TRADD

Gene Summary

Gene:TRADD; TNFRSF1A associated via death domain
Aliases: Hs.89862
Location:16q22.1
Summary:The protein encoded by this gene is a death domain containing adaptor molecule that interacts with TNFRSF1A/TNFR1 and mediates programmed cell death signaling and NF-kappaB activation. This protein binds adaptor protein TRAF2, reduces the recruitment of inhibitor-of-apoptosis proteins (IAPs) by TRAF2, and thus suppresses TRAF2 mediated apoptosis. This protein can also interact with receptor TNFRSF6/FAS and adaptor protein FADD/MORT1, and is involved in the Fas-induced cell death pathway. [provided by RefSeq, Jul 2008]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:tumor necrosis factor receptor type 1-associated DEATH domain protein
Source:NCBIAccessed: 31 August, 2019

Ontology:

What does this gene/protein do?
Show (20)
Pathways:What pathways are this gene/protein implicaed in?
Show (12)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 31 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Wnt Proteins
  • Caspase 8
  • Breast Cancer
  • Signal Transduction
  • Tandem Mass Spectrometry
  • Transcription Factor AP-1
  • Receptors, TNF-Related Apoptosis-Inducing Ligand
  • RNA Interference
  • fas Receptor
  • Proteins
  • Cell Proliferation
  • Zinc Fingers
  • TNF Receptor-Associated Factor 2
  • TNF Receptor-Associated Death Domain Protein
  • Apoptosis
  • siRNA
  • Fas-Associated Death Domain Protein
  • NF-kappa B
  • Chromosome 16
  • Immunohistochemistry
  • Cell Survival
  • Receptors, Tumor Necrosis Factor
  • Cancer Gene Expression Regulation
  • Transfection
  • Western Blotting
  • Antineoplastic Agents
  • Viral Matrix Proteins
  • p53 Protein
  • Enzyme Activation
  • Caspases
  • Up-Regulation
  • Ubiquitin
  • Phosphorylation
  • eIF-2 Kinase
  • Cell Line
  • I-kappa B Kinase
  • TNF Receptor-Associated Factor 6
  • Carrier Proteins
  • TNF
  • Neoplasm Invasiveness
Tag cloud generated 31 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (1)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: TRADD (cancer-related)

Sindhu R, Manonmani HK
l-asparaginase induces intrinsic mitochondrial-mediated apoptosis in human gastric adenocarcinoma cells and impedes tumor progression.
Biochem Biophys Res Commun. 2018; 503(4):2393-2399 [PubMed] Related Publications
l-asparagine essentially regulates growth and proliferation of cancer cells. l-asparaginase is an anti-cancer enzyme that deprives the cancer cells of l-asparagine. The purpose of this study was to explore the mechanism of a novel l-asparaginase from Pseudomonas fluorescens on l-asparagine deprivation mediated anti-proliferation, apoptosis in human gastric adenocarcinoma cells and to evaluate inhibition of angiogenesis. We observed that, the presence of extracellular l-asparagine was essential for the growth of AGS cells. l-asparagine deprivation by l-asparaginase induced metabolic stress, cytotoxicity and apoptosis by G0 phase cell-cycle arrest, modulated the mitochondrial membrane integrity, accelerated caspase-3 activation and instigated DNA damage. The RT-PCR analysis of pro-apoptosis genes: bak1, bax, bbc3, bik, pmaip1, bnip3l, apaf1, casp3, casp7 and casp9 were significantly higher (P < 0.05), while anti-apoptotic markers xiap, bid, mcl1, and death receptor genes tnf and tradd were significantly down-regulated (P < 0.05). Additionally, higher protein expressions of p53, caspase-3 and TEM analysis showing modulations in mitochondria confirmed intrinsic apoptosis pathway. The enzyme impeded tumor progression through inhibition of cell migration and vascular remodelling of endothelial cells. Our findings suggests that the action of l-asparaginase alters mitochondrial membrane permeability and auxiliary activates intrinsic apoptosis. Therefore, this mechanistic approach might be considered as a targeted enzymotherapy against gastric adenocarcinoma.

Hammouda MB, Riahi-Chebbi I, Souid S, et al.
Macrovipecetin, a C-type lectin from Macrovipera lebetina venom, inhibits proliferation migration and invasion of SK-MEL-28 human melanoma cells and enhances their sensitivity to cisplatin.
Biochim Biophys Acta Gen Subj. 2018; 1862(3):600-614 [PubMed] Related Publications
BACKGROUND: The resistance of melanoma cells to cisplatin restricts its clinical use. Therefore, the search for novel tumor inhibitors and effective combination treatments that sensitize tumor cells to this drug are still needed. We purified macrovipecetin, a novel heterodimeric C-type lectin, from Macrovipera lebetina snake venom and investigated its anti-tumoral effect on its own or combined with cisplatin, in human melanoma cells.
METHODS: Biochemical characterization, in vitro cells assays such as viability, apoptosis, adhesion, migration, invasion, Western blotting and in silico analysis were used in this study.
RESULTS: Macrovipecetin decreased melanoma cell viability 100 times more than cisplatin. Interestingly, when combined with the drug, macrovipecetin enhanced the sensitivity of SK-MEL-28 cells by augmenting their apoptosis through increased expression of the apoptosis inducing factor (AIF) and activation of ERK
CONCLUSIONS: We validated the antitumor effect of macrovipecetin when combined, or not, with cisplatin on SK-MEL-28 cells.
GENERAL SIGNIFICANCE: The presented work proposes the potential use of macrovipecetin and cisplatin in combination as an effective anti-melanoma treatment.

Guesmi F, Prasad S, Tyagi AK, Landoulsi A
Antinflammatory and anticancer effects of terpenes from oily fractions of Teucruim alopecurus, blocker of IκBα kinase, through downregulation of NF-κB activation, potentiation of apoptosis and suppression of NF-κB-regulated gene expression.
Biomed Pharmacother. 2017; 95:1876-1885 [PubMed] Related Publications
Teucrium alopecurus is an endemic plant limited to southern Tunisia. In the present study, the chemical composition, anticancer and nuclear factor-κB (NF-κB) inhibitory effects of Teucrium alopecurus leaf essential oil was investigated. The analysis of Teucrium alopecurus (TA-1) with Gas Chromatography-Mass Spectrometry (GC/MS) showed that α-Bisabolol, (+)-epi-Bicyclosesquiphellandrene and α-Cadinol, were found in relatively high amounts (16.16%, 15.40% and 8.52%, respectively). Cell viability was determined by 3-(4-5-dimethylthiazol-2-yl) 2-5-diphenyl-tetrazolium (MTT) assay. Cell cycle and apoptosis assay were determined by flow cytometry. TA-1 functions as an anticancer agent by triggering apoptosis potentiated by chemotherapeutic agents and TNF in human myeloid leukemia cells (KBM5) through a mechanism involving poly(ADP-ribose) polymerase (PARP) cleavage and initiator and effector caspases activation. Moreover, electrophoretic mobility shift assay (EMSA) revealed that TA-1 downregulated nuclear localization of NF-κB and its phosphorylation induced by TNF-α and this, allows the suppression of the degradation and phosphorylation of IκB and the inhibition of the phosphorylation of p65 phosphorylation and the p50-p65 heterodimer nuclear translocation, causing attenuation of NF-κB-regulated antiapoptotic (Survivin, Bcl-2, c-IAP1/2, Bcl-xL, Mcl-1, and cFLIP), invasion (ICAM1), metasatsis (MMP-9), and angiogenesis (VEGF) gene expression in KBM5; and finally reporter gene expression. Furthermore, treatment with essential oil and TNF-α suppressed the NF-κB DNA binding activity. Finally, the activation of nuclear factor-κB induced by different plasmids (TNFR1, TRADD, TRAF2, NIK, TAK1/TAB1, and IKKβ) was inhibited following treatment with TA-1. Overall, TA-1 inhibits NF-κB activation and further growth and proliferation of cancer cells.

