Gene Summary

Gene:CAV2; caveolin 2
Aliases: CAV
Summary:The protein encoded by this gene is a major component of the inner surface of caveolae, small invaginations of the plasma membrane, and is involved in essential cellular functions, including signal transduction, lipid metabolism, cellular growth control and apoptosis. This protein may function as a tumor suppressor. This gene and related family member (CAV1) are located next to each other on chromosome 7, and express colocalizing proteins that form a stable hetero-oligomeric complex. Alternatively spliced transcript variants encoding different isoforms have been identified for this gene. Additional isoforms resulting from the use of alternate in-frame translation initiation codons have also been described, and shown to have preferential localization in the cell (PMID:11238462). [provided by RefSeq, May 2011]
Databases:OMIM, VEGA, HGNC, Ensembl, GeneCard, Gene
Source:NCBIAccessed: 27 February, 2015


What does this gene/protein do?
Show (34)
Pathways:What pathways are this gene/protein implicaed in?
Show (1)

Cancer Overview

Research Indicators

Publications Per Year (1990-2015)
Graph generated 28 February 2015 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Caveolin 1
  • Messenger RNA
  • Cell Movement
  • Lung Cancer
  • Transcription Factor RelA
  • Staging
  • Homeodomain Proteins
  • Neoplasm Metastasis
  • Bladder Cancer
  • Caveolins
  • TNF
  • Genetic Predisposition
  • Mutation
  • Cancer Gene Expression Regulation
  • Chromosome 7
  • Tumor Suppressor Gene
  • Signal Transduction
  • Prostate Cancer
  • Caveolin 2
  • Oligonucleotide Array Sequence Analysis
  • tat Gene Products, Human Immunodeficiency Virus
  • Transcriptome
  • Non-Small Cell Lung Cancer
  • Tumor Suppressor Proteins
  • omega-Conotoxin GVIA
  • Disease Progression
  • Gene Expression
  • Cluster Analysis
  • Neoplasm Invasiveness
  • RT-PCR
  • Calcium Channels
  • Tumor Markers
  • Western Blotting
  • Knockout Mice
  • Gene Expression Profiling
  • Immunohistochemistry
  • Squamous Cell Carcinoma
  • Protein Isoforms
Tag cloud generated 27 February, 2015 using data from PubMed, MeSH and CancerIndex

Specific Cancers (4)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: CAV2 (cancer-related)

Chanvorachote P, Pongrakhananon V, Chunhacha P
Prolonged nitric oxide exposure enhances anoikis resistance and migration through epithelial-mesenchymal transition and caveolin-1 upregulation.
Biomed Res Int. 2014; 2014:941359 [PubMed] Free Access to Full Article Related Publications
Nitric oxide (NO) in tumor microenvironment may have a significant impact on metastatic behaviors of cancer. Noncytotoxic doses of NO enhanced anoikis resistance and migration in lung cancer H23 cells via an increase in lamellipodia, epithelial-mesenchymal transition (EMT) markers including vimentin and snail, and caveolin-1 (Cav-1). However, the induction of EMT was found in Cav-1-knock down cells treated with NO, suggesting that EMT was through Cav-1-independent pathway. These effects of NO were consistently observed in other lung cancer cells including H292 and H460 cells. These findings highlight the novel role of NO on EMT and metastatic behaviors of cancer cells.

Dragoi AM, Swiss R, Gao B, Agaisse H
Novel strategies to enforce an epithelial phenotype in mesenchymal cells.
Cancer Res. 2014; 74(14):3659-72 [PubMed] Article available free on PMC after 15/07/2015 Related Publications
E-cadherin downregulation in cancer cells is associated with epithelial-to-mesenchymal transition (EMT) and metastatic prowess, but the underlying mechanisms are incompletely characterized. In this study, we probed E-cadherin expression at the plasma membrane as a functional assay to identify genes involved in E-cadherin downregulation. The assay was based on the E-cadherin-dependent invasion properties of the intracellular pathogen Listeria monocytogenes. On the basis of a functional readout, automated microscopy and computer-assisted image analysis were used to screen siRNAs targeting 7,000 human genes. The validity of the screen was supported by its definition of several known regulators of E-cadherin expression, including ZEB1, HDAC1, and MMP14. We identified three new regulators (FLASH, CASP7, and PCGF1), the silencing of which was sufficient to restore high levels of E-cadherin transcription. In addition, we identified two new regulators (FBXL5 and CAV2), the silencing of which was sufficient to increase E-cadherin expression at a posttranscriptional level. FLASH silencing regulated the expression of E-cadherin and other ZEB1-dependent genes, through posttranscriptional regulation of ZEB1, but it also regulated the expression of numerous ZEB1-independent genes with functions predicted to contribute to a restoration of the epithelial phenotype. Finally, we also report the identification of siRNA duplexes that potently restored the epithelial phenotype by mimicking the activity of known and putative microRNAs. Our findings suggest new ways to enforce epithelial phenotypes as a general strategy to treat cancer by blocking invasive and metastatic phenotypes associated with EMT.

Ma W, Wang DD, Li L, et al.
Caveolin-1 plays a key role in the oleanolic acid-induced apoptosis of HL-60 cells.
Oncol Rep. 2014; 32(1):293-301 [PubMed] Related Publications
Our previous study found that caveolin-1 (CAV-1) protein expression is upregulated during oleanolic acid (OA)-induced inhibition of proliferation and promotion of apoptosis in HL-60 cells. CAV-1 is the main structural protein component of caveolae, playing important roles in tumorigenesis and tumor development. It has been shown that cav-1 expression is lower in leukemia cancer cell lines SUP-B15, HL-60, THP-1 and K562 and in chronic lymphocytic leukemia primary (CLP) cells when compared with normal white blood cells, with the lowest cav-1 expression level found in HL-60 cells. To study the effects of cav-1 in HL-60 cells and the effects of cav-1 overexpression on OA drug efficacy, cav-1 was overexpressed in HL-60 cells using lentiviral-mediated transfection combined with OA treatment. The results showed that cav-1 overexpression inhibited HL-60 cell proliferation, promoted apoptosis, arrested the cell cycle in the G1 phase and inhibited activation of the PI3K/AKT/mTOR signaling pathway. Overexpression of CAV-1 also increased HL-60 cell sensitivity to OA. To further verify whether OA affects HL-60 cells via the activation of downstream signaling pathways by CAV-1, cav-1 gene expression was silenced using RNAi, and the cells were treated with OA to examine its efficacy. The results showed that after cav-1 silencing, OA had little effect on cell activity, apoptosis, the cell cycle and phosphorylation of HL-60 cells. This study is the first to show that CAV-1 plays a crucial role in the effects of OA on HL-60 cells.

