SPINT2

Gene Summary

Gene:SPINT2; serine peptidase inhibitor, Kunitz type 2
Aliases: PB, Kop, HAI2, DIAR3, HAI-2
Location:19q13.2
Summary:This gene encodes a transmembrane protein with two extracellular Kunitz domains that inhibits a variety of serine proteases. The protein inhibits HGF activator which prevents the formation of active hepatocyte growth factor. This gene is a putative tumor suppressor, and mutations in this gene result in congenital sodium diarrhea. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Oct 2009]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:kunitz-type protease inhibitor 2
Source:NCBIAccessed: 30 August, 2019

Ontology:

What does this gene/protein do?
Show (7)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 30 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 30 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (5)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: SPINT2 (cancer-related)

Dusek J, Skoda J, Holas O, et al.
Stilbene compound trans-3,4,5,4´-tetramethoxystilbene, a potential anticancer drug, regulates constitutive androstane receptor (Car) target genes, but does not possess proliferative activity in mouse liver.
Toxicol Lett. 2019; 313:1-10 [PubMed] Related Publications
The constitutive androstane receptor(CAR) activation is connected with mitogenic effects leading to liver hyperplasia and tumorigenesis in rodents. CAR activators, including phenobarbital, are considered rodent non-genotoxic carcinogens. Recently, trans-3,4,5,4´-tetramethoxystilbene(TMS), a potential anticancer drug (DMU-212), have been shown to alleviate N-nitrosodiethylamine/phenobarbital-induced liver carcinogenesis. We studied whether TMS inhibits mouse Car to protect from the PB-induced tumorigenesis. Unexpectedly, we identified TMS as a murine CAR agonist in reporter gene experiments, in mouse hepatocytes, and in C57BL/6 mice in vivo. TMS up-regulated Car target genes Cyp2b10, Cyp2c29 and Cyp2c55 mRNAs, but down-regulated expression of genes involved in gluconeogenesis and lipogenesis. TMS did not change or down-regulate genes involved in liver proliferation or apoptosis such as Mki67, Foxm1, Myc, Mcl1, Pcna, Bcl2, or Mdm2, which were up-regulated by another Car ligand TCPOBOP. TMS did not increase liver weight and had no significant effect on Ki67 and Pcna labeling indices in mouse liver in vivo. In murine hepatic AML12 cells, we confirmed a Car-independent proapoptotic effect of TMS. We conclude that TMS is a Car ligand with limited effects on hepatocyte proliferation, likely due to promoting apoptosis in mouse hepatic cells, while controlling Car target genes involved in xenobiotic and endobiotic metabolism.

Wong WJ, Pozdnyakova O
Myeloproliferative neoplasms: Diagnostic workup of the cythemic patient.
Int J Lab Hematol. 2019; 41 Suppl 1:142-150 [PubMed] Related Publications
Elevated peripheral blood (PB) cell counts, such as leukocytosis, thrombocytosis, and polycythemia, are often the presenting symptom in patients with myeloproliferative neoplasms (MPN). Because cythemias are nonspecific and may reflect either a reactive or neoplastic process, diagnostic workup of these patients is complicated and requires integration of numerous diagnostic modalities. Careful morphologic evaluation of the PB smear may provide insights into the underlying cause of the abnormal counts (such as the presence of teardrop erythrocytes in myelofibrosis or granulocytic dysplasia with left shift in atypical chronic myeloid leukemia). However, these morphologic findings need to be interpreted in concert with clinical findings and other laboratory results. In recent years, there has been a wealth of new genetic data in the field of MPN and many recurrent mutations have been identified, especially in cases lacking Philadelphia chromosome. Many of these genes impact the diagnosis and/or prognosis. Although certain mutations are preferentially enriched in specific MPN types, none of these mutations are disease defining; therefore, a thorough workup should always include a bone marrow biopsy for morphologic evaluation and diagnosis. This review will describe a comprehensive approach to the diagnosis of various MPN, with an emphasis on the diagnostic and prognostic implications of recurrent mutations in MPN.

