CD70

Gene Summary

Gene:CD70; CD70 molecule
Aliases: CD27L, CD27LG, TNFSF7
Location:19p13
Summary:The protein encoded by this gene is a cytokine that belongs to the tumor necrosis factor (TNF) ligand family. This cytokine is a ligand for TNFRSF27/CD27. It is a surface antigen on activated, but not on resting, T and B lymphocytes. It induces proliferation of costimulated T cells, enhances the generation of cytolytic T cells, and contributes to T cell activation. This cytokine is also reported to play a role in regulating B-cell activation, cytotoxic function of natural killer cells, and immunoglobulin sythesis. [provided by RefSeq, Jul 2008]
Databases:OMIM, VEGA, HGNC, Ensembl, GeneCard, Gene
Protein:CD70 antigen
HPRD
Source:NCBIAccessed: 16 March, 2015

Ontology:

What does this gene/protein do?
Show (14)
Pathways:What pathways are this gene/protein implicaed in?
Show (1)

Cancer Overview

Research Indicators

Publications Per Year (1990-2015)
Graph generated 16 March 2015 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Cancer DNA
  • Signal Transduction
  • Kidney Cancer
  • Up-Regulation
  • Cancer Gene Expression Regulation
  • Reed-Sternberg Cells
  • Leukemic Gene Expression Regulation
  • Tumor Suppressor Proteins
  • Chromosome 19
  • Proteomics
  • Messenger RNA
  • Tumor Markers
  • Neoplasm Invasiveness
  • Single Nucleotide Polymorphism
  • Tumor Necrosis Factors
  • Gene Expression Profiling
  • rac GTP-Binding Proteins
  • TNF
  • Antigens, CD70
  • RTPCR
  • Gene Expression
  • Antigens, CD27
  • Ubiquitin-Protein Ligases
  • Angiogenesis
  • Diffuse Large B-Cell Lymphoma
  • Base Sequence
  • von Hippel-Lindau Disease
  • VEGFA
  • Interleukin-17
  • Melanoma, Experimental
  • CD Antigens
  • Promoter Regions
  • Vocal Cords
  • Oligonucleotide Array Sequence Analysis
  • Renal Cell Carcinoma
  • Asian Continental Ancestry Group
  • Immunophenotyping
  • Membrane Proteins
  • China
  • Viral Matrix Proteins
  • Melanoma
Tag cloud generated 16 March, 2015 using data from PubMed, MeSH and CancerIndex

Specific Cancers (4)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: CD70 (cancer-related)

de Miranda NF, Georgiou K, Chen L, et al.
Exome sequencing reveals novel mutation targets in diffuse large B-cell lymphomas derived from Chinese patients.
Blood. 2014; 124(16):2544-53 [PubMed] Free Access to Full Article Related Publications
Next-generation sequencing studies on diffuse large B-cell lymphomas (DLBCLs) have revealed novel targets of genetic aberrations but also high intercohort heterogeneity. Previous studies have suggested that the prevalence of disease subgroups and cytogenetic profiles differ between Western and Asian patients. To characterize the coding genome of Chinese DLBCL, we performed whole-exome sequencing of DNA derived from 31 tumors and respective peripheral blood samples. The mutation prevalence of B2M, CD70, DTX1, LYN, TMSB4X, and UBE2A was investigated in an additional 105 tumor samples. We discovered 11 novel targets of recurrent mutations in DLBCL that included functionally relevant genes such as LYN and TMSB4X. Additional genes were found mutated at high frequency (≥10%) in the Chinese cohort including DTX1, which was the most prevalent mutation target in the Notch pathway. We furthermore demonstrated that mutations in DTX1 impair its function as a negative regulator of Notch. Novel and previous unappreciated targets of somatic mutations in DLBCL identified in this study support the existence of additional/alternative tumorigenic pathways in these tumors. The observed differences with previous reports might be explained by the genetic heterogeneity of DLBCL, the germline genetic makeup of Chinese individuals, and/or exposure to distinct etiological agents.

Pu X, Wang L, Chang JY, et al.
Inflammation-related genetic variants predict toxicity following definitive radiotherapy for lung cancer.
Clin Pharmacol Ther. 2014; 96(5):609-15 [PubMed] Article available free on PMC after 01/11/2015 Related Publications
Definitive radiotherapy improves locoregional control and survival in inoperable non-small cell lung cancer patients. However, radiation-induced toxicities (pneumonitis/esophagitis) are common dose-limiting inflammatory conditions. We therefore conducted a pathway-based analysis to identify inflammation-related single-nucleotide polymorphisms associated with radiation-induced pneumonitis or esophagitis. A total of 11,930 single-nucleotide polymorphisms were genotyped in 201 stage I-III non-small cell lung cancer patients treated with definitive radiotherapy. Validation was performed in an additional 220 non-small cell lung cancer cases. After validation, 19 single-nucleotide polymorphisms remained significant. A polygenic risk score was generated to summarize the effect from validated single-nucleotide polymorphisms. Significant improvements in discriminative ability were observed when the polygenic risk score was added into the clinical/epidemiological variable-based model. We then used 277 lymphoblastoid cell lines to assess radiation sensitivity and expression quantitative trait loci (eQTL) relationships of the identified single-nucleotide polymorphisms. Three genes (PRKCE, DDX58, and TNFSF7) were associated with radiation sensitivity. We concluded that inflammation-related genetic variants could contribute to the development of radiation-induced toxicities.

Yang ZZ, Grote DM, Xiu B, et al.
TGF-β upregulates CD70 expression and induces exhaustion of effector memory T cells in B-cell non-Hodgkin's lymphoma.
Leukemia. 2014; 28(9):1872-84 [PubMed] Article available free on PMC after 01/11/2015 Related Publications
Transforming growth factor beta (TGF-β) has an important role in mediating T-cell suppression in B-cell non-Hodgkin lymphoma (NHL). However, the underlying mechanism responsible for TGF-β-mediated inhibition of effector memory T (Tm) cells is largely unknown. As reported here, we show that exhaustion is a major mechanism by which TGF-β inhibits Tm cells, and TGF-β mediated exhaustion is associated with upregulation of CD70. We found that TGF-β upregulates CD70 expression on effector Tm cells while it preferentially induces Foxp3 expression in naive T cells. CD70 induction by TGF-β is Smad3-dependent and involves IL-2/Stat5 signaling. CD70+ T cells account for TGF-β-induced exhaustion of effector Tm cells. Both TGF-β-induced and preexisting intratumoral CD70+ effector Tm cells from B-cell NHL have an exhausted phenotype and express higher levels of PD-1 and TIM-3 compared with CD70- T cells. Signaling transduction, proliferation and cytokine production are profoundly decreased in these cells, and they are highly susceptible to apoptosis. Clinically, intratumoral CD70-expressing T cells are prevalent in follicular B-cell lymphoma (FL) biopsy specimens, and increased numbers of intratumoral CD70+ T cells correlate with an inferior patient outcome. These findings confirm TGF-β-mediated effector Tm cell exhaustion as an important mechanism of immune suppression in B-cell NHL.