Liu Y, Lu D, Sheng J, et al.
Identification of TRADD as a potential biomarker in human uterine leiomyoma through iTRAQ based proteomic profiling.
Mol Cell Probes. 2017; 36:15-20 [PubMed] Related Publications
Recurrent and refractory leiomyoma of uterus is one of the most common diseases in women of reproductive age. Despite its benign nature, uterine leiomyoma has presented an extremely deleterious impact on public health. The etiology of uterine leiomyoma remains unclear and clinical management remains suboptimal, leaving radical hysterectomy the only effective approach. Delineating the molecular mechanism underlying the leiomyoma initiation and progression remains an unmet clinical need. To screen proteins that were differentially expressed in uterine leiomyoma versus normal myometrium, we examined proteomic profile by isobaric tag for relative and absolute quantitation (iTRAQ) labeling coupled with liquid chromatography - tandem mass spectrometry (LC-MS/MS). 72 proteins have been identified as differentially expressed in uterine leiomyoma, including the downregulation of TRADD (tumor necrosis factor receptor type 1-associated DEATH domain protein), which dominates the dysfunctional extrinsic apoptosis pathway and deregulated inflammatory responses. The reduction of TRADD was further validated by Western blot and immunohistochemistry in independent sample cohorts. Our data thus suggest potential biological significance of TRADD mediated inflammatory response in the development of uterine leiomyoma.

Karki R, Malireddi RKS, Zhu Q, Kanneganti TD
NLRC3 regulates cellular proliferation and apoptosis to attenuate the development of colorectal cancer.
Cell Cycle. 2017; 16(13):1243-1251 [PubMed] Free Access to Full Article Related Publications
Nucleotide-binding domain, leucine-rich-repeat-containing proteins (NLRs) are intracellular innate immune sensors of pathogen-associated and damage-associated molecular patterns. NLRs regulate diverse biologic processes such as inflammatory responses, cell proliferation and death, and gut microbiota to attenuate tumorigenesis. In a recent publication in Nature, we identified NLRC3 as a negative regulator of PI3K-mTOR signaling and characterized its potential tumor suppressor function. Enterocytes lacking NLRC3 cannot control cellular proliferation because they are unable to suppress activation of PI3K-mTOR signaling pathways. In this Extra-View, we explore possible mechanisms through which NLRC3 regulates cellular proliferation and cell death. Besides interacting with PI3K, NLRC3 associates with TRAF6 and mTOR, confirming our recent finding that NLRC3 negatively regulates the PI3K-mTOR axis. Herein, we show that NLRC3 suppresses c-Myc expression and activation of PI3K-AKT targets FoxO3a and FoxO1 in the colon of Nlrc3

Oh YT, Yue P, Sun SY
DR5 suppression induces sphingosine-1-phosphate-dependent TRAF2 polyubiquitination, leading to activation of JNK/AP-1 and promotion of cancer cell invasion.
Cell Commun Signal. 2017; 15(1):18 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Death receptor (DR5), a well-characterized death domain-containing cell surface pro-apoptotic protein, has been suggested to suppress cancer cell invasion and metastasis. However, the underlying mechanisms have not been fully elucidated. Our recent work demonstrates that DR5 suppression promotes cancer cell invasion and metastasis through caspase-8/TRAF2-mediated activation of ERK and JNK signaling and MMP1 elevation. The current study aimed at addressing the mechanism through which TRAF2 is activated in a caspase-8 dependent manner.
RESULTS: DR5 knockdown increased TRAF2 polyubiquitination, a critical event for TRAF2-mediated JNK/AP-1 activation. Suppression of sphingosine-1-phosphate (S1P) generation or depletion of casapse-8 inhibited not only enhancement of cell invasion, but also elevation and polyubiquitination of TRAF2, activation of JNK/AP-1 activation and increased expression of MMP1 induced by DR5 knockdown.
CONCLUSIONS: Both S1P and caspase-8 are critical for TRAF2 stabilization, polyubiquitination, subsequent activation of JNK/AP1 signaling and MMP1 expression and final promotion of cell invasion.

Yang C, Wang H, Zhang B, et al.
LCL161 increases paclitaxel-induced apoptosis by degrading cIAP1 and cIAP2 in NSCLC.
J Exp Clin Cancer Res. 2016; 35(1):158 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: LCL161, a novel Smac mimetic, is known to have anti-tumor activity and improve chemosensitivity in various cancers. However, the function and mechanisms of the combination of LCL161 and paclitaxel in non-small cell lung cancer (NSCLC) remain unknown.
METHODS: Cellular inhibitor of apoptotic protein 1 and 2 (cIAP1&2) expression in NSCLC tissues and adjacent non-tumor tissues were assessed by immunohistochemistry. The correlations between cIAP1&2 expression and clinicopathological characteristics, prognosis were analyzed. Cell viability and apoptosis were measured by MTT assays and Flow cytometry. Western blot and co-immunoprecipitation assay were performed to measure the protein expression and interaction in NF-kB pathway. siRNA-mediated gene silencing and caspases activity assays were applied to demonstrate the role and mechanisms of cIAP1&2 and RIP1 in lung cancer cell apoptosis. Mouse xenograft NSCLC models were used in vivo to determine the therapeutic efficacy of LCL161 alone or in combination with paclitaxel.
RESULTS: The expression of cIAP1 and cIAP2 in Non-small cell lung cancer (NSCLC) tumors was significantly higher than that in adjacent normal tissues. cIAP1 was highly expressed in patients with late TNM stage NSCLC and a poor prognosis. Positivity for both cIAP1 and cIAP2 was an independent prognostic factor that indicated a poorer prognosis in NSCLC patients. LCL161, an IAP inhibitor, cooperated with paclitaxel to reduce cell viability and induce apoptosis in NSCLC cells. Molecular studies revealed that paclitaxel increased TNFα expression, thereby leading to the recruitment of various factors and the formation of the TRADD-TRAF2-RIP1-cIAP complex. LCL161 degraded cIAP1&2 and released RIP1 from the complex. Subsequently, RIP1 was stabilized and bound to caspase-8 and FADD, thereby forming the caspase-8/RIP1/FADD complex, which activated caspase-8, caspase-3 and ultimately lead to apoptosis. In nude mouse xenograft experiments, the combination of LCL161 and paclitaxel degraded cIAP1,2, activated caspase-3 and inhibited tumor growth with few toxic effects.
CONCLUSION: Thus, LCL161 could be a useful agent for the treatment of NSCLC in combination with paclitaxel.