Zhang Y, Bandyopadhyay G, Topham DJ, et al.
Highly efficient hypothesis testing methods for regression-type tests with correlated observations and heterogeneous variance structure.
BMC Bioinformatics. 2019; 20(1):185 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: For many practical hypothesis testing (H-T) applications, the data are correlated and/or with heterogeneous variance structure. The regression t-test for weighted linear mixed-effects regression (LMER) is a legitimate choice because it accounts for complex covariance structure; however, high computational costs and occasional convergence issues make it impractical for analyzing high-throughput data. In this paper, we propose computationally efficient parametric and semiparametric tests based on a set of specialized matrix techniques dubbed as the PB-transformation. The PB-transformation has two advantages: 1. The PB-transformed data will have a scalar variance-covariance matrix. 2. The original H-T problem will be reduced to an equivalent one-sample H-T problem. The transformed problem can then be approached by either the one-sample Student's t-test or Wilcoxon signed rank test.
RESULTS: In simulation studies, the proposed methods outperform commonly used alternative methods under both normal and double exponential distributions. In particular, the PB-transformed t-test produces notably better results than the weighted LMER test, especially in the high correlation case, using only a small fraction of computational cost (3 versus 933 s). We apply these two methods to a set of RNA-seq gene expression data collected in a breast cancer study. Pathway analyses show that the PB-transformed t-test reveals more biologically relevant findings in relation to breast cancer than the weighted LMER test.
CONCLUSIONS: As fast and numerically stable replacements for the weighted LMER test, the PB-transformed tests are especially suitable for "messy" high-throughput data that include both independent and matched/repeated samples. By using our method, the practitioners no longer have to choose between using partial data (applying paired tests to only the matched samples) or ignoring the correlation in the data (applying two sample tests to data with some correlated samples). Our method is implemented as an R package 'PBtest' and is available at https://github.com/yunzhang813/PBtest-R-Package .

Zhang W, Liang X, Gong Y, et al.
The Signal Transducer and Activator of Transcription 5B (STAT5B) Gene Promotes Proliferation and Drug Resistance of Human Mantle Cell Lymphoma Cells by Activating the Akt Signaling Pathway.
Med Sci Monit. 2019; 25:2599-2608 [PubMed] Free Access to Full Article Related Publications
BACKGROUND Mantle cell lymphoma (MCL) is a high-grade B-cell lymphoma with poor prognosis. Fludarabine is used alone or in combination for relapsed and advanced-stage MCL. The expression of the signal transducer and activator of transcription 5B (STAT5B) gene is associated with tumorigenesis in solid tumors, but its role in MCL remains unknown. The aims of this study were to investigate the role of STAT5B in GRANTA-519 human mantle cell lymphoma cells and drug resistance. MATERIAL AND METHODS GRANTA-519 human mantle cell lymphoma cells were cultured with and without 10 μM fludarabine dephosphorylated 9-ß-D-arabinofuranosyl-2-fluoroadenine, (2-F-araA) or 10 μM 4-hydroperoxycyclophosphamide (4-HC). The MTT assay assessed cell proliferation. Flow cytometry was used to investigate the cell cycle in MCL cells treated with the specific inhibitor of the Akt pathway, LY294002, and assessed cell cycle and cell apoptosis. Western blot was used to detect the expression levels of p-Akt/Akt and STAT5B/p-STAT5B. The gene expression profiles of lymph node (LN)-derived MCL cells were compared with peripheral blood (PB)-derived lymphocytes using bioinformatics and hierarchical cluster analysis. Quantitative reverse transcription polymerase chain reaction (RT-qPCR) was performed to determine the expression of the marker of proliferation Ki-67 (MKI67) gene. RESULTS STAT5B was significantly upregulated in LN-derived MCL cells compared with PB lymphocytes. Increased expression of STAT5B was associated with increased MCL cell proliferation and reduced cell apoptosis and was associated with drug resistance and activation of Akt. CONCLUSIONS STAT5B promoted cell proliferation and drug resistance in human MCL cells by activating the Akt signaling pathway.

Liu F, Cox CD, Chowdhury R, et al.
SPINT2 is hypermethylated in both IDH1 mutated and wild-type glioblastomas, and exerts tumor suppression via reduction of c-Met activation.
J Neurooncol. 2019; 142(3):423-434 [PubMed] Article available free on PMC after 01/05/2020 Related Publications
PURPOSE: Both IDH1-mutated and wild-type gliomas abundantly display aberrant CpG island hypermethylation. However, the potential role of hypermethylation in promoting gliomas, especially the most aggressive form, glioblastoma (GBM), remains poorly understood.
METHODS: We analyzed RRBS-generated methylation profiles for 11 IDH1
RESULTS: We identified SPINT2 as a candidate tumor-suppressor gene within a group of CpG islands (designated G
CONCLUSIONS: We defined a previously under-recognized group of coordinately methylated CpG islands common to both IDH1