Bertrand P, Maingonnat C, Penther D, et al.
The costimulatory molecule CD70 is regulated by distinct molecular mechanisms and is associated with overall survival in diffuse large B-cell lymphoma.
Genes Chromosomes Cancer. 2013; 52(8):764-74 [PubMed] Related Publications
In diffuse large B-cell lymphomas (DLBCL), a recurrent deletion of the 19p13 region has recently been described. CD70 and TNFSF9 genes are suspected tumor suppressor genes, but previous studies suggest an oncogenic role for CD70. Therefore, we studied the consequences of variation in CD70 copy number and epigenetic modifications on CD70 expression. Copy-number variation was investigated in 144 de novo DLBCL tissues by comparative genomic hybridization array and quantitative multiplex PCR. Gene expression was assessed by quantitative RT-PCR, and CD70 promoter methylation was determined by pyrosequencing. The 19p13.3.2 region was deleted in 21 (14.6%) cases, which allowed the minimal commonly deleted region of 57 Kb that exclusively includes the CD70 gene to be defined. Homozygous deletions were observed in four (2.7%) cases, and acquired single-nucleotide variations of CD70 were detected in nine (6.3%) cases. CD70 was highly expressed in both germinal centre B-cell-like (GCB) and activated B-cell-like (ABC) DLBCL compared to normal tissue, with distinct molecular mechanisms of mRNA expression regulation. A gene dosage effect was observed in the GCB subtype, whereas promoter methylation was the predominant mechanism of down regulation in the ABC subtype. However, high CD70 expression levels correlated to shorter overall survival in both the GCB (P = 0.0021) and the ABC (P =0.0158) subtypes. In conclusion, CD70 is targeted by recurrent deletions, somatic mutations and promoter hypermethylation, but its high level of expression is related to an unfavorable outcome, indicating that this molecule may constitute a potential therapeutic target in selected DLBCL.

Zhu J, Nie S, Wu J, Lubman DM
Target proteomic profiling of frozen pancreatic CD24+ adenocarcinoma tissues by immuno-laser capture microdissection and nano-LC-MS/MS.
J Proteome Res. 2013; 12(6):2791-804 [PubMed] Article available free on PMC after 01/11/2015 Related Publications
Cellular heterogeneity of solid tumors represents a common problem in mass spectrometry (MS)-based analysis of tissue specimens. Combining immuno-laser capture microdissection (iLCM) and mass spectrometry (MS) provides a means to study proteins that are specific for pure cell subpopulations in complex tissues. CD24, as a cell surface marker for detecting pancreatic cancer stem cells (CSCs), is directly correlated with the development and metastasis of pancreatic cancer. Herein, we describe an in-depth proteomic profiling of frozen pancreatic CD24(+) adenocarcinoma cells from early stage tumors using iLCM and LC-MS/MS and a comparison with CD24(-) cells dissected from patient-matched adjacent normal tissues. Approximately 40 nL of tissue was procured from each specimen and subjected to tandem MS analysis in triplicate. A total of 2665 proteins were identified, with 375 proteins in common that were significantly differentially expressed in CD24(+) versus CD24(-) cells by at least a 2-fold change. The major groups of the differentially overexpressed proteins are involved in promoting tumor cell migration and invasion, immune escape, and tumor progression. Three selected candidates relevant to mediating immune escape, CD59, CD70, and CD74, and a tumor promoter, TGFBI, were further validated by immunohistochemistry analysis on tissue microarrays. These proteins showed significantly increased expression in a large group of clinical pancreatic adenocarcinomas but were negative in all normal pancreas samples. The significant coexpression of these proteins with CD24 suggests that they may play important roles in the progression of pancreatic cancer and could serve as promising prognosis markers and novel therapeutic targets for this deadly disease.

Zheng W, Liu D, Fan X, et al.
Potential therapeutic biomarkers in plasma cell myeloma: a flow cytometry study.
Cytometry B Clin Cytom. 2013 Jul-Aug; 84(4):222-8 [PubMed] Related Publications
OBJECTIVE: To investigate the expression profile of potential therapeutic biomarkers in plasma cell myeloma (PCM) by multicolor flow cytometry analysis.
METHODS: Bone marrow (BM) specimens were collected consecutively and analyzed using a routine PCM panel (CD38/CD138/CD45/CD19/CD20/CD28/CD56/CD117, cyto-kappa/lambda). The specimens were further assessed for CD30, CD44, CD49d, CD70, CD105, and CD184 expression in cases containing a substantial number of neoplastic plasma cells.
RESULTS: Totally, 101 patient BM samples were assessed, including 58 men and 43 women, with a median age of 64 years (34-89). Twenty-nine patients had newly diagnosed/untreated PCM, 40 had persistent/residual disease undergoing various therapies and 32 had relapsed disease. CD49d was expressed brightly and uniformly in all 45 patients tested. Expression of CD44 and CD184 was more variable with a median percentage of 77% (1-100) and 65% (5-100) respectively. Using an arbitrary 20% cutoff, CD44 was positive in 74 (73%) and CD184 in 92 (91%) cases with a mean fluorescence intensity ratio of 42.8 and 21.4. A higher CD44 expression was observed in patients with recurrent/persistent disease (P = 0.028). Additionally, both CD44 (P = 0.002) and CD184 (P = 0.026) showed higher expressions in CD117-positive cases, but there was no correlation with cytogenetic groups. The CD30, CD70, and CD105 were expressed very infrequently in PCM, with a median expression of 0.2%, 0.2%, and 0.4% respectively.
CONCLUSIONS: CD49d, CD44, and CD184, are highly expressed in PCM. CD49d expression is bright and uniform, whereas CD44 and CD184 are more heterogeneous. In contrast, surface CD30, CD70, and CD105 are infrequent. These data provide useful preclinical information for the design of potential novel targeted therapies in PCM patients.