Saito Y, Nagae G, Motoi N, et al.
Prognostic significance of CpG island methylator phenotype in surgically resected small cell lung carcinoma.
Cancer Sci. 2016; 107(3):320-5 [PubMed] Free Access to Full Article Related Publications
Methylation is closely involved in the development of various carcinomas. However, few datasets are available for small cell lung cancer (SCLC) due to the scarcity of fresh tumor samples. The aim of the present study is to clarify relationships between clinicopathological features and results of the comprehensive genome-wide methylation profile of SCLC. We investigated the genome-wide DNA methylation status of 28 tumor and 13 normal lung tissues, and gene expression profiling of 25 SCLC tissues. Following unsupervised hierarchical clustering and non-negative matrix factorization, gene ontology analysis was performed. Clustering of SCLC led to the important identification of a CpG island methylator phenotype (CIMP) of the tumor, with a significantly poorer prognosis (P = 0.002). Multivariate analyses revealed that postoperative chemotherapy and non-CIMP were significantly good prognostic factors. Ontology analyses suggested that the extrinsic apoptosis pathway was suppressed, including TNFRSF1A, TNFRSF10A and TRADD in CIMP tumors. Here we revealed that CIMP was an important prognostic factor for resected SCLC. Delineation of this phenotype may also be useful for the development of novel apoptosis-related chemotherapeutic agents for treatment of the aggressive tumor.

Chen L, Zhu ZZ, Liu SF, et al.
Loss at 16q22.1 identified as a risk factor for intrahepatic recurrence in hepatocellular carcinoma and screening of differentially expressed genes.
Neoplasma. 2016; 63(1):114-20 [PubMed] Related Publications
Copy number alteration (CNA) of chromosome 16, a frequent genetic event in tumors including hepatocellular carcinoma (HCC), has been associated with HCC etiology of hepatitis B virus (HBV) and with clinical outcomes in multiple types of cancer. This study identified CNAs in chromosome 16 in relation to intrahepatic recurrence of HCC in a population with high HBV prevalence, and further screened for differentially expressed genes in recurrence-related CNAs. Array comparative genomic hybridization and expression arrays were used to detect CNAs and gene expression differences, respectively. The associations between CNAs and intrahepatic recurrence were analyzed on 66 patients, follow-up period of 3-73 months. One hundred and nine cases were further evaluated regarding the differentially expressed genes. Losses at 16q and 16p were detected in 62.1% and 51.5% of the 66 cases, respectively. The most recurrent CNAs (with frequency >20%) were losses at 16p13.3-13.2, 16p13.11, 16q11.2-22.1, 16q22.1, 16q22.2-24.2 and 16q24.2. Of the CNAs, 16q22.1 loss was significantly associated with unfavorable intrahepatic recurrence-free survival (P = 0.025). Multivariate Cox analysis identified 16q22.1 loss as an independent risk factor for intrahepatic recurrence (HR = 2.32, 95% CI = 1.26-4.27). A panel of 21 genes, including TRADD, PSMB10, THAP11, CTCF and ESRP2, were significantly downregulated in HCCs with 16q22.1 loss compared to those without the loss. These results suggest that loss at 16q22.1 was associated with increased risk for intrahepatic recurrence of HCC, at least in the HBV-prevalence population. Multiple downregulated genes correlated with the loss were screened.

Fahrioğlu U, Dodurga Y, Elmas L, Seçme M
Ferulic acid decreases cell viability and colony formation while inhibiting migration of MIA PaCa-2 human pancreatic cancer cells in vitro.
Gene. 2016; 576(1 Pt 3):476-82 [PubMed] Related Publications
Novel and combinatorial treatment methods are becoming sought after entities in cancer treatment and these treatments are even more valuable for pancreatic cancer. The scientists are always on the lookout for new chemicals to help them in their fight against cancer. In this study, we examine the effects of ferulic acid (FA), a phenolic compound, on gene expression, viability, colony formation and migration/invasion in the cultured MIA PaCa-2 human pancreatic cancer cell. Cytotoxic effects of FA were determined by using trypan blue dye exclusion test and Cell TiterGlo (CTG) assay. IC50 dose in MIA PaCa-2 cells was detected as 500μM/ml at the 72nd hour. Expression profiles of certain cell cycle and apoptosis genes such as CCND1 (cyclin D1),CDK4, CDK6, RB, p21, p16, p53, caspase-3, caspase-9, caspase-8, caspase-10, Bcl-2, BCL-XL,BID, DR4,DR5,FADD,TRADD,PARP, APAF, Bax, Akt, PTEN, PUMA, NOXA, MMP2, MMP9, TIMP1 and TIMP2 were determined by real-time PCR. The effect of FA on cell viability was determined by CellTiter-Glo® Luminescent Cell Viability Assay. Additionally, effects of FA on colony formation and invasion were also investigated. It was observed that FA caused a significant decrease in the expression of CCND1, CDK 4/6, Bcl2 and caspase 8 and 10 in the MIA PaCa-2 cells while causing an increase in the expression of p53, Bax, PTEN caspase 3 and 9. FA was observed to decrease colony formation while inhibiting cell invasion and migration as observed by the BioCoat Matrigel Invasion Chamber guide and colony formation assays. In conclusion, FA is thought to behave as an anti-cancer agent by affecting cell cycle, apoptotic, invasion and colony formation behavior of MIA PaCa-2 cells. Therefore, FA is placed as a strong candidate for further studies aimed at finding a better, more effective treatment approach for pancreatic cancer.