Guéguinou M, Chantôme A, Fromont G, et al.
KCa and Ca(2+) channels: the complex thought.
Biochim Biophys Acta. 2014; 1843(10):2322-33 [PubMed] Related Publications
Potassium channels belong to the largest and the most diverse super-families of ion channels. Among them, Ca(2+)-activated K(+) channels (KCa) comprise many members. Based on their single channel conductance they are divided into three subfamilies: big conductance (BKCa), intermediate conductance (IKCa) and small conductance (SKCa; SK1, SK2 and SK3). Ca(2+) channels are divided into two main families, voltage gated/voltage dependent Ca(2+) channels and non-voltage gated/voltage independent Ca(2+) channels. Based on their electrophysiological and pharmacological properties and on the tissue where there are expressed, voltage gated Ca(2+) channels (Cav) are divided into 5 families: T-type, L-type, N-type, P/Q-type and R-type Ca(2+). Non-voltage gated Ca(2+) channels comprise the TRP (TRPC, TRPV, TRPM, TRPA, TRPP, TRPML and TRPN) and Orai (Orai1 to Orai3) families and their partners STIM (STIM1 to STIM2). A depolarization is needed to activate voltage-gated Ca(2+) channels while non-voltage gated Ca(2+) channels are activated by Ca(2+) depletion of the endoplasmic reticulum stores (SOCs) or by receptors (ROCs). These two Ca(2+) channel families also control constitutive Ca(2+) entries. For reducing the energy consumption and for the fine regulation of Ca(2+), KCa and Ca(2+) channels appear associated as complexes in excitable and non-excitable cells. Interestingly, there is now evidence that KCa-Ca(2+) channel complexes are also found in cancer cells and contribute to cancer-associated functions such as cell proliferation, cell migration and the capacity to develop metastases. This article is part of a Special Issue entitled: Calcium signaling in health and disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau.

Al-Ansari MM, Aboussekhra A
Caffeine mediates sustained inactivation of breast cancer-associated myofibroblasts via up-regulation of tumor suppressor genes.
PLoS One. 2014; 9(3):e90907 [PubMed] Article available free on PMC after 15/07/2015 Related Publications
BACKGROUND: Active cancer-associated fibroblasts (CAFs) or myofibroblasts play important roles not only in the development and progression of breast carcinomas, but also in their prognosis and treatment. Therefore, targeting these cells through suppressing their supportive procarcinogenic paracrine effects is mandatory for improving the current therapies that are mainly targeting tumor cells. To this end, we investigated the effect of the natural and pharmacologically safe molecule, caffeine, on CAF cells and their various procarcinogenic effects.
METHODOLOGY/PRINCIPAL FINDINGS: We have shown here that caffeine up-regulates the tumor suppressor proteins p16, p21, p53 and Cav-1, and reduces the expression/secretion of various cytokines (IL-6, TGF-β, SDF-1 and MMP-2), and down-regulates α-SMA. Furthermore, caffeine suppressed the migratory/invasiveness abilities of CAF cells through PTEN-dependent Akt/Erk1/2 inactivation. Moreover, caffeine reduced the paracrine pro-invasion/-migration effects of CAF cells on breast cancer cells. These results indicate that caffeine can inactivate breast stromal myofibroblasts. This has been confirmed by showing that caffeine also suppresses the paracrine pro-angiogenic effect of CAF cells through down-regulating HIF-1αand its downstream effector VEGF-A. Interestingly, these effects were sustained in absence of caffeine.
CONCLUSION/SIGNIFICANCE: The present findings provide a proof of principle that breast cancer myofibroblasts can be inactivated, and thereby caffeine may provide a safe and effective prevention against breast tumor growth/recurrence through inhibition of the procarcinogenic effects of active stromal fibroblasts.

Huang J, Hu W, Bottsford-Miller J, et al.
Cross-talk between EphA2 and BRaf/CRaf is a key determinant of response to Dasatinib.
Clin Cancer Res. 2014; 20(7):1846-55 [PubMed] Article available free on PMC after 01/04/2015 Related Publications
PURPOSE: EphA2 is an attractive therapeutic target because of its diverse roles in cancer growth and progression. Dasatinib is a multikinase inhibitor that targets EphA2 and other kinases. However, reliable predictive markers and a better understanding of the mechanisms of response to this agent are needed.
EXPERIMENTAL DESIGN: The effects of dasatinib on human uterine cancer cell lines were examined using a series of in vitro experiments, including MTT, Western blot analysis, and plasmid transfection. In vivo, an orthotopic mouse model of uterine cancer was utilized to identify the biologic effects of dasatinib. Molecular markers for response prediction and the mechanisms relevant to response to dasatinib were identified by using reverse phase protein array (RPPA), immunoprecipitation, and double immunofluorescence staining.
RESULTS: We show that high levels of CAV-1, EphA2 phosphorylation at S897, and the status of PTEN are key determinants of dasatinib response in uterine carcinoma. A set of markers essential for dasatinib response was also identified and includes CRaf, pCRaf(S338), pMAPK(T202/Y204) (mitogen-activated protein kinase [MAPK] pathway), pS6(S240/244), p70S6k(T389) (mTOR pathway), and pAKT(S473). A novel mechanism for response was discovered whereby high expression level of CAV-1 at the plasma membrane disrupts the BRaf/CRaf heterodimer and thus inhibits the activation of MAPK pathway during dasatinib treatment.
CONCLUSIONS: Our in vitro and in vivo results provide a new understanding of EphA2 targeting by dasatinib and identify key predictors of therapeutic response. These findings have implications for ongoing dasatinib-based clinical trials.

Gai X, Lu Z, Tu K, et al.
Caveolin-1 is up-regulated by GLI1 and contributes to GLI1-driven EMT in hepatocellular carcinoma.
PLoS One. 2014; 9(1):e84551 [PubMed] Article available free on PMC after 01/04/2015 Related Publications
Caveolin-1 (Cav-1) has been recently identified to be over-expressed in hepatocellular carcinoma (HCC) and promote HCC cell motility and invasion ability via inducing epithelial-mesenchymal transition (EMT). However, the mechanism of aberrant overexpression of Cav-1 remains vague. Here, we observed that Cav-1 expression was positively associated with GLI1 expression in HCC tissues. Forced expression of GLI1 up-regulated Cav-1 in Huh7 cells, while knockdown of GLI1 decreased expression of Cav-1 in SNU449 cells. Additionally, silencing Cav-1 abolished GLI1-induced EMT of Huh7 cells. The correlation between GLI1 and Cav-1 was confirmed in tumor specimens from HCC patients and Cav-1 was found to be associated with poor prognosis after hepatic resection. The relationship between protein expression of GLI1 and Cav-1 was also established in HCC xenografts of nude mice. These results suggest that GLI1 may be attributed to Cav-1 up-regulation which plays an important role in GLI1-driven EMT phenotype in HCC.