Fu L, Wang G, Shevchuk MM, et al.
Activation of HIF2α in kidney proximal tubule cells causes abnormal glycogen deposition but not tumorigenesis.
Cancer Res. 2013; 73(9):2916-25 [PubMed] Article available free on PMC after 01/11/2015 Related Publications
Renal cell carcinoma (RCC) is the most common primary cancer arising from the kidney in adults, with clear cell renal cell carcinoma (ccRCC) representing approximately 75% of all RCCs. Increased expression of the hypoxia-induced factors-1α (HIF1α) and HIF2α has been suggested as a pivotal step in ccRCC carcinogenesis, but this has not been thoroughly tested. Here, we report that expression of a constitutively activated form of HIF2α (P405A, P530A, and N851A, named as HIF2αM3) in the proximal tubules of mice is not sufficient to promote ccRCC by itself, nor does it enhance HIF1αM3 oncogenesis when coexpressed with constitutively active HIF1αM3. Neoplastic transformation in kidneys was not detected at up to 33 months of age, nor was increased expression of Ki67 (MKI67), γH2AX (H2AFX), or CD70 observed. Furthermore, the genome-wide transcriptome of the transgenic kidneys does not resemble human ccRCC. We conclude that a constitutively active HIF2α is not sufficient to cause neoplastic transformation of proximal tubules, arguing against the idea that HIF2α activation is critical for ccRCC tumorigenesis.

Koch M, Krieger ML, Stölting D, et al.
Overcoming chemotherapy resistance of ovarian cancer cells by liposomal cisplatin: molecular mechanisms unveiled by gene expression profiling.
Biochem Pharmacol. 2013; 85(8):1077-90 [PubMed] Related Publications
Previously we reported that liposomal cisplatin (CDDP) overcomes CDDP resistance of ovarian A2780cis cancer cells (Krieger et al., Int. J. Pharm. 389, 2010, 10-17). Here we find that the cytotoxic activity of liposomal CDDP is not associated with detectable DNA platination in resistant ovarian cancer cells. This suggests that the mode of action of liposomal CDDP is different from the free drug. To gain insight into mechanisms of liposomal CDDP activity, we performed a transcriptome analysis of untreated A2780cis cells, and A2780cis cells in response to exposure with IC50 values of free or liposomal CDDP. A process network analysis of upregulated genes showed that liposomal CDDP induced a highly different gene expression profile in comparison to the free drug. p53 was identified as a key player directing transcriptional responses to free or liposomal CDDP. The free drug induced expression of essential genes of the intrinsic (mitochondrial) apoptosis pathway (BAX, BID, CASP9) most likely through p38MAPK activation. In contrast, liposomal CDDP induced expression of genes from DNA damage pathways and several genes of the extrinsic pathway of apoptosis (TNFRSF10B-DR5, CD70-TNFSF7). It thus appears that liposomal CDDP overcomes CDDP resistance by inducing DNA damage and in consequence programmed cell death by the extrinsic pathway. Predictions from gene expression data with respect to apoptosis activation were confirmed at the protein level by an apoptosis antibody array. This sheds new light on liposomal drug carrier approaches in cancer and suggests liposomal CDDP as promising strategy for the treatment of CDDP resistant ovarian carcinomas.

Wei C, Sirikanjanapong S, Lieberman S, et al.
Primary mucosal melanoma arising from the eustachian tube with CTLA-4, IL-17A, IL-17C, and IL-17E upregulation.
Ear Nose Throat J. 2013; 92(1):36-40 [PubMed] Article available free on PMC after 01/11/2015 Related Publications
Primary malignant melanoma arising from the eustachian tube is extremely rare. We report the case of a 63-year-old white man who presented with a 1-month history of left-sided hearing loss and aural fullness. Flexible fiberoptic laryngoscopy detected a blue-purple mass that appeared to arise from the left lateral nasopharynx. Computed tomography demonstrated an enhancing mass arising from an orifice of the left eustachian tube. The tumor was debulked endoscopically and was confirmed to have originated in the left eustachian tube. Histologically, the tumor was made up of heavily pigmented pleomorphic spindle cells with frequent mitoses. The tumor cells were immunohistochemically positive for S-100 protein, HMB-45, Melan-A, and PNL-2. The final diagnosis was a mucosal malignant melanoma. We also performed a nested polymerase chain reaction assay for several genes of interest, including CTLA-4, IL-17A, IL-17B, IL-17C, IL-17D, IL-17E, IL-17F, PLZF, Foxp3, RORγt, CD27, and CD70. These genes have been studied mainly in cutaneous melanomas, especially for the development of immunotherapy, but only very limited studies have been done on mucosal melanomas. Our investigation found upregulation of CTLA-4, IL-17A, IL-17C, and IL-17E. Based on our finding of CTLA-4 upregulation, it may be suggested that our patient might have had low antitumor immunity and that he might have benefited from CTLA-4 blockade. On the other hand, upregulation of IL-17A and IL-17E might reflect increased antitumor immunity, which could suggest that patients with a mucosal melanoma might benefit from immunomodulators associated with the effect of Th17. These genes also have great potential to help melanoma patients obtain tailored treatment, and they can be used as biomarkers for predicting prognosis.

Yoshino K, Kishibe K, Nagato T, et al.
Expression of CD70 in nasal natural killer/T cell lymphoma cell lines and patients; its role for cell proliferation through binding to soluble CD27.
Br J Haematol. 2013; 160(3):331-42 [PubMed] Related Publications
Nasal natural killer (NK)/T cell lymphoma (NNKTL) is associated with Epstein-Barr virus (EBV). The present study analysed gene expression patterns of the NNKTL cell lines SNK6, SNK1 and SNT8, which are positive for EBV and latent membrane protein (LMP)-1, using a complementary DNA array analysis. We found that CD70 was specifically expressed in SNK6 and SNT8. Reverse transcription polymerase chain reaction and flow cytometric analyses confirmed that CD70 was expressed in all 3 NNKTL cell lines, but not in the other EBV-positive NK-cell lines. In vitro studies showed that NNKTL cell lines proliferated, in a dose-dependent fashion, in response to exogenous soluble CD27, which is the ligand for CD70. In NNKTL patients, we confirmed that the CD70 was expressed on the lymphoma cells in NNKTL tissues and that soluble CD27 was present in sera at higher levels as compared to healthy individuals. Finally, complement-dependent cytotoxicity assay showed that anti-CD70 antibody mediated effective complement-dependent killing of NNKTL cells and the affected target CD70 expression on the cells. These results suggest that CD70 acts as a functional receptor binding to soluble CD27, resulting in lymphoma progression and that immunotherapy using anti-CD70 antibody may be a potential candidate for treatment for NNKTL.