Oh YT, Yue P, Wang D, et al.
Suppression of death receptor 5 enhances cancer cell invasion and metastasis through activation of caspase-8/TRAF2-mediated signaling.
Oncotarget. 2015; 6(38):41324-38 [PubMed] Free Access to Full Article Related Publications
The role of death receptor 5 (DR5), a well-known cell surface pro-apoptotic protein, in the negative regulation of invasion and metastasis of human cancer cells and the underlying mechanisms are largely unknown and were hence the focus of this study. In this report, we have demonstrated that DR5 functions to suppress invasion and metastasis of human cancer cells, as evidenced by enhanced cancer cell invasion and metastasis upon genetic suppression of DR5 either by gene knockdown or knockout. When DR5 is suppressed, FADD and caspase-8 may recruit and stabilize TRAF2 to form a metastasis and invasion signaling complex, resulting in activation of ERK and JNK/AP-1 signaling that mediate the elevation and activation of matrix metalloproteinase-1 (MMP1) and eventual promotion of cancer invasion and metastasis. Our findings thus highlight a novel non-apoptotic function of DR5 as a suppressor of human cancer cell invasion and metastasis and suggest a basic working model elucidating the underlying biology.

Fidan-Yaylalı G, Dodurga Y, Seçme M, Elmas L
Antidiabetic exendin-4 activates apoptotic pathway and inhibits growth of breast cancer cells.
Tumour Biol. 2016; 37(2):2647-53 [PubMed] Related Publications
Exendin-4 is a GLP-1 analog used for the treatment of type 2 diabetes mellitus in its synthetic form. As women with diabetes have higher breast cancer incidence and mortality, we examined the effect of the incretin drug exendin-4 on breast cancer cells. The aim of the study is to investigate anticancer mechanism of exendin-4 in MCF-7 breast cancer cells. Cytotoxic effects of exendin-4 were determined by XTT assay. IC50 dose in MCF-7 cells were detected as 5 μM at 48th hour. Gene messenger RNA (mRNA) expressions were evaluated by real-time PCR. According to results, caspase-9, Akt, and MMP2 expression was reduced in dose group cells, compared with the control group cells. p53, caspase-3, caspase-8, caspase-10, BID, DR4, DR5, FADD, TRADD, PARP, PTEN, PUMA, NOXA, APAF, TIMP1, and TIMP2 expression was increased in dose group cells, compared with the control group cells. Effects of exendin-4 on cell invasion, colony formation, and cell migration were detected by Matrigel chamber, colony formation assay, and wound-healing assay, respectively. To conclude, it is thought that exendin-4 demonstrates anticarcinogenesis activity by effecting apoptosis, invasion, migration, and colony formation in MCF-7 cells. Exendin-4 may be a therapeutic agent for treatment of breast cancer as single or in combination with other agents. More detailed researches are required to define the pathways of GLP-1 effect on breast cancer cells because of the molecular biology of breast cancer that involves a complex network of interconnected signaling pathways that have role in cell growth, survival, and cell invasion.

Mahata B, Biswas S, Rayman P, et al.
GBM Derived Gangliosides Induce T Cell Apoptosis through Activation of the Caspase Cascade Involving Both the Extrinsic and the Intrinsic Pathway.
PLoS One. 2015; 10(7):e0134425 [PubMed] Free Access to Full Article Related Publications
Previously we demonstrated that human glioblastoma cell lines induce apoptosis in peripheral blood T cells through partial involvement of secreted gangliosides. Here we show that GBM-derived gangliosides induce apoptosis through involvement of the TNF receptor and activation of the caspase cascade. Culturing T lymphocytes with GBM cell line derived gangliosides (10-20 μg/ml) demonstrated increased ROS production as early as 18 hrs as indicated by increased uptake of the dye H2DCFDA while western blotting demonstrated mitochondrial damage as evident by cleavage of Bid to t-Bid and by the release of cytochrome-c into the cytosol. Within 48-72 hrs apoptosis was evident by nuclear blebbing, trypan blue positivity and annexinV/7AAD staining. GBM-ganglioside induced activation of the effector caspase-3 along with both initiator caspases (-9 and -8) in T cells while both the caspase-8 and -9 inhibitors were equally effective in blocking apoptosis (60% protection) confirming the role of caspases in the apoptotic process. Ganglioside-induced T cell apoptosis did not involve production of TNF-α since anti-human TNFα antibody was unable to protect T cells from nuclear blebbing and subsequent cell death. However, confocal microscopy demonstrated co-localization of GM2 ganglioside with the TNF receptor and co-immunoprecipitation experiments showed recruitment of death domains FADD and TRADD with the TNF receptor post ganglioside treatment, suggesting direct interaction of gangliosides with the TNF receptor. Further confirmation of the interaction between GM2 and TNFR1 was obtained from confocal microscopy data with wild type and TNFR1 KO (TALEN mediated) Jurkat cells, which clearly demonstrated co-localization of GM2 and TNFR1 in the wild type cells but not in the TNFR1 KO clones. Thus, GBM-ganglioside can mediate T cell apoptosis by interacting with the TNF receptor followed by activation of both the extrinsic and the intrinsic pathway of caspases.

Rajbhandari R, McFarland BC, Patel A, et al.
Loss of tumor suppressive microRNA-31 enhances TRADD/NF-κB signaling in glioblastoma.
Oncotarget. 2015; 6(19):17805-16 [PubMed] Free Access to Full Article Related Publications
Glioblastomas (GBMs) are deadly tumors of the central nervous system. Most GBM exhibit homozygous deletions of the CDKN2A and CDKN2B tumor suppressors at 9p21.3, although loss of CDKN2A/B alone is insufficient to drive gliomagenesis. MIR31HG, which encodes microRNA-31 (miR-31), is a novel non-coding tumor suppressor positioned adjacent to CDKN2A/B at 9p21.3. We have determined that miR-31 expression is compromised in >72% of all GBM, and for patients, this predicts significantly shortened survival times independent of CDKN2A/B status. We show that miR-31 inhibits NF-κB signaling by targeting TRADD, its upstream activator. Moreover, upon reintroduction, miR-31 significantly reduces tumor burden and lengthens survival times in animal models. As such, our work identifies loss of miR-31 as a novel non-coding tumor-driving event in GBM.

Eroğlu C, Seçme M, Bağcı G, Dodurga Y
Assessment of the anticancer mechanism of ferulic acid via cell cycle and apoptotic pathways in human prostate cancer cell lines.
Tumour Biol. 2015; 36(12):9437-46 [PubMed] Related Publications
Studies on genetic changes underlying prostate cancer and the possible signaling pathways are getting increased day by day, and new treatment methods are being searched for. The aim of the present study is to investigate the effects of ferulic acid (FA), a phenolic compound, on cell cycle, apoptosis, invasion, and colony formation in the PC-3 and LNCaP prostate cancer cells. The effect of FA on cell viability was determined via a 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) method. Total RNA was isolated with Tri Reagent. Expression of 84 genes for both cell cycle and apoptosis separately was evaluated by reverse transcriptase PCR (RT-PCR). Protein expressions were evaluated by Western blot analysis. Furthermore, apoptotic effects of FA were observed with terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end labeling (TUNEL) assay. Effects of FA on cell invasion and colony formation were determined using Matrigel chamber and colony assay, respectively. The half maximal inhibitory concentration (IC50) dose of FA was found to be 300 μM in PC-3 cells and 500 μM in LNCaP cells. According to RT-PCR results, it was observed that FA inhibited cell proliferation by increasing the gene expressions of ATR, ATM, CDKN1A, CDKN1B, E2F4, RB1, and TP53 and decreasing the gene expressions of CCND1, CCND2, CCND3, CDK2, CDK4, and CDK6 in PC-3 cells. On the other hand, it was seen that FA suppressed cell proliferation by increasing in the gene expressions of CASP1, CASP2, CASP8, CYCS, FAS, FASLG, and TRADD and decreasing in the gene expressions of BCL2 and XIAP in LNCaP cells. In this study, protein expression of CDK4 and BCL2 genes significantly decreased in these cells. It could induce apoptosis in PC-3 and LNCaP cells. Also, it was observed that FA suppressed the invasion in PC-3 and LNCaP cells. Moreover, it suppressed the colony formation. In conclusion, it has been observed that FA may lead to cell cycle arrest in PC-3 cells while it may cause apoptosis in LNCaP cells.