Faggi F, Mitola S, Sorci G, et al.
Phosphocaveolin-1 enforces tumor growth and chemoresistance in rhabdomyosarcoma.
PLoS One. 2014; 9(1):e84618 [PubMed] Article available free on PMC after 01/04/2015 Related Publications
Caveolin-1 (Cav-1) can ambiguously behave as either tumor suppressor or oncogene depending on its phosphorylation state and the type of cancer. In this study we show that Cav-1 was phosphorylated on tyrosine 14 (pCav-1) by Src-kinase family members in various human cell lines and primary mouse cultures of rhabdomyosarcoma (RMS), the most frequent soft-tissue sarcoma affecting childhood. Cav-1 overexpression in the human embryonal RD or alveolar RH30 cells yielded increased pCav-1 levels and reinforced the phosphorylation state of either ERK or AKT kinase, respectively, in turn enhancing in vitro cell proliferation, migration, invasiveness and chemoresistance. In contrast, reducing the pCav-1 levels by administration of a Src-kinase inhibitor or through targeted Cav-1 silencing counteracted the malignant in vitro phenotype of RMS cells. Consistent with these results, xenotransplantation of Cav-1 overexpressing RD cells into nude mice resulted in substantial tumor growth in comparison to control cells. Taken together, these data point to pCav-1 as an important and therapeutically valuable target for overcoming the progression and multidrug resistance of RMS.

Bennett NC, Hooper JD, Johnson DW, Gobe GC
Expression profiles and functional associations of endogenous androgen receptor and caveolin-1 in prostate cancer cell lines.
Prostate. 2014; 74(5):478-87 [PubMed] Related Publications
BACKGROUND: In prostate cancer (PCa) patients, the protein target for androgen deprivation and blockade therapies is androgen receptor (AR). AR interacts with many proteins that function to either co-activate or co-repress its activity. Caveolin-1 (Cav-1) is not found in normal prostatic epithelium, but is found in PCa, and may be an AR co-regulator protein.
METHODS: We investigated cell line-specific signatures and associations of endogenous AR and Cav-1 in six PCa cell lines of known androgen sensitivity: LNCaP (androgen sensitive); 22Rv1 (androgen responsive); PC3, DU145, and ALVA41 (androgen non-reliant); and RWPE1 (non-malignant). Protein and mRNA expression profiles were compared and electron microscopy used to identify cells with caveolar structures. For cell lines expressing both AR and Cav-1, knockdown techniques using small interfering RNA against AR or Cav-1 were used to test whether diminished expression of one affected the other. Co-sedimentation of AR and Cav-1 was used to test their association. A reporter assay for AR genomic activity was utilized following Cav-1 knockdown.
RESULTS: AR-expressing LNCaP and 22Rv1 cells had low endogenous Cav-1 mRNA and protein. Cell lines that expressed little or no AR (DU145, PC3, ALVA41, and RWPE1) expressed high endogenous levels of Cav-1. AR knockdown in LNCaP cells had little effect on Cav-1, but Cav-1 knockdown inhibited AR expression and genomic activity.
CONCLUSIONS: These data show endogenous AR and Cav-1 mRNA and protein expression is inversely related in PCa cells, with Cav-1 acting on the androgen/AR signaling axis possibly as an AR co-activator, demonstrated by diminished AR genomic activity following Cav-1 knockdown.

Yang L, Ji J, Chen Z, et al.
Transcriptome profiling of malignant transformed rat hepatic stem-like cells by aflatoxin B1.
Neoplasma. 2014; 61(2):193-204 [PubMed] Related Publications
Exposure to aflatoxins is strongly associated with hepatocellular carcinoma (HCC). Hepatic progenitor cells have been suggested to participate in the development of HCC. To further explore the molecular basis of aflatoxin-induced carcinogenesis, we utilized transcriptome profiles to examine the global gene expression alterations of malignant transformed rat hepatic stem-like cells. WB-F344 cells were treated with continuous exposure to AFB1 (0.03, 0.1 and 0.2μM), and gained certain characteristics of transformed cells identified by soft agar assay. Microarray analyses of the transformed cells found that 785, 625, and 751 differentially expressed genes were detected in each exposure group, respectively. Hierarchical Clustering revealed that the effect of 0.1 and 0.2μM exposure on the cells was conformable. Importantly, Gene Ontology analysis showed that malignant transformation of the hepatic stem-like cells was closely correlated to biological process, related to cell motion, cell adhesion, immune response and signal transduction. Accordingly, biological pathways was focused mainly on focal adhesion, regulation of actin cytoskeleton, ECM-receptor interaction, MAPK, TGF-β and chemokine signaling pathway. A few genes involved in these pathways exhibited a dose response, including Cav2, Itgb3, Ccl2, Cx3cl1, Pdgfrb and Tmsb4x. These findings would contribute to a growing knowledgebase on the mechanism of aflatoxin-induced hepatocarcinogenesis.

Campbell L, Al-Jayyoussi G, Gutteridge R, et al.
Caveolin-1 in renal cell carcinoma promotes tumour cell invasion, and in co-operation with pERK predicts metastases in patients with clinically confined disease.
J Transl Med. 2013; 11:255 [PubMed] Article available free on PMC after 01/04/2015 Related Publications
BACKGROUND: Up to 40% of patients initially diagnosed with clinically-confined renal cell carcinoma (RCC) and who undergo curative surgery will nevertheless relapse with metastatic disease (mRCC) associated with poor long term survival. The discovery of novel prognostic/predictive biomarkers and drug targets is needed and in this context the aim of the current study was to investigate a putative caveolin-1/ERK signalling axis in clinically confined RCC, and to examine in a panel of RCC cell lines the effects of caveolin-1 (Cav-1) on pathological processes (invasion and growth) and select signalling pathways.
METHODS: Using immunohistochemistry we assessed the expression of both Cav-1 and phosphorylated-ERK (pERK) in 176 patients with clinically confined RCC, their correlation with histological parameters and their impact upon disease-free survival. Using a panel of RCC cell lines we explored the functional effects of Cav-1 knockdown upon cell growth, cell invasion and VEGF-A secretion, as well Cav-1 regulation by cognate cell signalling pathways.
RESULTS: We found a significant correlation (P = 0.03) between Cav-1 and pERK in a cohort of patients with clinically confined disease which represented a prognostic biomarker combination (HR = 4.2) that effectively stratified patients into low, intermediate and high risk groups with respect to relapse, even if the patients' tumours displayed low grade and/or low stage disease. In RCC cell lines Cav-1 knockdown unequivocally reduced cell invasive capacity while also displaying both pro-and anti-proliferative effects; targeted knockdown of Cav-1 also partially suppressed VEGF-A secretion in VHL-negative RCC cells. The actions of Cav-1 in the RCC cell lines appeared independent of both ERK and AKT/mTOR signalling pathways.
CONCLUSION: The combined expression of Cav-1 and pERK serves as an independent biomarker signature with potential merit in RCC surveillance strategies able to predict those patients with clinically confined disease who will eventually relapse. In a panel of in-vitro RCC cells Cav-1 promotes cell invasion with variable effects on cell growth and VEGF-A secretion. Cav-1 has potential as a therapeutic target for the prevention and treatment of mRCC.