Lin ZY, Chuang WL
Genes responsible for the characteristics of primary cultured invasive phenotype hepatocellular carcinoma cells.
Biomed Pharmacother. 2012; 66(6):454-8 [PubMed] Related Publications
The common genes responsible for the characteristics of primary cultured invasive phenotype hepatocellular carcinoma (HCC) cells were investigated. Primary cultured HCC cells from three patients were separated by Matrigel invasion into parent and invasive cells. Whole human genome oligo microarray was applied to detect the differentially expressed genes in invasive cells. A purchased HCC cell line (HA 22T/VGH) was studied for comparison. Forty genes were consistently up-regulated and 14 genes were consistently down-regulated among primary cultured invasive cells. Among these genes, only three up-regulated genes (CNN1, PLAT, SPARC) and one down-regulated tumor suppressor gene (MDFI) had same expressions in invasive cells originated from purchased cell line. For primary cultured invasive cells, differential expressions of several groups of common genes are known to have capacities to promote proliferation (CAV1, IL6, PLAT, RRAD, SRPX), remodeling of extracellular matrix (COL1A1, COL1A2, NID2, TNC, RELN, SPARC), migration (ACTG2, CAV1, CCL2, CCL26, CDC42EP3, CNN1, PHLDB2, PLAT, RRAD, SRPX), implantation (IL6), immune escape (CD70) and angiogenesis (CCL2, IL6, IL18, PLAT, SLIT3). Two genes related to signal transduction (AXL, RASL10B) and one related to metabolism (PTGS2) also showed consistent expressions. Differential expressions of these genes are capable for tumor invasiveness. In conclusion, the characteristics of invasive phenotype HCC cells are originated from differential expressions of several groups of genes rather than few target genes. This information may give us a new insight to design new stratagems in HCC treatment. Analysis of the results from a purchased cell line may have bias due to long-term repeated in vitro cultures.

Xu F, Li D, Zhang Q, et al.
Association of CD27 and CD70 gene polymorphisms with risk of sporadic breast cancer in Chinese women in Heilongjiang Province.
Breast Cancer Res Treat. 2012; 133(3):1105-13 [PubMed] Related Publications
CD27 and its ligand, CD70, are major costimulatory molecules whose interaction can regulate the expansion and differentiation of effector and memory T-cell populations. Their abnormal expression can disturb the immune response and lead to an increased risk of cancer. This study aims to evaluate the associations between single nucleotide polymorphisms (SNPs) in CD27/CD70 gene and breast cancer susceptibility. Five tagSNPs and one coding polymorphism in CD27, as well as three tagSNPs in CD70, were genotyped in a case-control study of 610 breast cancer patients and 617 healthy controls. In CD27, rs3136550 CT and rs2267966 AT genotypes were associated with a decreased risk of breast cancer (P = 0.03, OR = 0.76; P = 0.02, OR = 0.75, respectively). In CD70, AG and GG genotypes in rs1862511 and CC genotype in rs2059154 also showed significant associations with a decreased risk of breast cancer (P = 2.00 × 10(-3), OR = 0.69; P = 0.03, OR = 0.62; P = 2.00 × 10(-3), OR = 0.53; respectively). Significant associations were also found in the dominant and recessive models for rs2059154 and dominant model for rs1862511. In haplotype analysis, CCGAG haplotype in CD27 and TAA haplotype in CD70 conferred an increased risk of breast cancer (P = 5.60 × 10(-3); P = 7.75 × 10(-5), respectively), but TGC, TAC and TGA haplotypes in CD70 were associated with a decreased risk of breast cancer (P = 0.01; P = 5.2 × 10(-3); P = 2.00 × 10(-3), respectively). The associations of CCGAG, TAA, TAC and TGA haplotypes remained significant after correcting P value for multiple testing. Significant associations were shown between the SNPs of CD27 and lymph node metastasis, and ER and PR statuses. These results indicate that CD27 and CD70 gene polymorphisms may affect the risk of breast cancer and show that some SNPs are associated with breast cancer characteristics in a northern Chinese population.

Lindgren T, Stigbrand T, Riklund K, et al.
Gene expression profiling in MOLT-4 cells during gamma-radiation-induced apoptosis.
Tumour Biol. 2012; 33(3):689-700 [PubMed] Related Publications
This study aims to identify the temporal changes in gene expression in MOLT-4, a leukemia cell line, in response to radiation and to present a comprehensive description of the pathways and processes that most significantly relate to the cellular biological responses. A global gene expression profile of 24,500 genes was performed on MOLT-4 tumor cells following exposure to 5 Gy of ionizing radiation ((60)Co) using a bead chip array (Illumina). Signaling pathways and processes significantly altered following irradiation were explored using MetaCore. Cellular viability [3-(4,5 dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide], activation of cell cycle checkpoints [fluorescence activated cell sorting (FACS)], and induction of apoptosis (FACS, caspase assays) were evaluated to correlate these biological responses to the gene expression changes. Totally, 698 different genes displayed a significantly altered expression following radiation, and out of these transcripts, all but one showed increased expression. One hour following irradiation, the expression was changed only for a few genes. Striking changes appeared at later time-points. From 3 to 24 h post-irradiation, a significant fraction of the genes with altered expression were found to be involved in cell cycle checkpoints and their regulation (CDKN1A), DNA repair (GADD45A, DDB2, XPC), apoptosis induction (DR5, FasR, Apo-2L, Bax), and T-cell activation/proliferation (CD70, OX40L). Irradiated MOLT-4 cells were arrested at the G2-checkpoint, followed by a decrease in cell viability, most pronounced 48 h after exposure. The cell death was executed by induced apoptosis and was visualized by an increase in subG1 cells and an increased activation of initiator (caspase-8 and caspase-9) and execution (caspase-3) caspases. Activation of cell cycle arrest and apoptosis correlated well in time with the changes in gene expression of those genes important for these biological processes. Activation of the apoptotic signaling pathways in MOLT-4 cells following irradiation includes components from the intrinsic as well as the extrinsic apoptotic pathways. This study indicates that the altered gene expression pattern induced by irradiation is important for the sequential steps observed in MOLT-4 cells during apoptosis induction.

Schürch C, Riether C, Matter MS, et al.
CD27 signaling on chronic myelogenous leukemia stem cells activates Wnt target genes and promotes disease progression.
J Clin Invest. 2012; 122(2):624-38 [PubMed] Article available free on PMC after 01/11/2015 Related Publications
Chronic myelogenous leukemia (CML) results from a chromosomal translocation in hematopoietic stem or early progenitor cells that gives rise to the oncogenic BCR/ABL fusion protein. Clinically, CML has a chronic phase that eventually evolves into an accelerated stage and blast crisis. A CML-specific immune response is thought to contribute to the control of disease. Whether the immune system can also promote disease progression is not known. In the present study, we investigated the possibility that the TNF receptor family member CD27 is present on leukemia stem cells (LSCs) and mediates effects of the immune system on CML. In a mouse model of CML, BCR/ABL+ LSCs and leukemia progenitor cells were found to express CD27. Binding of CD27 by its ligand, CD70, increased expression of Wnt target genes in LSCs by enhancing nuclear localization of active β-catenin and TRAF2- and NCK-interacting kinase (TNIK). This resulted in increased proliferation and differentiation of LSCs. Blocking CD27 signaling in LSCs delayed disease progression and prolonged survival. Furthermore, CD27 was expressed on CML stem/progenitor cells in the bone marrow of CML patients, and CD27 signaling promoted growth of BCR/ABL+ human leukemia cells by activating the Wnt pathway. Since expression of CD70 is limited to activated lymphocytes and dendritic cells, our results reveal a mechanism by which adaptive immunity contributes to leukemia progression. In addition, targeting CD27 on LSCs may represent an attractive therapeutic approach to blocking the Wnt/β-catenin pathway in CML.