Armstrong MJ, Stang MT, Liu Y, et al.
IRF-1 inhibits NF-κB activity, suppresses TRAF2 and cIAP1 and induces breast cancer cell specific growth inhibition.
Cancer Biol Ther. 2015; 16(7):1029-41 [PubMed] Free Access to Full Article Related Publications
Interferon Regulatory Factor (IRF)-1, originally identified as a transcription factor of the human interferon (IFN)-β gene, mediates tumor suppression and may inhibit oncogenesis. We have shown that IRF-1 in human breast cancer cells results in the down-regulation of survivin, tumor cell death, and the inhibition of tumor growth in vivo in xenogeneic mouse models. In this current report, we initiate studies comparing the effect of IRF-1 in human nonmalignant breast cell and breast cancer cell lines. While IRF-1 in breast cancer cells results in growth inhibition and cell death, profound growth inhibition and cell death are not observed in nonmalignant human breast cells. We show that TNF-α or IFN-γ induces IRF-1 in breast cancer cells and results in enhanced cell death. Abrogation of IRF-1 diminishes TNF-α and IFN-γ-induced apoptosis. We test the hypothesis that IRF-1 augments TNF-α-induced apoptosis in breast cancer cells. Potential signaling networks elicited by IRF-1 are investigated by evaluating the NF-κB pathway. TNF-α and/or IFN-γ results in decreased presence of NF-κB p65 in the nucleus of breast cancer cells. While TNF-α and/or IFN-γ can induce IRF-1 in nonmalignant breast cells, a marked change in NF-κB p65 is not observed. Moreover, the ectopic expression of IRF-1 in breast cancer cells results in caspase-3, -7, -8 cleavage, inhibits NF-κB activity, and suppresses the expression of molecules involved in the NF-κB pathway. These data show that IRF-1 in human breast cancer cells elicits multiple signaling networks including intrinsic and extrinsic cell death and down-regulates molecules involved in the NF-κB pathway.

Shukla K, Sharma AK, Ward A, et al.
MicroRNA-30c-2-3p negatively regulates NF-κB signaling and cell cycle progression through downregulation of TRADD and CCNE1 in breast cancer.
Mol Oncol. 2015; 9(6):1106-19 [PubMed] Free Access to Full Article Related Publications
Nuclear Factor kappa B (NF-κB) signaling is frequently deregulated in a variety of cancers and is constitutively active in estrogen receptor negative (ER-) breast cancer subtypes. These molecular subtypes of breast cancer are associated with poor overall survival. We focused on mechanisms of NF-κB regulation by microRNAs (miRNAs), which regulate eukaryotic gene expression at the post-transcriptional level. In a previous genome-wide miRNA screen, we had identified miR-30c-2-3p as one of the strongest negative regulators of NF-κB signaling. Here we have uncovered the underlying molecular mechanisms and its consequences in breast cancer. In vitro results show that miR-30c-2-3p directly targets both TNFRSF1A-associated via death domain (TRADD), an adaptor protein of the TNFR/NF-κB signaling pathway, and the cell cycle protein Cyclin E1 (CCNE1). Ectopic expression of miR-30c-2-3p downregulated essential cytokines IL8, IL6, CXCL1, and reduced cell proliferation as well as invasion in MDA-MB-231 breast cancer cells. RNA interference (RNAi) induced silencing of TRADD phenocopied the effects on invasion and cytokine expression caused by miR-30c-2-3p, while inhibition of CCNE1 phenocopied the effects on cell proliferation. We further confirmed the tumor suppressive role of this miRNA using a dataset of 781 breast tumors, where higher expression was associated with better survival in breast cancer patients. In summary we have elucidated the mechanism by which miR-30c-2-3p negatively regulates NF-κB signaling and cell cycle progression in breast cancer.

Chen X, Gu Y, Singh K, et al.
Maduramicin inhibits proliferation and induces apoptosis in myoblast cells.
PLoS One. 2014; 9(12):e115652 [PubMed] Free Access to Full Article Related Publications
Maduramicin, a polyether ionophore antibiotic derived from the bacterium Actinomadura yumaensis, is currently used as a feed additive against coccidiosis in poultry worldwide. It has been clinically observed that maduramicin can cause skeletal muscle and heart cell damage, resulting in skeletal muscle degeneration, heart failure, and even death in animals and humans, if improperly used. However, the mechanism of its toxic action in myoblasts is not well understood. Using mouse myoblasts (C2C12) and human rhabdomyosarcoma (RD and Rh30) cells as an experimental model for myoblasts, here we found that maduramicin inhibited cell proliferation and induced cell death in a concentration-dependent manner. Further studies revealed that maduramicin induced accumulation of the cells at G0/G1 phase of the cell cycle, and induced apoptosis in the cells. Concurrently, maduramicin downregulated protein expression of cyclin D1, cyclin-dependent kinases (CDK4 and CDK6), and CDC25A, and upregulated expression of the CDK inhibitors (p21Cip1 and p27Kip1), resulting in decreased phosphorylation of Rb. Maduramicin also induced expression of BAK, BAD, DR4, TRADD and TRAIL, leading to activation of caspases 8, 9 and 3 as well as cleavage of poly ADP ribose polymerase (PARP). Taken together, our results suggest that maduramicin executes its toxicity in myoblasts at least by inhibiting cell proliferation and inducing apoptotic cell death.