Ifere GO, Desmond R, Demark-Wahnefried W, Nagy TR
Apolipoprotein E gene polymorphism influences aggressive behavior in prostate cancer cells by deregulating cholesterol homeostasis.
Int J Oncol. 2013; 43(4):1002-10 [PubMed] Article available free on PMC after 01/04/2015 Related Publications
High circulating cholesterol and its deregulated homeostasis may facilitate prostate cancer progression. Genetic polymorphism in Apolipoprotein (Apo) E, a key cholesterol regulatory protein may effect changes in systemic cholesterol levels. In this investigation, we determined whether variants of the Apo E gene can trigger defective intracellular cholesterol efflux, which could promote aggressive prostate cancer. ApoE genotypes of weakly (non-aggressive), moderate and highly tumorigenic (aggressive) prostate cancer cell lines were characterized, and we explored whether the ApoE variants were associated with tumor aggressiveness generated by intra-cellular cholesterol imbalance, using the expression of caveolin-1 (cav-1), a pro-malignancy surrogate of cholesterol overload. Restriction isotyping of ApoE isoforms revealed that the non-aggressive cell lines carried ApoE ε3/ε3 or ε3/ε4 alleles, while the aggressive cell lines carried the Apoε2/ε4 alleles. Our data suggest a contrast between the non-aggressive and the aggressive prostate cancer cell lines in the pattern of cholesterol efflux and cav-1 expression. Our exploratory results suggest a relationship between prostate aggressiveness, ApoE isoforms and cholesterol imbalance. Further investigation of this relationship may elucidate the molecular basis for considering cholesterol as a risk factor of aggressive prostate tumors, and underscore the potential of the dysfunctional ApoE2/E4 isoform as a biomarker of aggressive disease.

Martins D, Beça FF, Sousa B, et al.
Loss of caveolin-1 and gain of MCT4 expression in the tumor stroma: key events in the progression from an in situ to an invasive breast carcinoma.
Cell Cycle. 2013; 12(16):2684-90 [PubMed] Article available free on PMC after 01/04/2015 Related Publications
The progression from in situ to invasive breast carcinoma is still an event poorly understood. However, it has been suggested that interactions between the neoplastic cells and the tumor microenvironment may play an important role in this process. Thus, the determination of differential tumor-stromal metabolic interactions could be an important step in invasiveness. The expression of stromal Caveolin-1 (Cav-1) has already been implicated in the progression from ductal carcinoma in situ (DCIS) to invasive ductal carcinoma (IDC). Additionally, stromal Cav-1 expression has been associated with the expression of stromal monocarboxylate transporter 4 (MCT4) in invasive breast cancer. However, the role of stromal MCT4 in invasiveness has never been explored, neither the association between Cav-1 and MCT4 in the transition from breast DCIS to IDC. Therefore, our aim was to investigate in a series of breast cancer samples including matched in situ and invasive components, if there was a relationship between stromal Cav-1 and MCT4 in the progression from in situ to invasive carcinoma. We found loss of stromal Cav-1 in the progression to IDC in 75% of the cases. In contrast, MCT4 stromal expression was acquired in 87% of the IDCs. Interestingly, a concomitant loss of Cav-1 and gain of MCT4 was observed in the stroma of 75% of the cases, when matched in situ and invasive carcinomas were compared. These results suggest that alterations in Cav-1 and MCT4 may thus mark a critical point in the progression from in situ to invasive breast cancer.

Alonso EN, Orozco M, Eloy Nieto A, Balogh GA
Genes related to suppression of malignant phenotype induced by Maitake D-Fraction in breast cancer cells.
J Med Food. 2013; 16(7):602-17 [PubMed] Article available free on PMC after 01/04/2015 Related Publications
It is already known that the Maitake (D-Fraction) mushroom is involved in stimulating the immune system and activating certain cells that attack cancer, including macrophages, T-cells, and natural killer cells. According to the U.S. National Cancer Institute, polysaccharide complexes present in Maitake mushrooms appear to have significant anticancer activity. However, the exact molecular mechanism of the Maitake antitumoral effect is still unclear. Previously, we have reported that Maitake (D-Fraction) induces apoptosis in breast cancer cells by activation of BCL2-antagonist/killer 1 (BAK1) gene expression. At the present work, we are identifying which genes are responsible for the suppression of the tumoral phenotype mechanism induced by Maitake (D-Fraction) in breast cancer cells. Human breast cancer MCF-7 cells were treated with and without increased concentrations of Maitake D-Fraction (36, 91, 183, 367 μg/mL) for 24 h. Total RNA were isolated and cDNA microarrays were hybridized containing 25,000 human genes. Employing the cDNA microarray analysis, we found that Maitake D-Fraction modified the expression of 4068 genes (2420 were upmodulated and 1648 were downmodulated) in MCF-7 breast cancer cells in a dose-dependent manner during 24 h of treatment. The present data shows that Maitake D-Fraction suppresses the breast tumoral phenotype through a putative molecular mechanism modifying the expression of certain genes (such as IGFBP-7, ITGA2, ICAM3, SOD2, CAV-1, Cul-3, NRF2, Cycline E, ST7, and SPARC) that are involved in apoptosis stimulation, inhibition of cell growth and proliferation, cell cycle arrest, blocking migration and metastasis of tumoral cells, and inducing multidrug sensitivity. Altogether, these results suggest that Maitake D-Fraction could be a potential new target for breast cancer chemoprevention and treatment.

Lisanti MP, Martinez-Outschoorn UE, Sotgia F
Oncogenes induce the cancer-associated fibroblast phenotype: metabolic symbiosis and "fibroblast addiction" are new therapeutic targets for drug discovery.
Cell Cycle. 2013; 12(17):2723-32 [PubMed] Article available free on PMC after 01/04/2015 Related Publications
Metabolic coupling, between mitochondria in cancer cells and catabolism in stromal fibroblasts, promotes tumor growth, recurrence, metastasis, and predicts anticancer drug resistance. Catabolic fibroblasts donate the necessary fuels (such as L-lactate, ketones, glutamine, other amino acids, and fatty acids) to anabolic cancer cells, to metabolize via their TCA cycle and oxidative phosphorylation (OXPHOS). This provides a simple mechanism by which metabolic energy and biomass are transferred from the host microenvironment to cancer cells. Recently, we showed that catabolic metabolism and "glycolytic reprogramming" in the tumor microenvironment are orchestrated by oncogene activation and inflammation, which originates in epithelial cancer cells. Oncogenes drive the onset of the cancer-associated fibroblast phenotype in adjacent normal fibroblasts via paracrine oxidative stress. This oncogene-induced transition to malignancy is "mirrored" by a loss of caveolin-1 (Cav-1) and an increase in MCT4 in adjacent stromal fibroblasts, functionally reflecting catabolic metabolism in the tumor microenvironment. Virtually identical findings were obtained using BRCA1-deficient breast and ovarian cancer cells. Thus, oncogene activation (RAS, NFkB, TGF-β) and/or tumor suppressor loss (BRCA1) have similar functional effects on adjacent stromal fibroblasts, initiating "metabolic symbiosis" and the cancer-associated fibroblast phenotype. New therapeutic strategies that metabolically uncouple oxidative cancer cells from their glycolytic stroma or modulate oxidative stress could be used to target this lethal subtype of cancers. Targeting "fibroblast addiction" in primary and metastatic tumor cells may expose a critical Achilles' heel, leading to disease regression in both sporadic and familial cancers.