Scholtysik R, Nagel I, Kreuz M, et al.
Recurrent deletions of the TNFSF7 and TNFSF9 genes in 19p13.3 in diffuse large B-cell and Burkitt lymphomas.
Int J Cancer. 2012; 131(5):E830-5 [PubMed] Related Publications
A single nucleotide polymorphism-chip analysis of 98 cases of aggressive B-cell lymphomas revealed a recurrent deletion at 19p13 in nine of the cases. Six further cases with deletions encompassing this region were found in array-comparative genomic hybridization data of 295 aggressive B-cell lymphomas from a previous study. Three cases even showed a homozygous deletion, suggesting a tumor suppressor gene in the deleted region. Two genes encoding members of the tumor necrosis factor superfamily (TNFSF) were located in the minimally deleted region, that is, TNFSF7 and TNFSF9. As no mutations were found within the coding exons of the remaining alleles in the lymphomas with heterozygous deletions, we speculate that the deletions may mostly function through a haploinsufficiency mechanism. The cases with deletions encompassed both diffuse large B-cell lymphomas and Burkitt lymphomas, and a deletion was also found in a Hodgkin lymphoma cell line. Thus, TNFSF7 and TNFSF9 deletions are recurrent genetic lesions in multiple types of human lymphomas.

Tvrdík D, Skálová H, Dundr P, et al.
Apoptosis - associated genes and their role in predicting responses to neoadjuvant breast cancer treatment.
Med Sci Monit. 2012; 18(1):BR60-67 [PubMed] Article available free on PMC after 01/11/2015 Related Publications
BACKGROUND: Neoadjuvant chemotherapy is used in the treatment of breast carcinoma because it substantially reduces the size of the primary tumor and lymph node metastases. The present study investigated biomarkers that can predict a pathologic response to the therapy.
MATERIAL/METHODS: The role of apoptosis in regression of the tumors after neoadjuvant chemotherapy was determined by TUNEL and anti-active caspase 3 assay. The transcriptional profile of 84 key apoptosis genes was evaluated in both pre-therapeutically obtained tumor tissue by core needle biopsy and in specimens removed by final surgery, using a pathway-specific real-time PCR assay. Obtained data were analyzed by hierarchical cluster analysis and correlation analysis. The immunohistochemical profile of each tumor was determined using the standard ABC method.
RESULTS: On the basis of a hierarchical cluster analysis of 13 significantly changed genes, we divided patients into good and poor prognosis groups, which correlate well with progression-free survival. In the good prognosis group, we found a statistically significant down-regulation of the expression of MCL1 and IGF1R genes after neoadjuvant treatment. We also found a statistically significant overexpression of BCL2L10, BCL2AF1, CASP8, CASP10, CASP14, CIDEB, FADD, HRK, TNFRSF25, TNFSF8 and CD70 genes. In contrast, we found up-regulation of IGF1R after the treatment in the group with poor prognosis.
CONCLUSIONS: Gene expression profiling using real-time PCR assay is a valuable research tool for the investigation of molecular markers, which reflect tumor biology and treatment response.

Shaffer DR, Sheehan AM, Yi Z, et al.
Aggressive peripheral CD70-positive T-cell lymphoma associated with severe chronic active EBV infection.
Pediatr Blood Cancer. 2012; 59(4):758-61 [PubMed] Article available free on PMC after 01/11/2015 Related Publications
Severe chronic active Epstein-Barr virus infection (CAEBV) in T or NK cells is a rare complication of latent EBV infection. CAEBV associated T-cell lymphoproliferative disease (LPD) consists of polyclonal lesions as well as aggressive lymphomas. Here, we report such a patient. In addition, we show that this primary CAEBV associated T-cell lymphoma expresses CD70 and is sensitive to killing by CD70-specific T cells, identifying CD70 as a potential immunotherapeutic target for CAEBV-associated T-cell lymphoma.

Fu L, Wang G, Shevchuk MM, et al.
Generation of a mouse model of Von Hippel-Lindau kidney disease leading to renal cancers by expression of a constitutively active mutant of HIF1α.
Cancer Res. 2011; 71(21):6848-56 [PubMed] Article available free on PMC after 01/11/2015 Related Publications
Renal cancers are highly aggressive and clinically challenging, but a transgenic mouse model to promote pathologic studies and therapeutic advances has yet to be established. Here, we report the generation of a transgenic mouse model of von Hippel-Lindau (VHL) renal cancer termed the TRACK model (transgenic model of cancer of the kidney). TRACK mice specifically express a mutated, constitutively active HIF1α in kidney proximal tubule (PT) cells. Kidney histologies displayed by TRACK mice are highly similar to histologies seen in patients with VHL disease, including areas of distorted tubular structure, cells with clear cytoplasm and increased glycogen and lipid deposition, multiple renal cysts, and early onset of clear cell renal cell carcinoma (ccRCC). Distorted tubules in TRACK mice exhibit higher levels of CA-IX, Glut1, and VEGF than tubules in nontransgenic control mice. Furthermore, these tubules exhibit increased numbers of endothelial cells, increased cell proliferation, and increased expression of the human ccRCC marker CD70(TNFSF7). Moreover, PT cells in kidney tubules from TRACK mice exhibit increased genomic instability, as monitored by elevated levels of γH2AX. Our findings establish that activated HIF1α in murine kidney PT cells is sufficient to promote cell proliferation, angiogenesis, genomic instability, and other phenotypic alterations characteristic of human VHL kidney disease, establishing the TRACK mouse as a valid preclinical model of human renal cell carcinoma.