Chaves Neto AH, Pelizzaro-Rocha KJ, Fernandes MN, Ferreira-Halder CV
Antitumor activity of irradiated riboflavin on human renal carcinoma cell line 786-O.
Tumour Biol. 2015; 36(2):595-604 [PubMed] Related Publications
Riboflavin (vitamin B2) is a precursor for coenzymes involved in energy production, biosynthesis, detoxification, and electron scavenging. Previously, we demonstrated that irradiated riboflavin (IR) has potential antitumoral effects against human leukemia cells (HL60), human prostate cancer cells (PC3), and mouse melanoma cells (B16F10) through a common mechanism that leads to apoptosis. Hence, we here investigated the effect of IR on 786-O cells, a known model cell line for clear cell renal cell carcinoma (CCRCC), which is characterized by high-risk metastasis and chemotherapy resistance. IR also induced cell death in 786-O cells by apoptosis, which was not prevented by antioxidant agents. IR treatment was characterized by downregulation of Fas ligand (TNF superfamily, member 6)/Fas (TNF receptor superfamily member 6) (FasL/Fas) and tumor necrosis factor receptor superfamily, member 1a (TNFR1)/TNFRSF1A-associated via death domain (TRADD)/TNF receptor-associated factor 2 (TRAF) signaling pathways (the extrinsic apoptosis pathway), while the intrinsic apoptotic pathway was upregulated, as observed by an elevated Bcl-2 associated x protein/B-cell CLL/lymphoma 2 (Bax/Bcl-2) ratio, reduced cellular inhibitor of apoptosis 1 (c-IAP1) expression, and increased expression of apoptosis-inducing factor (AIF). The observed cell death was caspase-dependent as proven by caspase 3 activation and poly(ADP-ribose) polymerase-1 (PARP) cleavage. IR-induced cell death was also associated with downregulation of v-src sarcoma (Schmidt-Ruppin A-2) viral oncogene homologue (avian)/protein serine/threonine kinase B/extracellular signal-regulated protein kinase 1/2 (Src/AKT/ERK1/2) pathway and activation of p38 MAP kinase (p38) and Jun-amino-terminal kinase (JNK). Interestingly, IR treatment leads to inhibition of matrix metalloproteinase-2 (MMP-2) activity and reduced expression of renal cancer aggressiveness markers caveolin-1, low molecular weight phosphotyrosine protein phosphatase (LMWPTP), and kinase insert domain receptor (a type III receptor tyrosine kinase) (VEGFR-2). Together, these results show the potential of IR for treating cancer.

Sandhu R, Rein J, D'Arcy M, et al.
Overexpression of miR-146a in basal-like breast cancer cells confers enhanced tumorigenic potential in association with altered p53 status.
Carcinogenesis. 2014; 35(11):2567-75 [PubMed] Free Access to Full Article Related Publications
The tumor suppressor p53 is the most frequently mutated gene in human cancers, mutated in 25-30% of breast cancers. However, mutation rates differ according to breast cancer subtype, being more prevalent in aggressive estrogen receptor-negative tumors and basal-like and HER2-amplified subtypes. This heterogeneity suggests that p53 may function differently across breast cancer subtypes. We used RNAi-mediated p53 knockdown (KD) and antagomir-mediated KD of microRNAs to study how gene expression and cellular response to p53 loss differ in luminal versus basal-like breast cancer. As expected, p53 loss caused downregulation of established p53 targets (e.g. p21 and miR-34 family) and increased proliferation in both luminal and basal-like cell lines. However, some p53-dependent changes were subtype specific, including expression of miR-134, miR-146a and miR-181b. To study the cellular response to miR-146a upregulation in p53-impaired basal-like lines, antagomir KD of miR-146a was performed. KD of miR-146a caused decreased proliferation and increased apoptosis, effectively ablating the effects of p53 loss. Furthermore, we found that miR-146a upregulation decreased NF-κB expression and downregulated the NF-κB-dependent extrinsic apoptotic pathway (including tumor necrosis factor, FADD and TRADD) and antagomir-mediated miR-146a KD restored expression of these components, suggesting a plausible mechanism for miR-146a-dependent cellular responses. These findings are relevant to human basal-like tumor progression in vivo, since miR-146a is highly expressed in p53 mutant basal-like breast cancers. These findings suggest that targeting miR-146a expression may have value for altering the aggressiveness of p53 mutant basal-like tumors.

Xiu P, Xu Z, Liu F, et al.
Downregulating sCLU enhances the sensitivity of hepatocellular carcinoma cells to gemcitabine by activating the intrinsic apoptosis pathway.
Dig Dis Sci. 2014; 59(8):1798-809 [PubMed] Related Publications
PURPOSE: The purpose of this study was to investigate whether the therapeutic activity of gemcitabine (GCB) in hepatocellular carcinoma (HCC) could be increased by the down-regulation of secretory clusterin (sCLU), a glycoprotein that is considered to play a cytoprotective role in the resistance to chemotherapy.
METHODS: The expression of sCLU was detected in HCC tumor tissues and cell lines. A cell viability and apoptosis assay were performed in parental HCC cells or the same cells transfected with sCLU shRNA and treated with or without GCB. The potential downstream pathways were investigated using the Human Apoptosis RT(2) Profiler™ PCR Array.
RESULTS: The expression levels of sCLU in HCC tissues were significantly higher than in adjacent non-tumor liver tissues and were associated with the histological grade and transarterial chemoembolization. sCLU overexpression was also found in three HCC cell lines and hepatocytes. The depletion of sCLU synergistically increased GCB sensitivity in Bel7402 and SMMC7721 cells and induced cell apoptosis. Based on the PCR array analysis, sCLU depletion also resulted in the up-regulation of BNIP1, GADD45A, TNFRSF10A, and TRADD and down-regulation of AKT1 in Bel7402 and SMMC7721 cells compared with the parental controls. These results were further supported by a Western blot analysis, which showed increased GADD45a protein expression and the decreased expression of phosphorylated AKT. GADD45a overexpression also increased the sensitivity to GCB in the Bel7402 and SMMC7721 cells.
CONCLUSION: Targeting sCLU may be a useful method to enhance the cytotoxic effect of GCB in hepatocellular carcinoma.

Tanabe A, Konno J, Tanikawa K, Sahara H
Transcriptional machinery of TNF-α-inducible YTH domain containing 2 (YTHDC2) gene.
Gene. 2014; 535(1):24-32 [PubMed] Related Publications
We previously demonstrated that a cellular factor, cyclosporin A (CsA) associated helicase-like protein (CAHL) that is identical to YTH domain containing 2 (YTHDC2), forms trimer complex with cyclophilin B and NS5B of hepatitis C virus (HCV) and facilitates HCV genome replication. Gene expression of YTHDC2 was shown in tumor cell lines and tumor necrosis factor (TNF)-α-treated hepatocytes, but not in untreated. However, the function of YTHDC2 in the tumor cells and the mechanism by which the YTHDC2 gene is transcribed in these cells is largely unknown. We first evaluated that the role of YTHDC2 in the proliferation of hepatocellular carcinoma (HCC) cell line Huh7 using RNA interference and found that YTHDC2-downregulated Huh7 were significantly decreased cell growth as compared to control. We next demonstrated that the cAMP response element (CRE) site in the promoter region of the YTHDC2 gene is critical for YTHDC2 transcription. To further investigate the transcription factors bound to the CRE site, we performed chromatin immunoprecipitation assays. Our findings demonstrate that c-Jun and ATF-2 bind to the CRE site in Huh7, and that TNF-α induces the biological activity of these transcription factors in hepatocytes as well as Huh7. Moreover, treatment with the HDAC inhibitor, trichostatin A (TSA), reduces YTHDC2 expression in Huh7 and in TNF-α-stimulated hepatocytes. Collectively, these data show that YTHDC2 plays an important role in tumor cells growth and activation/recruitment of c-Jun and ATF-2 to the YTHDC2 promoter is necessary for the transcription of YTHDC2, and that HDAC activity is required for the efficient expression of YTHDC2 in both of hepatocyte and HCC cells.