Lobashevsky AL, Krueger-Sersen M, Britton RM, et al.
Pretransplant HLA typing revealed loss of heterozygosity in the major histocompatibility complex in a patient with acute myeloid leukemia.
Hum Immunol. 2019; 80(4):257-262 [PubMed] Related Publications
INTRODUCTION: Chromosomal abnormalities are frequent events in hematological malignancies. The degree of HLA compatibility between donor and recipient in hematopoietic stem cell transplantation is critical.
PURPOSE OF THE STUDY: In this report, we describe an acute myeloid leukemia case with loss of heterozygosity (LOH) encompassing the entire HLA.
MATERIALS AND METHODS: HLA molecular typing was performed on peripheral blood (PB) and buccal swabs (BS). Chromosomal microarray analysis (CMA) was performed using a whole genome platform.
RESULTS: Typing results on PB sample collected during blast crisis demonstrated homozygosity at the -A, -B, -C, -DR, and -DQ loci. A BS sample demonstrated heterozygosity at all loci. A subsequent PB sample drawn after count recovery confirmed heterozygosity. The CMA performed on PB samples collected during and after blast crisis revealed a large terminal region of copy-neutral LOH involving chromosome region 6p25.3p21.31, spanning approximately 35.9 Mb. The results of the CMA assay on sample collected after count recovery did not demonstrate LOH.
CONCLUSIONS: LOH at the HLA gene locus may significantly influence the donor search resulting in mistakenly choosing homozygous donors. We recommend confirming the HLA typing of recipients with hematological malignancies when homozygosity is detected at any locus by using BS samples, or alternatively from PB when remission is achieved.

Kuo IY, Huang YL, Lin CY, et al.
SOX17 overexpression sensitizes chemoradiation response in esophageal cancer by transcriptional down-regulation of DNA repair and damage response genes.
J Biomed Sci. 2019; 26(1):20 [PubMed] Article available free on PMC after 01/05/2020 Related Publications
BACKGROUND: Prognosis of esophageal squamous cell carcinoma (ESCC) patients is poor and the concurrent chemoradiation therapy (CCRT) provided to ESCC patients often failed due to resistance. Therefore, development of biomarkers for predicting CCRT response is immensely important. In this study, we evaluated the predicting value of SRY (sex determining region Y)-box 17 (SOX17) protein during CCRT and its dysregulation of transcriptional targets in CCRT resistance in ESCC.
METHODS: Pyrosequencing methylation, RT-qPCR and immunohistochemistry assays were performed to examine the DNA methylation, mRNA expression and protein expression levels of SOX17 in endoscopic biopsy from a total of 70 ESCC patients received CCRT. Cell proliferation, clonogenic survival and xenograft growth were used to confirm the sensitization of ESCC cell line KYSE510 in response to cisplatin, radiation or CCRT treatment by SOX17 overexpression in vitro and in vivo. Luciferase activity, RT-qPCR and ChIP-qPCR assays were conducted to examine transcription regulation of SOX17 in KYSE510 parental, KYSE510 radio-resistant cells and their derived xenografts.
RESULTS: High DNA methylation coincided with low mRNA and protein expression levels of SOX17 in pre-treatment endoscopic biopsy from ESCC patients with poor CCRT response. SOX17 protein expression exhibited a good prediction performance in discriminating poor CCRT responders from good responder. Overexpression of SOX17 sensitized KYSE510 radio-resistant cells to cisplatin, radiation or CCRT treatment in cell and xenograft models. Importantly, SOX17 transcriptionally down-regulated DNA repair and damage response-related genes including BRCA1, BRCA2, RAD51, KU80 DNAPK, p21, SIRT1, NFAT5 and REV3L in KYSE510 radio-resistant cells to achieve the sensitization effect to anti-cancer treatment. Low expression of BRCA1, DNAPK, p21, RAD51 and SIRT1 was confirmed in SOX17 sensitized xenograft tissues derived from radio-resistant ESCC cells.
CONCLUSIONS: Our study reveals a novel mechanism by which SOX17 transcriptionally inactivates DNA repair and damage response-related genes to sensitize ESCC cell or xenograft to CCRT treatment. In addition, we establish a proof-of-concept CCRT prediction biomarker using SOX17 immunohistochemical staining in pre-treatment endoscopic biopsies to identify ESCC patients who are at high risk of CCRT failure and need intensive care.