Holland M, Castro FV, Alexander S, et al.
RAC2, AEP, and ICAM1 expression are associated with CNS disease in a mouse model of pre-B childhood acute lymphoblastic leukemia.
Blood. 2011; 118(3):638-49 [PubMed] Related Publications
We developed a murine model of CNS disease to obtain a better understanding of the pathogenesis of CNS involvement in pre-B-cell acute lymphoblastic leukemia (ALL). Semiquantitative proteomic discovery-based approaches identified unique expression of asparaginyl endopeptidase (AEP), intercellular adhesion molecule 1 (ICAM1), and ras-related C3 botulinum toxin substrate 2 (RAC2), among others, in an invasive pre-B-cell line that produced CNS leukemia in NOD-SCID mice. Targeting RAC2 significantly inhibited in vitro invasion and delayed disease onset in mice. Induced expression of RAC2 in cell lines with low/absent expression of AEP and ICAM1 did not result in an invasive phenotype or murine CNS disease. Flow cytometric analysis identified an enriched population of blast cells expressing ICAM1/lymphocyte function associated antigen-1 (LFA-1)/CD70 in the CD10(+)/CD19(+) fraction of bone marrow aspirates obtained from relapsed compared with normal controls and those with primary disease. CD10(+)/CD19(+) fractions obtained from relapsed patients also express RAC2 and give rise to CNS disease in mice. Our data suggest that combinations of processes are involved in the pathogenesis of CNS disease in pre-B-cell ALL, support a model in which CNS disease occurs as a result of external invasion, and suggest that targeting the processes of adhesion and invasion unique to pre-B cells may prevent recurrences within the CNS.

Shaffer DR, Savoldo B, Yi Z, et al.
T cells redirected against CD70 for the immunotherapy of CD70-positive malignancies.
Blood. 2011; 117(16):4304-14 [PubMed] Article available free on PMC after 01/11/2015 Related Publications
T-cell therapy with genetically modified T cells targeting CD19 or CD20 holds promise for the immunotherapy of hematologic malignancies. These targets, however, are only present on B cell-derived malignancies, and because they are broadly expressed in the hematopoietic system, their targeting may have unwanted consequences. To expand T-cell therapies to hematologic malignancies that are not B cell-derived, we determined whether T cells can be redirected to CD70, an antigen expressed by limited subsets of normal lymphocytes and dendritic cells, but aberrantly expressed by a broad range of hematologic malignancies and some solid tumors. To generate CD70-specific T cells, we constructed a chimeric antigen receptor (CAR) consisting of the CD70 receptor (CD27) fused to the CD3-ζ chain. Stimulation of T cells expressing CD70-specific CARs resulted in CD27 costimulation and recognition of CD70-positive tumor cell lines and primary tumor cells, as shown by IFN-γ and IL-2 secretion and by tumor cell killing. Adoptively transferred CD70-specific T cells induced sustained regression of established murine xenografts. Therefore, CD70-specific T cells may be a promising immunotherapeutic approach for CD70-positive malignancies.

Marx A, Rieker R, Toker A, et al.
Thymic carcinoma: is it a separate entity? From molecular to clinical evidence.
Thorac Surg Clin. 2011; 21(1):25-31. v-vi [PubMed] Related Publications
The second edition of the World Health Organization (WHO) classification of thymic tumors (2004) has resumed the previous separation of thymic carcinomas (TCs) from thymomas. This "reseparation" was mainly based on new genetic data. Consequently, it is no longer recommended to label TCs as type C thymomas. TCs are very heterogeneous and comprise squamous, basaloid cell, mucoepidermoid, neuroendocrine, and many other subtypes. They resemble morphologic mimics in other organs and are labeled accordingly. However, only thymic squamous cell carcinomas (TSCCs) and lymphoepithelioma-like carcinomas are relatively common. For TSCCs, quite specific immunohistochemical markers (eg, CD5, CD70, CD117, CD205, FOXN1) and chromosomal gains and losses have been defined that help to distinguish TSCCs not only from malignant thymomas but also from pulmonary squamous cell carcinomas. Recognition of these differences is clinically important, because the prognosis of TSCC is better compared with the other TC subtypes and also compared with lung tumors. Considering the need to treat advanced TC more effectively, disparate findings in predictive molecular markers (eg, KIT mutations in TSCC, but not in thymomas) suggest that targeted treatments will have to be different in thymomas and TC. Preliminary data from single case collections and small treatment trials support this prediction.

Sirikanjanapong S, Lanson B, Amin M, et al.
Collision tumor of primary laryngeal mucosal melanoma and invasive squamous cell carcinoma with IL-17A and CD70 gene over-expression.
Head Neck Pathol. 2010; 4(4):295-9 [PubMed] Article available free on PMC after 01/11/2015 Related Publications
The most common primary malignancy of the larynx is the squamous cell carcinoma (SCC). The primary malignant melanoma is quite rare in this location. Less than 60 cases of laryngeal melanomas have been reported to date. To our knowledge, collision primary malignant melanoma and invasive squamous cell carcinoma in the vocal cords has not been reported. We report a 53-year-old male patient who was diagnosed with a collision tumor of laryngeal melanoma and invasive SCC. Multiple Th17 pathway related genes including CTLA-4, IL-17A-F, PLZF, FoxP3, RorγT, CD27, and CD70 were analyzed by reverse transcriptase-polymerase chain reaction (Rt-PCR) in this case. Both IL-17A and CD70 genes were detected in this case of collision tumor. The results may define useful biomarkers for early diagnosis of mucosal melanoma and open an immunotherapeutic field for clinical management with the potential benefit from the immunomodulators that enhance both genes.

Yu SE, Park SH, Jang YK
Epigenetic silencing of TNFSF7 (CD70) by DNA methylation during progression to breast cancer.
Mol Cells. 2010; 29(2):217-21 [PubMed] Related Publications
To escape the immune system, tumor cells may remove surface molecules such as the major histocompatibility complex (MHC) and co-stimulatory molecules, which are essential for recognition by lymphocytes. Down-regulation of the co-stimulatory molecules CD70 (TNFSF7) and CD80 may contribute to tumor cell survival; however, the mechanism of down-regulation of the TNFSF7 gene during tumorigenesis is poorly understood. Here we present evidence indicating that TNFSF7 gene expression is epigenetically down-regulated via DNA hypermethylation within its promoter region during progression in breast cancer cells in the isogenic MCF10 model. Bisulfite sequencing revealed that the CpG pairs at the proximal region of the TNFSF7 promoter are heavily methylated during progression of breast cancer cells but that methylation of the more distal sequences was not changed considerably. Thus, this epigenetic silencing of the TNFSF7 gene via hypermethylation of its proximal region may allow the benign and invasive MCF10 variants to escape immune surveillance.