Witort E, Lulli M, Carloni V, Capaccioli S
Anticancer activity of an antisense oligonucleotide targeting TRADD combined with proteasome inhibitors in chemoresistant hepatocellular carcinoma cells.
J Chemother. 2013; 25(5):292-7 [PubMed] Related Publications
Chemoresistance is a major cause of mortality of patients with advanced and metastatic hepatocellular carcinoma (HCC), the fifth most common cancer in the world. We employed a molecular approach to inhibit cell proliferation and induce apoptosis in HepG2 cells, originated from human hepatocarcinoma. TRADD gene expression was knocked down by an antisense oligonucleotide (ASO TRADD), resulting in TRADD protein decrease by 60%, coinciding with increase of apoptotic cell death of up to 30%. Combination of the ASO TRADD with the cytotoxic drugs 5-fluorouracil or paclitaxel did not improve chemosensitivity of HepG2 cells, while the combined administration of the ASO TRADD with proteasome inhibitors MG132 or ALLN inhibited cell proliferation by 80% and 93%, respectively. Taken together, these findings reveal the importance to combine proteasome inhibitors with silencing of anti-apoptotic signalling components to target HCC cells effectively and provide useful data for developing potential treatments of HCC.

Orlikova B, Schumacher M, Juncker T, et al.
Styryl-lactone goniothalamin inhibits TNF-α-induced NF-κB activation.
Food Chem Toxicol. 2013; 59:572-8 [PubMed] Related Publications
(R)-(+)-Goniothalamin (GTN), a styryl-lactone isolated from the medicinal plant Goniothalamus macrophyllus, exhibits pharmacological activities including cytotoxic and anti-inflammatory effects. In this study, GTN modulated TNF-α induced NF-κB activation. GTN concentrations up to 20 μM showed low cytotoxic effects in K562 chronic myelogenous leukemia and in Jurkat T cells. Importantly, at these concentrations, no cytotoxicity was observed in healthy peripheral blood mononuclear cells. Our results confirmed that GTN inhibited tumor necrosis factor-α (TNF-α)-induced NF-κB activation in Jurkat and K562 leukemia cells at concentrations as low as 5 μM as shown by reporter gene assays and western blots. Moreover, GTN down-regulated translocation of the p50/p65 heterodimer to the nucleus, prevented binding of NF-κB to its DNA response element and reduced TNF-α-activated interleukin-8 (IL-8) expression. In conclusion, GTN inhibits TNF-α-induced NF-κB activation at non-apoptogenic concentrations in different leukemia cell models without presenting toxicity towards healthy blood cells underlining the anti-leukemic potential of this natural compound.

Wang D, Lu J, Tindall DJ
Androgens regulate TRAIL-induced cell death in prostate cancer cells via multiple mechanisms.
Cancer Lett. 2013; 335(1):136-44 [PubMed] Free Access to Full Article Related Publications
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising therapeutic agent for prostate cancer because it selectively induces apoptosis in cancer cells but not in normal cells. Previous reports have suggested that androgens regulate TRAIL-induced apoptosis in prostate cancer cells. However, there are discrepancies between these reports of how androgens affect TRAIL-induced cell death. To clarify the role of androgens on TRAIL-induced apoptosis in prostate cancer cells, we investigated the effects of androgen on TRAIL-induced cell death in a dose-response manner. Our results showed that although androgens sensitize LNCaP cells to TRAIL-induced apoptosis, this effect is dose-dependent and biphasic. We found that low levels of androgen are superior to high levels of androgen in term of sensitizing LNCaP cells to TRAIL. We also found that upregulation of DR5 (TRAIL-R2) expression by androgens is critical for sensitizing LNCaP cells to TRAIL. However, low levels of androgen are sufficient to induce DR5 expression and sensitize LNCaP cells to TRAIL-induced cell death. High levels of androgen alter the TRADD/RIP1 ratio, which may contribute to NF-κB activation and sequentially inhibit TRAIL-induced apoptosis.

Yi P, Xia W, Wu RC, et al.
SRC-3 coactivator regulates cell resistance to cytotoxic stress via TRAF4-mediated p53 destabilization.
Genes Dev. 2013; 27(3):274-87 [PubMed] Free Access to Full Article Related Publications
Steroid receptor coactivator 3 (SRC-3) is an oncogenic nuclear receptor coactivator that plays a significant role in drug resistance. Using a lentiviral cDNA library rescue screening approach, we identified a SRC-3 downstream gene-TRAF4 (tumor necrosis factor [TNF] receptor associated-factor 4)-that functions in cell resistance to cytotoxic stress. TRAF4 expression is positively correlated with SRC-3 expression in human breast cancers. Similar to that observed for SRC-3 overexpression, breast cancer cells overexpressing TRAF4 are more resistant to stress-induced death. Here, we further dissected the underlying molecular mechanism for SRC-3 and TRAF4-mediated resistance to cytotoxic agents. We observed that SRC-3 expression is inversely correlated with the expression of p53-regulated proapoptotic genes in breast cancers and further found that SRC-3 and TRAF4 overexpression diminished cytotoxic stress-induced up-regulation of the tumor suppressor p53 protein. To determine the mechanism, we showed that the TRAF domain of TRAF4 bound to the N-terminal TRAF-like region of the deubiquitinase HAUSP (herpesvirus-associated ubiquitin-specific protease; also named USP7) and blocked the access of p53 to the same region of HAUSP. This TRAF4-mediated inhibition of HAUSP then led to the loss of p53 deubiquitination and its stabilization in response to cellular stress. Consistent with this cellular function, we also found that TRAF4 overexpression in breast cancer patients was associated significantly with poor prognosis. Because of SRC-3's ability to abrogate p53 function, our results suggest that SRC-3 overexpression may be especially important in tumors in which p53 is not mutated.