Cao Y, Huang HY, Chen LQ, et al.
Enhanced Lysosomal Escape of pH-Responsive Polyethylenimine-Betaine Functionalized Carbon Nanotube for the Codelivery of Survivin Small Interfering RNA and Doxorubicin.
ACS Appl Mater Interfaces. 2019; 11(10):9763-9776 [PubMed] Related Publications
The combination of gene therapy and chemotherapy has recently received considerable attention for cancer treatment. However, low transfection efficiency and poor endosomal escape of genes from nanocarriers strongly limit the success of the clinical use of small interfering RNA (siRNA). In this study, a novel pH-responsive, surface-modified single-walled carbon nanotube (SWCNT) was designed for the codelivery of doxorubicin (DOX) and survivin siRNA. Polyethylenimine (PEI) was covalently conjugated with betaine, and the resulting PEI-betaine (PB) was further synthesized with the oxidized SWCNT to form SWCNT-PB (SPB), which exhibits an excellent pH-responsive lysosomal escape of siRNA. SPB was modified with the targeting and penetrating peptide BR2 (SPBB), thereby achieving considerably higher uptake of siRNA than SWCNT-PEI (SP) or SPB. Furthermore, SPBB-siRNA presented substantially lower survivin expression and higher apoptotic index than Lipofectamine 2000. DOX and survivin siRNA were adsorbed onto SPB to form DOX-SPBB-siRNA, and siRNA/DOX was released into the cytoplasm and nuclei of adenocarcinomic human alveolar basal epithelial (A549) cells without lysosomal retention. Compared with SPBB-siRNA or DOX-SPBB treatment alone, DOX-SPBB-siRNA significantly reduced tumor volume in A549 cell-bearing nude mice, demonstrating the synergistic effects of DOX and survivin siRNA. Pathological analysis also indicated the potential therapeutic effects of DOX-SPBB-siRNA on tumors without distinct damages to normal tissues. In conclusion, the novel functionalized SWCNT loaded with DOX and survivin siRNA was successfully synthesized, and the nanocomplex exhibited effective antitumor effects both in vitro and in vivo, thereby providing an alternative strategy for the codelivery of antitumor drugs and genes.

Savva C, De Souza K, Ali R, et al.
Clinicopathological significance of ataxia telangiectasia-mutated (ATM) kinase and ataxia telangiectasia-mutated and Rad3-related (ATR) kinase in MYC overexpressed breast cancers.
Breast Cancer Res Treat. 2019; 175(1):105-115 [PubMed] Article available free on PMC after 01/05/2020 Related Publications
PURPOSE: MYC transcription factor has critical roles in cell growth, proliferation, metabolism, differentiation, transformation and angiogenesis. MYC overexpression is seen in about 15% of breast cancers and linked to aggressive phenotypes. MYC overexpression also induces oxidative stress and replication stress in cells. ATM signalling and ATR-mediated signalling are critical for MYC-induced DNA damage response. Whether ATM and ATR expressions influence clinical outcomes in MYC overexpressed breast cancers is unknown.
METHODS: We investigated ATM, ATR and MYC at the transcriptional level [Molecular Taxonomy of Breast Cancer International Consortium cohort (n = 1950)] and at the protein level in the Nottingham series comprising 1650 breast tumours. We correlated ATM, ATR and MYC expressions to clinicopathological features and survival outcomes.
RESULTS: In MYC over expressed tumours, high ATR or low ATM levels were associated with aggressive breast cancer features such as higher tumour grade, de-differentiation, pleomorphism, high mitotic index, high-risk Nottingham Prognostic Index, triple negative and basal-like breast cancers (all adjusted p values < 0.05). Tumours with low ATM or high ATR levels in conjunction with MYC overexpression also have worse overall breast cancer-specific survival (BCSS) (p value < 0.05).
CONCLUSIONS: We conclude that ATR/ATM-directed stratification and personalisation of therapy may be feasible in MYC overexpressed breast cancer.