Kang JS, Bae SY, Kim HR, et al.
Interleukin-18 increases metastasis and immune escape of stomach cancer via the downregulation of CD70 and maintenance of CD44.
Carcinogenesis. 2009; 30(12):1987-96 [PubMed] Related Publications
Cancer cells metastasize to the other site after escaping from the immune system and CD70, CD44 and vascular endothelial growth factor (VEGF) play important roles in this process. It is recently reported that interleukin (IL)-18 is closely related with the pathogenesis of skin tumor. Therefore, we investigated the role of endogenous IL-18 from stomach cancer on the immune escape mechanism and metastasis via the regulation of CD70, CD44 and VEGF expression. IL-18 and IL-18R expressions were not only investigated on tumor tissues (n = 10), and sera (n = 20) from stomach cancer patients, but also on human stomach cancer cell lines. IL-18 and IL-18R expressions were found on stomach cancer cell lines and tumor tissues. In addition, IL-18 levels were elevated in sera from cancer patients (P < 0.05), compared with sera from normal individuals. Changes in CD70, CD44 and VEGF expression by flow cytometry, immunoblotting and enzyme-linked immunosorbent assay and immune susceptibility by (51)Cr-release assay were investigated, after silencing or neutralization of endogenous IL-18. CD70 expression was increased and it increases immune susceptibility of cancer cells. In contrast, CD44 and VEGF expression was decreased and it suppresses neovascularization and the metastasis of stomach cancer. After inoculation of IL-18 small interfering RNA (siRNA)-transfected stomach cancer cells into Balb/C (nu/nu) mice, regression of tumor mass was determined by measuring of tumor size. And the number and location of metastatic lesions were investigated by hematoxylin and eosin staining. The regression of tumor mass and the suppression of metastasis were observed in the mice, which are injected with IL-18 siRNA-transfected cell lines. Our data suggest that endogenous IL-18 might facilitate stomach cancer cell immune escape by suppressing CD70 and increasing metastatic ability by upregulating CD44 and VEGF.

Jak M, Mous R, Remmerswaal EB, et al.
Enhanced formation and survival of CD4+ CD25hi Foxp3+ T-cells in chronic lymphocytic leukemia.
Leuk Lymphoma. 2009; 50(5):788-801 [PubMed] Related Publications
Recently, it has been described that patients with chronic lymphocytic leukemia (CLL) have increased numbers of regulatory T (T(reg)) cells. In the present study, we analysed the mechanism behind T(reg) cells expansion in CLL. Neither analysis of the T-cell receptor repertoire nor CD45 isoform expression of T(reg) cells from patients with CLL provided evidence for chronic (tumor) antigenic stimulation as a possible cause for T(reg) cells expansion in CLL. We found evidence however for increased formation of T(reg) cells via CD70 costimulation, because we observed that CD40 ligand activated CLL cells (which might be considered a model of lymph node CLL cells) strongly induced CD70-dependent formation of T(reg) cells. Reverse transcription-multiplex ligation-dependent probe amplification assay expression analysis of 34 apoptosis-regulating genes showed that in comparison with other CD4(+) T-cells, T(reg) cells from both healthy individuals (HD) and patients with CLL had a high expression of pro-apoptotic Noxa and a low expression of anti-apoptotic Bcl-2. Strikingly, Bcl-2 levels of T(reg) cells in patients with CLL were significantly higher than in HD. Finally, the different apoptotic profile resulted in differences at the functional level, because T(reg) cells from patients with CLL were more resistant to drug-induced apoptosis than T(reg) cells from HD. In conclusion, T(reg) cells in CLL may accumulate both by increased formation, facilitated by CD27-CD70 interaction in the lymph node proliferation centres, and decreased sensitivity to apoptosis because of a shifted Noxa-Bcl-2 balance.

Wang SS, Purdue MP, Cerhan JR, et al.
Common gene variants in the tumor necrosis factor (TNF) and TNF receptor superfamilies and NF-kB transcription factors and non-Hodgkin lymphoma risk.
PLoS One. 2009; 4(4):e5360 [PubMed] Article available free on PMC after 01/11/2015 Related Publications
BACKGROUND: A promoter polymorphism in the pro-inflammatory cytokine tumor necrosis factor (TNF) (TNF G-308A) is associated with increased non-Hodgkin lymphoma (NHL) risk. The protein product, TNF-alpha, activates the nuclear factor kappa beta (NF-kappaB) transcription factor, and is critical for inflammatory and apoptotic responses in cancer progression. We hypothesized that the TNF and NF-kappaB pathways are important for NHL and that gene variations across the pathways may alter NHL risk.
METHODOLOGY/PRINCIPAL FINDINGS: We genotyped 500 tag single nucleotide polymorphisms (SNPs) from 48 candidate gene regions (defined as 20 kb 5', 10 kb 3') in the TNF and TNF receptor superfamilies and the NF-kappaB and related transcription factors, in 1946 NHL cases and 1808 controls pooled from three independent population-based case-control studies. We obtained a gene region-level summary of association by computing the minimum p-value ("minP test"). We used logistic regression to compute odds ratios and 95% confidence intervals for NHL and four major NHL subtypes in relation to SNP genotypes and haplotypes. For NHL, the tail strength statistic supported an overall relationship between the TNF/NF-kappaB pathway and NHL (p = 0.02). We confirmed the association between TNF/LTA on chromosome 6p21.3 with NHL and found the LTA rs2844484 SNP most significantly and specifically associated with the major subtype, diffuse large B-cell lymphoma (DLBCL) (p-trend = 0.001). We also implicated for the first time, variants in NFKBIL1 on chromosome 6p21.3, associated with NHL. Other gene regions identified as statistically significantly associated with NHL included FAS, IRF4, TNFSF13B, TANK, TNFSF7 and TNFRSF13C. Accordingly, the single most significant SNPs associated with NHL were FAS rs4934436 (p-trend = 0.0024), IRF4 rs12211228 (p-trend = 0.0026), TNFSF13B rs2582869 (p-trend = 0.0055), TANK rs1921310 (p-trend = 0.0025), TNFSF7 rs16994592 (p-trend = 0.0024), and TNFRSF13C rs6002551 (p-trend = 0.0074). All associations were consistent in each study with no apparent specificity for NHL subtype.
CONCLUSIONS/SIGNIFICANCE: Our results provide consistent evidence that variation in the TNF superfamily of genes and specifically within chromosome 6p21.3 impacts lymphomagenesis. Further characterization of these susceptibility loci and identification of functional variants are warranted.

