythms, which are influenced by nine known circadian genes. Previously, we reported that certain variants in circadian genes were associated with risk for prostate cancer. To provide some biological insight into these findings, we examined the relationship of five variants of circadian genes, including NPAS2 (rs2305160:G > A), PER1 (rs2585405:G > C), CSNK1E (rs1005473:A > C), PER3 (54-bp repeat length variant), and CRY2 (rs1401417:G > C), with serum levels of sex steroids and insulin-like growth factor (IGF)-I and IGF-binding protein 3 (IGFBP3) in 241 healthy elderly Chinese men (mean age of 71.5). Age-adjusted and waist-to-hip ratio-adjusted ANOVA followed by likelihood ratio tests (LRT) showed that the NPAS2 variant A allele was associated with lower free and bioavailable testosterone (P(LRT) = 0.02 and 0.01, respectively) compared with the GG genotype. In addition, the PER1 variant was associated with higher serum levels of sex hormone-binding globulin levels (Ptrend = 0.03), decreasing 5alpha-androstane-3alpha, 17beta-diol glucuronide levels (Ptrend = 0.02), and decreasing IGFBP3 levels (Ptrend = 0.05). Furthermore, the CSNK1E variant C allele was associated with higher testosterone to dihydrotestosterone ratios (P(LRT) = 0.01) compared with the AA genotype, whereas the longer PER3 repeat was associated with higher serum levels of IGF-I (P(LRT) = 0.03) and IGF-I to IGFBP3 ratios (P(LRT) = 0.04). The CRY2 polymorphism was not associated with any biomarkers analyzed. Our findings, although in need of confirmation, suggest that variations in circadian genes are associated with serum hormone levels, providing biological support for the role of circadian genes in hormone-related cancers.

Tokunaga H, Takebayashi Y, Utsunomiya H, et al.
Clinicopathological significance of circadian rhythm-related gene expression levels in patients with epithelial ovarian cancer.
Acta Obstet Gynecol Scand. 2008; 87(10):1060-70 [PubMed] Related Publications
OBJECTIVE: Recent studies implicate circadian genes in the regulation of cell cycle, apoptosis, and cell proliferation at a molecular level. These genesey affect cancer incidence, prognosis, and chemosensitivity. In this study, we measured the expression levels of clock genes and correlated their expression levels with clinicopathological parameters in epithelial ovarian cancer.
METHODS: The expression levels of core clock genes, per1, per2, per3, cry1, cry2, Bmal1, clock, and CKIepsilon were quantified by real-time quantitative Reverse transcription-polymerase chain reaction in 83 ovarian cancer tissues and 11 normal ovarian tissues.
RESULTS: The expression levels of per1, per2, cry2, clock, CKIepsilon in ovarian cancers were significantly lower than those in normal ovaries. In contrast, cry1 expression was highest among the eight examined clock genes, followed by per3 and Bmal1. Cry1 expression was much higher in cancer than that in normal ovaries. Localized circadian gene expression was determined in cancer cells by in situ hybridization analysis. Cry1 expression was significantly reduced in mucinous and grade 3 tumors. Bmal1 expression was also significantly reduced in mucinous adenocarcinomas as compared to other histologies. In a multivariate analysis, the combination of low cry1 expression and low Bmal1 expression was an independent prognostic factor, as well as stage and histological subtype.
CONCLUSIONS: The antiphase expression of cry1 and Bmal1 may be preserved in ovarian cancers. The combination of cry1 and Bmal1 expression might become a possible prognostic marker in epithelial ovarian cancer.

Lin YM, Chang JH, Yeh KT, et al.
Disturbance of circadian gene expression in hepatocellular carcinoma.
Mol Carcinog. 2008; 47(12):925-33 [PubMed] Related Publications
Circadian rhythm plays an important role in the regulation of digestive system. The human circadian rhythm is controlled by at least nine circadian genes. The aims of this study are to understand the expression of the circadian genes between hepatocellular carcinoma tissues and nontumor tissues, and to explore the possible mechanism(s) contributing to the difference. We analyzed differential expression of the 9 circadian genes in 46 hepatocellular carcinoma and paired noncancerous tissues by real-time quantitative RT-PCR and immunohistochemical detection. We also tested the possible regulatory mechanism(s) by direct sequencing and methylation PCR analysis. Our results showed that decreased expression levels of PER1, PER2, PER3, CRY2, and TIM in hepatocellular carcinomas were observed. Decreased-expression of these genes was not caused by genetic mutations, but by several factors, such as promoter methylation, overexpression of EZH2 or other factors. The down expression of more circadian genes may result in disturbance of cell cycle, and it is correlated with the tumor size. Downregulation of circadian genes results in disturbance of circadian rhythm in hepatocellular carcinoma which may disrupt the control of the central pacemaker and benefit selective survival of cancerous cells and promote carcinogenesis.