Liu H, He Z, Simon HU
Targeting autophagy as a potential therapeutic approach for melanoma therapy.
Semin Cancer Biol. 2013; 23(5):352-60 [PubMed] Related Publications
Melanoma, occurring as a rapidly progressive skin cancer, is resistant to current chemo- and radiotherapy, especially after metastases to distant organs has taken place. Most chemotherapeutic drugs exert their cytotoxic effect by inducing apoptosis, which, however, is often deficient in cancer cells. Thus, it is appropriate to attempt the targeting of alternative pathways, which regulate cellular viability. Recent studies of autophagy, a well-conserved cellular catabolic process, promise to improve the therapeutic outcome in melanoma patients. Although a dual role for autophagy in cancer therapy has been reported, both protecting against and promoting cell death, the potential for using autophagy in cancer therapy seems to be promising. Here, we review the recent literature on the role of autophagy in melanoma with respect to the expression of autophagic markers, the involvement of autophagy in chemo- and immunotherapy, as well as the role of autophagy in hypoxia and altered metabolic pathways employed for melanoma therapy.

Ayala G, Morello M, Frolov A, et al.
Loss of caveolin-1 in prostate cancer stroma correlates with reduced relapse-free survival and is functionally relevant to tumour progression.
J Pathol. 2013; 231(1):77-87 [PubMed] Article available free on PMC after 01/04/2015 Related Publications
Levels of caveolin-1 (Cav-1) in tumour epithelial cells increase during prostate cancer progression. Conversely, Cav-1 expression in the stroma can decline in advanced and metastatic prostate cancer. In a large cohort of 724 prostate cancers, we observed significantly decreased levels of stromal Cav-1 in concordance with increased Gleason score (p = 0.012). Importantly, reduced expression of Cav-1 in the stroma correlated with reduced relapse-free survival (p = 0.009), suggesting a role for stromal Cav-1 in inhibiting advanced disease. Silencing of Cav-1 by shRNA in WPMY-1 prostate fibroblasts resulted in up-regulation of Akt phosphorylation, and significantly altered expression of genes involved in angiogenesis, invasion, and metastasis, including a > 2.5-fold increase in TGF-β1 and γ-synuclein (SNCG) gene expression. Moreover, silencing of Cav-1 induced migration of prostate cancer cells when stromal cells were used as attractants. Pharmacological inhibition of Akt caused down-regulation of TGF-β1 and SNCG, suggesting that loss of Cav-1 in the stroma can influence Akt-mediated signalling in the tumour microenvironment. Cav-1-depleted stromal cells exhibited increased levels of intracellular cholesterol, a precursor for androgen biosynthesis, steroidogenic enzymes, and testosterone. These findings suggest that loss of Cav-1 in the tumour microenvironment contributes to the metastatic behaviour of tumour cells by a mechanism that involves up-regulation of TGF-β1 and SNCG through Akt activation. They also suggest that intracrine production of androgens, a process relevant to castration resistance, may occur in the stroma.

Quann K, Gonzales DM, Mercier I, et al.
Caveolin-1 is a negative regulator of tumor growth in glioblastoma and modulates chemosensitivity to temozolomide.
Cell Cycle. 2013; 12(10):1510-20 [PubMed] Article available free on PMC after 01/04/2015 Related Publications
Caveolin-1 (Cav-1) is a critical regulator of tumor progression in a variety of cancers where it has been shown to act as either a tumor suppressor or tumor promoter. In glioblastoma multiforme, it has been previously demonstrated to function as a putative tumor suppressor. Our studies here, using the human glioblastoma-derived cell line U-87MG, further support the role of Cav-1 as a negative regulator of tumor growth. Using a lentiviral transduction approach, we were able to stably overexpress Cav-1 in U-87MG cells. Gene expression microarray analyses demonstrated significant enrichment in gene signatures corresponding to downregulation of MAPK, PI3K/AKT and mTOR signaling, as well as activation of apoptotic pathways in Cav-1-overexpressing U-87MG cells. These same gene signatures were later confirmed at the protein level in vitro. To explore the ability of Cav-1 to regulate tumor growth in vivo, we further show that Cav-1-overexpressing U-87MG cells display reduced tumorigenicity in an ectopic xenograft mouse model, with marked hypoactivation of MAPK and PI3K/mTOR pathways. Finally, we demonstrate that Cav-1 overexpression confers sensitivity to the most commonly used chemotherapy for glioblastoma, temozolomide. In conclusion, Cav-1 negatively regulates key cell growth and survival pathways and may be an effective biomarker for predicting response to chemotherapy in glioblastoma.

Sousa SR, Vetter I, Ragnarsson L, Lewis RJ
Expression and pharmacology of endogenous Cav channels in SH-SY5Y human neuroblastoma cells.
PLoS One. 2013; 8(3):e59293 [PubMed] Article available free on PMC after 01/04/2015 Related Publications
SH-SY5Y human neuroblastoma cells provide a useful in vitro model to study the mechanisms underlying neurotransmission and nociception. These cells are derived from human sympathetic neuronal tissue and thus, express a number of the Cav channel subtypes essential for regulation of important physiological functions, such as heart contraction and nociception, including the clinically validated pain target Cav2.2. We have detected mRNA transcripts for a range of endogenous expressed subtypes Cav1.3, Cav2.2 (including two Cav1.3, and three Cav2.2 splice variant isoforms) and Cav3.1 in SH-SY5Y cells; as well as Cav auxiliary subunits α2δ1-3, β1, β3, β4, γ1, γ4-5, and γ7. Both high- and low-voltage activated Cav channels generated calcium signals in SH-SY5Y cells. Pharmacological characterisation using ω-conotoxins CVID and MVIIA revealed significantly (∼ 10-fold) higher affinity at human versus rat Cav2.2, while GVIA, which interacts with Cav2.2 through a distinct pharmacophore had similar affinity for both species. CVID, GVIA and MVIIA affinity was higher for SH-SY5Y membranes vs whole cells in the binding assays and functional assays, suggesting auxiliary subunits expressed endogenously in native systems can strongly influence Cav2.2 channels pharmacology. These results may have implications for strategies used to identify therapeutic leads at Cav2.2 channels.