Elton TS, Selemon H, Elton SM, Parinandi NL
Regulation of the MIR155 host gene in physiological and pathological processes.
Gene. 2013; 532(1):1-12 [PubMed] Related Publications
MicroRNAs (miRNAs), a family of small nonprotein-coding RNAs, play a critical role in posttranscriptional gene regulation by acting as adaptors for the miRNA-induced silencing complex to inhibit gene expression by targeting mRNAs for translational repression and/or cleavage. miR-155-5p and miR-155-3p are processed from the B-cell Integration Cluster (BIC) gene (now designated, MIR155 host gene or MIR155HG). MiR-155-5p is highly expressed in both activated B- and T-cells and in monocytes/macrophages. MiR-155-5p is one of the best characterized miRNAs and recent data indicate that miR-155-5p plays a critical role in various physiological and pathological processes such as hematopoietic lineage differentiation, immunity, inflammation, viral infections, cancer, cardiovascular disease, and Down syndrome. In this review we summarize the mechanisms by which MIR155HG expression can be regulated. Given that the pathologies mediated by miR-155-5p result from the over-expression of this miRNA it may be possible to therapeutically attenuate miR-155-5p levels in the treatment of several pathological processes.

Ifeadi V, Garnett-Benson C
Sub-lethal irradiation of human colorectal tumor cells imparts enhanced and sustained susceptibility to multiple death receptor signaling pathways.
PLoS One. 2012; 7(2):e31762 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Death receptors (DR) of the TNF family function as anti-tumor immune effector molecules. Tumor cells, however, often exhibit DR-signaling resistance. Previous studies indicate that radiation can modify gene expression within tumor cells and increase tumor cell sensitivity to immune attack. The aim of this study is to investigate the synergistic effect of sub-lethal doses of ionizing radiation in sensitizing colorectal carcinoma cells to death receptor-mediated apoptosis.
METHODOLOGY/PRINCIPAL FINDINGS: The ability of radiation to modulate the expression of multiple death receptors (Fas/CD95, TRAILR1/DR4, TRAILR2/DR5, TNF-R1 and LTβR) was examined in colorectal tumor cells. The functional significance of sub-lethal doses of radiation in enhancing tumor cell susceptibility to DR-induced apoptosis was determined by in vitro functional sensitivity assays. The longevity of these changes and the underlying molecular mechanism of irradiation in sensitizing diverse colorectal carcinoma cells to death receptor-mediated apoptosis were also examined. We found that radiation increased surface expression of Fas, DR4 and DR5 but not LTβR or TNF-R1 in these cells. Increased expression of DRs was observed 2 days post-irradiation and remained elevated 7-days post irradiation. Sub-lethal tumor cell irradiation alone exhibited minimal cell death, but effectively sensitized three of three colorectal carcinoma cells to both TRAIL and Fas-induced apoptosis, but not LTβR-induced death. Furthermore, radiation-enhanced Fas and TRAIL-induced cell death lasted as long as 5-days post-irradiation. Specific analysis of intracellular sensitizers to apoptosis indicated that while radiation did reduce Bcl-X(L) and c-FLIP protein expression, this reduction did not correlate with the radiation-enhanced sensitivity to Fas and/or TRAIL mediated apoptosis among the three cell types.
CONCLUSIONS/SIGNIFICANCE: Irradiation of tumor cells can overcome Fas and TRAIL resistance that is long lasting. Overall, results of these investigations suggest that non-lethal doses of radiation can be used to make human tumors more amenable to attack by anti-tumor effector molecules and cells.

Gao J, Yang X, Yin P, et al.
The involvement of FoxO in cell survival and chemosensitivity mediated by Mirk/Dyrk1B in ovarian cancer.
Int J Oncol. 2012; 40(4):1203-9 [PubMed] Free Access to Full Article Related Publications
Minibrain-related kinase (Mirk) is a serine/threonine kinase which is also known as the dual specificity tyrosine-phosphorylation-regulated kinase 1B (Dyrk1B). It is known that Dyrk1A, the closest family member to Mirk/Dyrk1B can mediate cellular localization of mammalian forkhead subclass O (FoxO1), a transcription factor, although the effect of Mirk/Dyrk1B on FoxO factors remains to be defined. In this study, we showed that Mirk/Dyrk1B protein was overexpressed in 5 of 8 ovarian cancer cell lines and negatively correlated with the protein level of FoxO factors (FoxO1+FoxO3A). Knockdown of Mirk by small interfering RNA (siRNA) resulted in cell apoptosis and sensitized cells to cisplatin accompanied by nuclear translocation of FoxO1 and/or FoxO3A as well as increased Bim, TRADD, cleaved caspase-3 and PARP. Furthermore, combined siRNAs of Mirk with FoxO1 and/or FoxO3A led to fewer apoptotic cells and cisplatin sensitivity compared to Mirk siRNA alone, suggesting that FoxO is involved in Mirk-mediated cell survival and chemosensitivity of ovarian cancer. Taken together, Mirk/Dyrk1B plays an important role in ovarian cancer cell survival through modulating FoxO translocation and may be a novel therapeutic target for ovarian cancer.

Park B, Sung B, Yadav VR, et al.
Triptolide, histone acetyltransferase inhibitor, suppresses growth and chemosensitizes leukemic cells through inhibition of gene expression regulated by TNF-TNFR1-TRADD-TRAF2-NIK-TAK1-IKK pathway.
Biochem Pharmacol. 2011; 82(9):1134-44 [PubMed] Free Access to Full Article Related Publications
Triptolide, a diterpene triepoxide, from the Chinese herb Tripterygium wilfordii Hook.f, exerts its anti-inflammatory and immunosuppressive activities by inhibiting the transcription factor nuclear factor-κB (NF-κB) pathway, through a mechanism not yet fully understood. We found that triptolide, in nanomolar concentrations, suppressed both constitutive and inducible NF-κB activation, but did not directly inhibit binding of p65 to the DNA. The diterpene did block TNF-induced ubiquitination, phosphorylation, and degradation of IκBα, the inhibitor of NF-κB and inhibited acetylation of p65 through suppression of binding of p65 to CBP/p300. Triptolide also inhibited the IκBα kinase (IKK) that activates NF-κB and phosphorylation of p65 at serine 276, 536. Furthermore, the NF-κB reporter activity induced by TNF-TNFR1-TRADD-TRAF2-NIK-TAK1-IKKβ was abolished by the triepoxide. Triptolide also abrogated TNF-induced expression of cell survival proteins (XIAP, Bcl-x(L), Bcl-2, survivin, cIAP-1 and cIAP-2), cell proliferative proteins (cyclin D1, c-myc and cyclooxygenase-2), and metastasis proteins (ICAM-1 and MMP-9). This led to enhancement of apoptosis induced by TNF, taxol, and thalidomide by the diterpene and to suppression of tumor invasion. Overall, our results demonstrate that triptolide can block the inflammatory pathway activated by TNF-TNFR1-TRADD-TRAF2-NIK-TAK1-IKK, sensitizes cells to apoptosis, and inhibits invasion of tumor cells.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. TRADD, Cancer Genetics Web: http://www.cancer-genetics.org/TRADD.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 31 August, 2019     Cancer Genetics Web, Established 1999