Chu LW, Zhu Y, Yu K, et al.
Variants in circadian genes and prostate cancer risk: a population-based study in China.
Prostate Cancer Prostatic Dis. 2008; 11(4):342-8 [PubMed] Related Publications
Circadian genes influence a variety of biological processes that are important in prostate tumorigenesis including metabolism. To determine if variants in circadian genes alter prostate cancer risk, we genotyped five variants in five circadian genes in a population-based case-control study conducted in China (187 cases and 242 controls). These variants included CRY2 rs1401417:G>C, CSNK1E rs1005473:A>C, NPAS2 rs2305160:G>A, PER1 rs2585405:G>C and PER3 54-bp repeat length variant. Men with the cryptochrome 2 (CRY2)-variant C allele had a significant 1.7-fold increased prostate cancer risk (95% confidence interval (CI), 1.1-2.7) relative to those with the GG genotype. This risk increased to 4.1-fold (95% CI, 2.2-8.0) in men who also had greater insulin resistance (IR) as compared to men with the GG genotype and less IR. In contrast, among men with less IR, the NPAS2-variant A allele was associated with decreased prostate cancer risk (odds ratio=0.5, 95% CI, 0.3-1.0) as compared to the GG genotype. Our findings, although in need of confirmation, suggest that variations in circadian genes may alter prostate cancer risk and some biological processes may modify this effect.

Chen-Goodspeed M, Lee CC
Tumor suppression and circadian function.
J Biol Rhythms. 2007; 22(4):291-8 [PubMed] Related Publications
Circadian clock and cell division cycle are two fundamental biological processes. The circadian clock is the body's molecular time-keeping system, while the cell division cycle regulates development and cellular renewal. The expression of cell cycle genes such as Wee1, Cyclins, and c-Myc are under circadian control and could be directly under the regulation of the circadian transcriptional complex. This complex is composed of heterodimer transactivators CLOCK/NPAS2 with BMAL1, which regulate the transcription of PER1, PER2, CRY1, and CRY2. In turn, the repressors CRY1 and CRY2 turn off the gene expressions of Per1/Per2, Cry1/Cry2 in a periodic manner by acting on the transcriptional complex. Two of these circadian rhythm regulators, PER1 and PER2, have now been linked to DNA damage response pathways in a series of papers that examined gene dosage. Overexpression of either Per1 or Per2 in cancer cells inhibits their neoplastic growth and increases their apoptotic rate. In vivo studies showed that mice deficient in mPer2 showed significant higher incidences of tumor development after genotoxic stress. Loss and dysregulation of Per1 and Per2 gene expression have been found in many types of human cancers. Recent studies demonstrate that both PER1 and PER2 are involved in ATM-Chk1/Chk2 DNA damage response pathways and implicate normal circadian function as a factor in tumor suppression.

Ishida N
Circadian clock, cancer and lipid metabolism.
Neurosci Res. 2007; 57(4):483-90 [PubMed] Related Publications
Genetic analysis has revealed that mammalian circadian oscillator is driven by a cell autonomous transcription/translation-based negative feedback loop, wherein positive elements (CLOCK and BMAL1) induce the expression of negative regulators (Periods, CRY1 and CRY2) that inhibit the transactivation of positive regulators. Recent research reveals that this clock feedback loop affects many aspects of our physiology, such as cell cycle and lipid metabolism. In this review, I summarize the molecular links between the circadian clock mechanism and the cell cycle, and between the clock and lipid metabolism. Recent studies of clock mutants also suggest that clock molecules play a role as stress sensors. Lastly, we propose the importance of sterol for entraining peripheral clocks.

Yang MY, Chang JG, Lin PM, et al.
Downregulation of circadian clock genes in chronic myeloid leukemia: alternative methylation pattern of hPER3.
Cancer Sci. 2006; 97(12):1298-307 [PubMed] Related Publications
Disruption of circadian rhythm is believed to play a critical role in cancer development. To gain further insights into the roles of circadian genes in chronic myeloid leukemia (CML), we analyzed peripheral blood from 53 healthy individuals and 35 CML patients for the expression of the nine circadian genes. The expression levels of hPER1, hPER2, hPER3, hCRY1, hCRY2 and hBMAL1 were significantly impaired in both chronic phase and blastic crisis of CML cases compared with those in healthy individuals (P < 0.001). Methylation studies in the promoter areas of these six genes revealed that only the CpG sites of the hPER3 gene were methylated in all of the CML patients, and the methylated CpG frequencies differed significantly in patients at blastic crisis (8.24 +/- 0.73) or at chronic phase (4.48 +/- 0.48). The CpG sites of the hPER2 gene were also methylated in 40% of the CML patients. No mutation was found within the coding region of hPER3 in CML cases. Our results suggest that the downregulated hPER3 expression in CML is correlated with the inactivation of hPER3 by methylation.

Eriguchi M, Levi F, Hisa T, et al.
Chronotherapy for cancer.
Biomed Pharmacother. 2003; 57 Suppl 1:92s-95s [PubMed] Related Publications
Cancer chronotherapy is attracting attention as a novel and logical therapy in which anti-cancer drugs are administered with optimal timing according to circadian rhythms of anti-cancer action and those of adverse effects on normal cells. Advances in chronobiology have identified the suprachiasmatic nucleus (SCN) as the center of biological rhythms and the area in which clock genes such as PER1, PER2, PER3, CLOCK, BMAL1, TIM, CRY1, CRY2, tau act to generate and coordinate biological rhythms. These findings have led to the development of chronotherapy. Clinically, patients with advanced gastrointestinal cancer have been treated by chronomodulated chemotherapy with good response. For colorectal cancer patients with unresectable liver metastases, chronotherapy with l-OHP + 5-FU + FA (folinic acid) has been reported to allow complete surgical resection of liver metastases, resulting in 39-50% 5-year survival. Many believe that chronotherapy will become accepted as a refined and advantageous therapeutic option for not only cancer but also for other diseases, due to its universally applicable principles.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. CRY2, Cancer Genetics Web: http://www.cancer-genetics.org/CRY2.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 27 February, 2015     Cancer Genetics Web, Established 1999