López-Guerra M, Trigueros-Motos L, Molina-Arcas M, et al.
Identification of TIGAR in the equilibrative nucleoside transporter 2-mediated response to fludarabine in chronic lymphocytic leukemia cells.
Haematologica. 2008; 93(12):1843-51 [PubMed] Related Publications
BACKGROUND: The nucleoside analogue fludarabine is used in the treatment of chronic lymphocytic leukemia. It triggers p53-mediated apoptosis, although the mutational status of p53 does not fully account for heterogeneity in responsiveness to treatment. The aim of this study was to identify new genes implicated in fludarabine action as well as to determine the role of equilibrative nucleoside transporters (ENT) in the transcriptomic response triggered by this drug in chronic lymphocytic leukemia cells bearing wild type p53.
DESIGN AND METHODS: We performed gene expression profiling in cells from two fludarabine-sensitive and two fludarabine-resistant cases of chronic lymphocytic leukemia treated with fludarabine either in the presence or the absence of nitrobenzylthioinosine, a hENT1-specific blocker. Twenty selected fludarabine-inducible genes were validated using Taqman low-density arrays in cells from 20 chronic lymphocytic leukemia patients with the same experimental design.
RESULTS: Sixteen of the twenty genes (DDB2, GADD45A, TYMS, BAX, TIGAR, FAS, TNFSF7, TNFSF9, CCNG1, CDKN1A, MDM2, SESN1, MAP4K4, PPM1D, OSBPL3 and WIG1) correlated with the ex vivo sensitivity of chronic lymphocytic leukemia cells to fludarabine, TIGAR (TP53-induced glycolysis and apoptosis regulator) being the gene that showed the strongest correlation (p<0.0001; r2= 0.6022).We observed that the transcriptomic response was weakly sensitive to the hENT1 blocker nitrobenzylthioinosine. Interestingly, we also found a correlation between hENT2 expression and induction of TIGAR after fludarabine treatment.
CONCLUSIONS: We demonstrate a correlation between the recently described p53-inducible apoptosis gene TIGAR and both sensitivity to fludarabine and hENT2 expression in chronic lymphocytic leukemia cells. These results, as well as the variability in fludarabine response among chronic lymphocytic leukemia patients with wild type p53, support the major role of hENT2 in the uptake of fludarabine into chronic lymphocytic leukemia cells.

Rhee DK, Park SH, Jang YK
Molecular signatures associated with transformation and progression to breast cancer in the isogenic MCF10 model.
Genomics. 2008; 92(6):419-28 [PubMed] Related Publications
Comparative microarray analyses provided insight into understanding transcript changes during cancer progression; however, a reproducible signature underlying breast carcinogenesis has yet to be little available. We utilized gene expression profiling to define molecular signatures associated with transformation and cancer progression in a series of isogenic human breast cancer cell lines including a normal, benign, noninvasive and invasive carcinoma. Clustering analysis revealed four distinct expression patterns based on upregulation or downregulation patterns. These profiles proved quite useful for describing breast cancer tumorigenesis and invasiveness. Downregulation of TNFSF7, S100A4, S100A7, S100A8, and S100A9 (calcium-binding protein family), and upregulation of kallikrein-5 and thrombospondin-1 were associated with transformation and progression of breast cancer cells. Importantly, downregulation of the genes was reversed by treatment with silencing inhibitors, implying the potential roles of epigenetic inactivation in breast carcinogenesis. Exogenous expressions of S100A8 and S100A9 inhibit growth in benign and noninvasive carcinoma cells, suggesting their negative role in cell proliferation. The data presented here may facilitate the identification and functional analyses of prognostic biomarkers for breast cancer.

Grewal IS
CD70 as a therapeutic target in human malignancies.
Expert Opin Ther Targets. 2008; 12(3):341-51 [PubMed] Related Publications
BACKGROUND: Expression of CD70, a member of the tumor necrosis factor superfamily, is restricted to activated T and B lymphocytes and mature dendritic cells. CD70 has also been detected on hematological tumors and on carcinomas. The restricted expression pattern of CD70 in normal tissues and its widespread expression in various malignancies makes it an attractive target for antibody-based therapeutics. Investigations to exploit CD70 as a cancer target have lead to the identification of potential antibody-based clinical candidates. Anti-CD70 antibodies for therapeutic use have been developed and used to validate CD70 as a target for cancers. Antibodies are also used as a vehicle to deliver potent cytotoxic drugs to target CD70+ malignant cells. Both unconjugated antibodies and antibody-drug conjugates targeting CD70 have been tested in animal models of human cancers.
OBJECTIVE: To describe the expression of CD70 in cancer cells and the development of antibody-based therapies against CD70.
METHODS: A review of the available literature.
RESULTS/CONCLUSIONS: Humanized anti-CD70 antibodies have shown significant antitumor activity in preclinical xenograft models of cancer. Additionally, anti-CD70 antibody-drug conjugates exhibit potent antitumor activity in solid tumor xenograft models, confirming increased therapeutic efficacy through cytotoxic drug delivery. Thus, preclinical animal models have provided strong evidence that targeting CD70 either with unconjugated antibodies or with antibody-drug conjugates represents a promising approach to treat human malignancies.

Baba M, Okamoto M, Hamasaki T, et al.
Highly enhanced expression of CD70 on human T-lymphotropic virus type 1-carrying T-cell lines and adult T-cell leukemia cells.
J Virol. 2008; 82(8):3843-52 [PubMed] Article available free on PMC after 01/11/2015 Related Publications
Human T-lymphotropic virus type 1 (HTLV-1) is the etiologic agent of adult T-cell leukemia (ATL). In Japan, the number of HTLV-1 carriers is estimated to be 1.2 million and more than 700 cases of ATL have been diagnosed every year. Considering the poor prognosis and lack of curative therapy of ATL, it seems mandatory to establish an effective strategy for the treatment of ATL. In this study, we attempted to identify the cell surface molecules that will become suitable targets of antibodies for anti-ATL therapy. The expression levels of approximately 40,000 host genes of three human T-cell lines carrying HTLV-1 genomes were analyzed by oligonucleotide microarray and compared with the expression levels of the genes in an HTLV-1-negative T-cell line. The HTLV-1-carrying T-cell lines used for experiments had totally different expression patterns of viral genome. Among the genes evaluated, the expression levels of 108 genes were found to be enhanced more than 10-fold in all of the T-cell lines examined and 11 of the 108 genes were considered to generate the proteins expressed on the cell surface. In particular, the CD70 gene was upregulated more than 1,000-fold and the enhanced expression of the CD70 molecule was confirmed by laser flow cytometry for various HTLV-1-carrying T-cell lines and primary CD4(+) T cells isolated from acute-type ATL patients. Such expression was not observed for primary CD4(+) T cells isolated from healthy donors. Since CD70 expression is strictly restricted in normal tissues, such as highly activated T and B cells, CD70 appears to be a potential target for effective antibody therapy against ATL.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. CD70, Cancer Genetics Web: http://www.cancer-genetics.org/CD70.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 16 March, 2015     Cancer Genetics Web, Established 1999