Lobos-González L, Aguilar L, Diaz J, et al.
E-cadherin determines Caveolin-1 tumor suppression or metastasis enhancing function in melanoma cells.
Pigment Cell Melanoma Res. 2013; 26(4):555-70 [PubMed] Article available free on PMC after 01/04/2015 Related Publications
The role of caveolin-1 (CAV1) in cancer is highly controversial. CAV1 suppresses genes that favor tumor development, yet also promotes focal adhesion turnover and migration of metastatic cells. How these contrasting observations relate to CAV1 function in vivo is unclear. Our previous studies implicate E-cadherin in CAV1-dependent tumor suppression. Here, we use murine melanoma B16F10 cells, with low levels of endogenous CAV1 and E-cadherin, to unravel how CAV1 affects tumor growth and metastasis and to assess how co-expression of E-cadherin modulates CAV1 function in vivo in C57BL/6 mice. We find that overexpression of CAV1 in B16F10 (cav-1) cells reduces subcutaneous tumor formation, but enhances metastasis relative to control cells. Furthermore, E-cadherin expression in B16F10 (E-cad) cells reduces subcutaneous tumor formation and lung metastasis when intravenously injected. Importantly, co-expression of CAV1 and E-cadherin in B16F10 (cav-1/E-cad) cells abolishes tumor formation, lung metastasis, increased Rac-1 activity, and cell migration observed with B16F10 (cav-1) cells. Finally, consistent with the notion that CAV1 participates in switching human melanomas to a more malignant phenotype, elevated levels of CAV1 expression correlated with enhanced migration and Rac-1 activation in these cells.

Yamasaki T, Seki N, Yoshino H, et al.
MicroRNA-218 inhibits cell migration and invasion in renal cell carcinoma through targeting caveolin-2 involved in focal adhesion pathway.
J Urol. 2013; 190(3):1059-68 [PubMed] Related Publications
PURPOSE: Our microRNA expression signature of renal cell carcinoma revealed that miR-218 expression was significantly decreased in cancer tissues, suggesting that miR-218 is a candidate tumor suppressor. We investigated the functional significance of miR-218 in cancer cells and identified what are to our knowledge novel miR-218 mediated cancer pathways in renal cell carcinoma.
MATERIALS AND METHODS: Gain of function studies using mature miR-218 were performed to investigate cell proliferation, migration and invasion in the A498 and 786-O renal cell carcinoma cell lines. To identify miR-218 mediated molecular pathways and responsible genes in renal cell carcinoma, we used gene expression and in silico database analyses. Loss of function assays were performed to investigate the functional significance of miR-218 target genes.
RESULTS: Restoration of mature miR-218 significantly inhibited RCC cell proliferation, migration and invasion. Gene expression studies and luciferase reporter assays showed that CAV2 involved in the focal adhesion pathway was directly regulated by miR-218. A silencing study of CAV2 revealed significant inhibition of cell proliferation, migration and invasion. CAV2 mRNA and protein expression was significantly up-regulated in renal cell carcinoma clinical specimens.
CONCLUSIONS: Loss of tumor suppressive miR-218 enhances cancer cell migration and invasion through dysregulation of the focal adhesion pathway, especially CAV2 as an oncogenic function in renal cell carcinoma. Tumor suppressive microRNA mediated cancer pathways and responsible genes provide new insights into the potential mechanisms of renal cell carcinoma oncogenesis and metastasis.

Wang C, Wang W, Wang J, et al.
Apoptin induces apoptosis in nude mice allograft model of human bladder cancer by altering multiple bladder tumor-associated gene expression profiles.
Tumour Biol. 2013; 34(3):1667-78 [PubMed] Related Publications
Bladder cancer (BC) is one of the most common human malignancies that account for major death in the world. Apoptin that is derived from chicken anemia virus (CAV) has displayed tumor-specific cytotoxic activity in a variety of human carcinomas. However, the magical function of apoptin in bladder carcinoma cell lines has not been identified yet. In our study, we delivered apoptin into bladder-originating T24, EJ, and HCV29 cell lines by adenovirus system. The selective cytotoxic effect of apoptin was determined by cell viability assay, active caspase-3 measurement, and annexin V/PI double staining. Importantly, we have examined the differential expression patterns of tumor-associated genes including Ki67, C-erbB-2, Rb, and nm23 by flow cytometry and western blot in vitro. In an animal study, apoptin was infused into animal models by AAV system, and immunohistochemistry and quantitative real-time PCR (qRT-PCR) were employed to validate results in vivo. The results indicated that apoptin could selectively induce apoptosis in bladder tumorigenic cells coupled with tumor-specific nucleus accumulation in vitro. Interestingly, apoptin could downregulate expression levels of Ki67 and C-erbB-2 and upregulate the expression of Rb both in vitro and in vivo. Moreover, the animal models treated with AAV-apoptin have shown smaller tumor volumes and displayed better prognosis than controls. In conclusion, apoptin could selectively induce apoptosis in bladder tumor cells through altering expression profiles of tumor-associated genes.

Hamoudane M, Maffioli S, Cordera R, et al.
Caveolin-1 and polymerase I and transcript release factor: new players in insulin-like growth factor-I receptor signaling.
J Endocrinol Invest. 2013; 36(3):204-8 [PubMed] Related Publications
Caveolae are plasma membrane regions enriched in Caveolin proteins which regulate vesicular transport, endocytosis, and cell signaling. IGF-I receptor (IGF-IR) localizes in caveolae and tyrosine phosphorylates Caveolin-1 (Cav-1), the most represented caveolar protein. Cav-1 participates to IGF-IR internalization and signaling directly interacting with IGF-IR and its substrates. Recently, polymerase I and transcript release factor (PTRF) or Cavin-1, has been identified in the caveolar backbone. PTRF does not play a Cav-1 ancillary role and emerging data support a direct role of PTRF in IGF-IR signaling. PTRF and Cav-1 can bind IGF-IR and regulate IGF-IR internalization and plasma membrane replacement, mechanisms frequently deregulated in cancer cells. Although the exact roles of Cav-1 and IGF-IR in human cancer continue to be a matter of some debate, there is a strong evidence for an association between Cav-1 and IGF-IR in cancer development. With the discovery of IGF-IR interaction with PTRF in caveolae, new insight emerged to understand the growing functions of these domains in IGF-I action.

Cuello-Carrión FD, Cayado-Gutiérrez N, Natoli AL, et al.
In MMTV-Her-2/neu transgenic mammary tumors the absence of caveolin-1-/- alters PTEN and NHERF1 but not β-catenin expression.
Cell Stress Chaperones. 2013; 18(5):559-67 [PubMed] Article available free on PMC after 01/04/2015 Related Publications
In a recent study, we have shown that in mammary tumors from mice lacking the Cav-1 gene, there are alterations in specific heat shock proteins as well as in tumor development. With this in mind, we have now investigated other proteins in the same mammary mouse tumor model (Her-2/neu expressing mammary tumors from Cav-1 wild type and Cav-1 null mice), to further comprehend the complex tumor-stroma mechanisms involved in regulating stress responses during tumor development. In this tumor model the cancer cells always lacked of Cav-1, so the KO influenced the Cav-1 in the stroma. By immunohistochemistry, we have found a striking co-expression of β-catenin and Her-2/neu in the tumor cells. The absence of Cav-1 in the tumor stroma had no effect on expression or localization of β-catenin and Her-2/neu. Both proteins appeared co-localized at the cell surface during tumor development and progression. Since Her-2/neu activation induces MTA1, we next evaluated MTA1 in the mouse tumors. Although this protein was found in numerous nuclei, the absence of Cav-1 did not alter its expression level. In contrast, significantly more PTEN protein was noted in the tumors lacking Cav-1 in the stroma, with the protein localized mainly in the nuclei. P-Akt levels were relatively low in tumors from both Cav-1 WT and Cav-1 KO mice. There was also an increase in nuclear NHERF1 expression levels in the tumors arising from Cav-1 KO mice. The data obtained in the MMTV-neu model are consistent with a role for Cav-1 in adjacent breast cancer stromal cells in modulating the expression and localization of important proteins implicated in tumor cell behavior.

Hsu CM, Yang MD, Tsai CW, et al.
The contribution of caveolin-1 genotype and phenotype to hepatocellular carcinoma.
Anticancer Res. 2013; 33(2):671-7 [PubMed] Related Publications
BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most common types of malignant tumors worldwide, for which the prevalence and mortality rates are very high in Taiwan. Caveolin-1 (CAV-1) is a main structural protein of caveolae and plays a regulatory role in signaling pathways and tumorigenesis. High expression of Cav-1 in mouse HCC is positively correlated with higher cell invasive capacity, but the contribution of CAV-1 genetic variants during HCC progression is still largely unknown. In this study, we investigated the contribution of CAV-1 variant to the risk of HCC from the analyses of DNA, RNA and proteins.
MATERIALS AND METHODS: We enrolled 298 patients with HCC and 298 cancer-free controls, frequency-matched by age and gender in this case-control study. Firstly, the associations of six single nucleotide polymorphisms (SNPs) of the Cav-1 gene at C521A (rs1997623), G14713A (rs3807987), G21985A (12672038), T28608A (rs3757733), T29107A (rs7804372), and G32124A (rs3807992) with HCC risk in a Taiwanese population were evaluated. Secondly, thirty HCC tissue samples with variant genotypes were tested to estimate for CAV-1 mRNA expression by real-time quantitative reverse transcription. Finally, the HCC tissue samples of variant genotypes were examined by western blotting to estimate their CAV-1 protein expression patterns.
RESULTS: There were significant differences between the HCC and control groups in the distributions of the CAV-1 G14713A genotypes (p=0.0124), and these carrying AG and AA genotypes had a higher risk for HCC, compared with those with the GG genotype (odds ratio=1.51 and 1.94, respectively). Patients with CAV-1 G14713A AG or AA genotype had higher levels of mRNA (p=0.0001) and protein (p=0.0019) than those with the GG genotype.
CONCLUSION: Our multi-approach findings at the DNA, RNA and protein levels suggest that CAV-1 may play a critical role in HCC carcinogenesis, and serve as a target for HCC therapy.

Tahir SA, Yang G, Goltsov A, et al.
Caveolin-1-LRP6 signaling module stimulates aerobic glycolysis in prostate cancer.
Cancer Res. 2013; 73(6):1900-11 [PubMed] Article available free on PMC after 01/04/2015 Related Publications
Caveolin 1 (Cav-1) is a plasma membrane-associated protein with the capacity to modulate signaling activities in a context-dependent fashion. Interactions between Cav-1 and low-density lipoprotein receptor-related protein 6 (LRP6) were reported to be important for the regulation of Wnt-β-catenin (β-cat) signaling. Cav-1 also interacts with insulin and IGF-I receptors (IGF-IR/IR) and can stimulate IR kinase activities. We found positive correlation between Cav-1 and LRP6 expression in both human primary prostate cancer and metastasis tissues and in PC-3 cells. Cav-1 stimulation of Wnt-β-cat signaling and c-Myc levels was positively associated with LRP6 expression in LNCaP, PC-3, and DU145 prostate cancer cells. Importantly, LRP6 and, to a lesser extent, Cav-1 were found to stimulate aerobic glycolysis. These activities were positively associated with the expression of HK2 and Glut3 and shown to be dependent on Akt signaling by both gene knockdown and chemical inhibition methods. We further showed that Cav-1 and LRP6 exert their effects on Akt and glycolytic activities by stimulating IGF-IR/IR signaling. Overall, our results show that Cav-1 interacts with LRP6 to generate an integrated signaling module that leads to the activation of IGF-IR/IR and results in stimulation of Akt-mTORC1 signaling and aerobic glycolysis in prostate cancer.

Martinez-Outschoorn UE, Balliet R, Lin Z, et al.
BRCA1 mutations drive oxidative stress and glycolysis in the tumor microenvironment: implications for breast cancer prevention with antioxidant therapies.
Cell Cycle. 2012; 11(23):4402-13 [PubMed] Article available free on PMC after 01/04/2015 Related Publications
Mutations in the BRCA1 tumor suppressor gene are commonly found in hereditary breast cancer. Similarly, downregulation of BRCA1 protein expression is observed in the majority of basal-like breast cancers. Here, we set out to study the effects of BRCA1 mutations on oxidative stress in the tumor microenvironment. To mimic the breast tumor microenvironment, we utilized an in vitro co-culture model of human BRCA1-mutated HCC1937 breast cancer cells and hTERT-immortalized human fibroblasts. Notably, HCC1937 cells induce the generation of hydrogen peroxide in the fibroblast compartment during co-culture, which can be inhibited by genetic complementation with the wild-type BRCA1 gene. Importantly, treatment with powerful antioxidants, such as NAC and Tempol, induces apoptosis in HCC1937 cells, suggesting that microenvironmental oxidative stress supports cancer cell survival. In addition, Tempol treatment increases the apoptotic rates of MDA-MB-231 cells, which have wild-type BRCA1, but share a basal-like breast cancer phenotype with HCC1937 cells. MCT4 is the main exporter of L-lactate out of cells and is a marker for oxidative stress and glycolytic metabolism. Co-culture with HCC1937 cells dramatically induces MCT4 protein expression in fibroblasts, and this can be prevented by either BRCA1 overexpression or by pharmacological treatment with NAC. We next evaluated caveolin-1 (Cav-1) expression in stromal fibroblasts. Loss of Cav-1 is a marker of the cancer-associated fibroblast (CAF) phenotype, which is linked to high stromal glycolysis, and is associated with a poor prognosis in numerous types of human cancers, including breast cancers. Remarkably, HCC1937 cells induce a loss of Cav-1 in adjacent stromal cells during co-culture. Conversely, Cav-1 expression in fibroblasts can be rescued by administration of NAC or by overexpression of BRCA1 in HCC1937 cells. Notably, BRCA1-deficient human breast cancer samples (9 out of 10) also showed a glycolytic stromal phenotype, with intense mitochondrial staining specifically in BRCA1-deficient breast cancer cells. In summary, loss of BRCA1 function leads to hydrogen peroxide generation in both epithelial breast cancer cells and neighboring stromal fibroblasts, and promotes the onset of a reactive glycolytic stroma, with increased MCT4 and decreased Cav-1 expression. Importantly, these metabolic changes can be reversed by antioxidants, which potently induce cancer cell death. Thus, antioxidant therapy appears to be synthetically lethal with a BRCA1-deficiency in breast cancer cells and should be considered for future cancer prevention trials. In this regard, immunostaining with Cav-1 and MCT4 could be used as cost-effective biomarkers to monitor the response to antioxidant therapy.

Sherif ZA, Sultan AS
Divergent control of Cav-1 expression in non-cancerous Li-Fraumeni syndrome and human cancer cell lines.
Cancer Biol Ther. 2013; 14(1):29-38 [PubMed] Article available free on PMC after 01/04/2015 Related Publications
Li-Fraumeni syndrome (LFS) is primarily characterized by development of tumors exhibiting germ-line mutations in the p53 gene. Cell lines developed from patients of a LFS family have decreased p53 activity as evidenced by the absence of apoptosis upon etoposide treatment. To test our hypothesis that changes in gene expression beyond p53 per se are contributing to the development of tumors, we compared gene expression in non-cancerous skin fibroblasts of LFS-affected (p53 heterozygous) vs. non-affected (p53 wild-type homozygous) family members. Expression analysis showed that several genes were differentially regulated in the p53 homozygous and heterozygous cell lines. We were particularly intrigued by the decreased expression (~88%) of a putative tumor-suppressor protein, caveolin-1 (Cav-1), in the p53-mutant cells. Decreased expression of Cav-1 was also seen in both p53-knockout and p21-knockout HTC116 cells suggesting that p53 controls Cav-1 expression through p21 and leading to the speculation that p53, Cav-1 and p21 may be part of a positive auto-regulatory feedback loop. The direct relationship between p53 and Cav-1 was also tested with HeLa cells (containing inactive p53), which expressed a significantly lower Cav-1 protein. A panel of nonfunctional and p53-deficient colon and epithelial breast cancer cell lines showed undetectable expression of Cav-1 supporting the role of p53 in the control of Cav-1. However, in two aggressively metastasizing breast cancer cell lines, Cav-1 was strongly expressed suggesting a possible role in tumor metastasis. Thus, there is a divergent control of Cav-1 expression as evidenced in non-cancerous Li-Fraumeni syndrome and some aggressive human cancer cell lines.

Martinez-Outschoorn UE, Balliet RM, Lin Z, et al.
Hereditary ovarian cancer and two-compartment tumor metabolism: epithelial loss of BRCA1 induces hydrogen peroxide production, driving oxidative stress and NFκB activation in the tumor stroma.
Cell Cycle. 2012; 11(22):4152-66 [PubMed] Article available free on PMC after 01/04/2015 Related Publications
Mutations in the BRCA1 tumor suppressor gene are commonly found in hereditary ovarian cancers. Here, we used a co-culture approach to study the metabolic effects of BRCA1-null ovarian cancer cells on adjacent tumor-associated stromal fibroblasts. Our results directly show that BRCA1-null ovarian cancer cells produce large amounts of hydrogen peroxide, which can be abolished either by administration of simple antioxidants (N-acetyl-cysteine; NAC) or by replacement of the BRCA1 gene. Thus, the BRCA1 gene normally suppresses tumor growth by functioning as an antioxidant. Importantly, hydrogen peroxide produced by BRCA1-null ovarian cancer cells induces oxidative stress and catabolic processes in adjacent stromal fibroblasts, such as autophagy, mitophagy and glycolysis, via stromal NFκB activation. Catabolism in stromal fibroblasts was also accompanied by the upregulation of MCT4 and a loss of Cav-1 expression, which are established markers of a lethal tumor microenvironment. In summary, loss of the BRCA1 tumor suppressor gene induces hydrogen peroxide production, which then leads to metabolic reprogramming of the tumor stroma, driving stromal-epithelial metabolic coupling. Our results suggest that new cancer prevention trials with antioxidants are clearly warranted in patients that harbor hereditary/familial BRCA1 mutations.

Bocci G, Fioravanti A, Orlandi P, et al.
Metronomic ceramide analogs inhibit angiogenesis in pancreatic cancer through up-regulation of caveolin-1 and thrombospondin-1 and down-regulation of cyclin D1.
Neoplasia. 2012; 14(9):833-45 [PubMed] Article available free on PMC after 01/04/2015 Related Publications
AIMS: To evaluate the antitumor and antiangiogenic activity of metronomic ceramide analogs and their relevant molecular mechanisms.
METHODS: Human endothelial cells [human dermal microvascular endothelial cells and human umbilical vascular endothelial cell (HUVEC)] and pancreatic cancer cells (Capan-1 and MIA PaCa-2) were treated with the ceramide analogs (C2, AL6, C6, and C8), at low concentrations for 144 hours to evaluate any antiproliferative and proapoptotic effects and inhibition of migration and to measure the expression of caveolin-1 (CAV-1) and thrombospondin-1 (TSP-1) mRNAs by real-time reverse transcription-polymerase chain reaction. Assessment of extracellular signal-regulated kinases 1 and 2 (ERK1/2) and Akt phosphorylation and of CAV-1 and cyclin D1 protein expression was performed by ELISA. Maximum tolerated dose (MTD) gemcitabine was compared against metronomic doses of the ceramide analogs by evaluating the inhibition of MIA PaCa-2 subcutaneous tumor growth in nude mice.
RESULTS: Metronomic ceramide analogs preferentially inhibited cell proliferation and enhanced apoptosis in endothelial cells. Low concentrations of AL6 and C2 caused a significant inhibition of HUVEC migration. ERK1/2 and Akt phosphorylation were significantly decreased after metronomic ceramide analog treatment. Such treatment caused the overexpression of CAV-1 and TSP-1 mRNAs and proteins in endothelial cells, whereas cyclin D1 protein levels were reduced. The antiangiogenic and antitumor impact in vivo of metronomic C2 and AL6 regimens was similar to that caused by MTD gemcitabine.
CONCLUSIONS: Metronomic C2 and AL6 analogs have antitumor and antiangiogenic activity, determining the up-regulation of CAV-1 and TSP-1 and the suppression of cyclin D1.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. CAV2, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 27 February, 2015     Cancer Genetics Web, Established 1999