Arnoldussen YJ, Kringlen Ervik T, Samulin Erdem J, et al.
Mechanisms of Toxicity of Industrially Relevant Silicomanganese Dust on Human 1321N1 Astrocytoma Cells: An In Vitro Study.
Int J Mol Sci. 2019; 20(3) [PubMed] Article available free on PMC after 01/05/2020 Related Publications
Tremendous efforts are applied in the ferroalloy industry to control and reduce exposure to dust generated during the production process, as inhalable Mn-containing particulate matter has been linked to neurodegenerative diseases. This study aimed to investigate the toxicity and biological effects of dust particles from laboratory-scale processes where molten silicomanganese (SiMn) was exposed to air, using a human astrocytoma cell line, 1321N1, as model system. Characterization of the dust indicated presence of both nano-sized and larger particles averaging between 100 and 300 nm. The dust consisted mainly of Si, Mn and O. Investigation of cellular mechanisms showed a dose- and time-dependent effect on cell viability, with only minor changes in the expression of proteins involved in apoptosis. Moreover, gene expression of the neurotoxic biomarker

Tanaka T, Kojima K, Yokota K, et al.
Comprehensive Genetic Search to Clarify the Molecular Mechanism of Drug Resistance Identifies ASCL2-LEF1/TSPAN8 Axis in Colorectal Cancer.
Ann Surg Oncol. 2019; 26(5):1401-1411 [PubMed] Related Publications
BACKGROUND: Treatment-resistance genes limiting anticancer therapy have not been well clarified in colorectal cancer (CRC). We explored gene expression profiles to identify biomarkers for predicting treatment resistance to an anticancer drug in CRC.
METHODS: Six CRC cell lines were treated with phenylbutyrate (PB). The gene expression profiles were then compared using microarrays (harboring 54,675 genes), and genes associated with PB resistance were identified. Candidate genes were functionally examined in cell lines and clinically validated for treatment resistance in clinical samples.
RESULTS: Both DLD1 and HCT15 cells were PB resistant, while HCT116 cells were identified as PB sensitive. On microarray analysis, among the PB resistance-related genes, the expression of the genes ASCL2, LEF1, and TSPAN8 was clearly associated with PB resistance. PB-sensitive cells transfected with one of these three genes exhibited significant (P < 0.001) augmentation of PB resistance; ASCL2 induced expression of both LEF1 and TSPAN8, while neither LEF1 nor TSPAN8 induced ASCL2. RNA interference via ASCL2 knockdown made PB-resistant cells sensitive to PB and inhibited both genes. ASCL2 knockdown also played a critical role in sensitivity to treatment by 5-fluorouracil and radiotherapy in addition to PB. Finally, ASCL2 expression was significantly correlated with histological grade of rectal cancer with preoperative chemoradiation therapy.
CONCLUSIONS: ASCL2 was identified as a causative gene involved in therapeutic resistance against anticancer treatments in CRC.

Nezos A, Gkioka E, Koutsilieris M, et al.
TNFAIP3 F127C Coding Variation in Greek Primary Sjogren's Syndrome Patients.
J Immunol Res. 2018; 2018:6923213 [PubMed] Article available free on PMC after 01/05/2020 Related Publications
Tumor necrosis factor, alpha-induced protein 3 (

Arnoldussen YJ, Kringlen Ervik T, Baarnes Eriksen M, et al.
Cellular Responses of Industrially Relevant Silica Dust on Human Glial Cells In Vitro.
Int J Mol Sci. 2019; 20(2) [PubMed] Article available free on PMC after 01/05/2020 Related Publications
Despite the rigorous emission control measures in the ferroalloy industry, there are still emissions of dust during the production of various alloys. Dust particles were collected from laboratory scale processes where oxide particulate matter was formed from liquid silicon (metallurgical grade). The dust was produced in a dry air atmosphere to mimic industrial conditions. To investigate possible effects of ultrafine dust on the central nervous system, a human astrocytic cell line was employed to investigate inflammatory effects of particles as astrocytes play a number of active and neuron supporting roles in the brain. Toxicity on the astrocytes by amorphous silica generated in laboratory scale was compared to crystalline macro-sized silica using several doses to determine toxicological dose response curves. The cell viability experiments indicated that low particle doses of amorphous silica induced a small nonsignificant reduction in cell viability compared to crystalline silica which led to increased levels of toxicity. The gene expression of amyloid precursor protein (APP), a biomarker of neurodegenerative disease, was affected by particle exposure. Furthermore, particle exposure, in a dose-and time-dependent manner, affected the ability of the cells to communicate through gap junction channels. In conclusion, in vitro studies using low doses of particles are important to understand mechanisms of toxicity of occupational exposure to silica particles. However, these studies cannot be extrapolated to real exposure scenarios at work place, therefore, controlling and keeping the particle exposure levels low at the work place, would prevent potential negative health effects.

Zhang Y, Charlton J, Karnik R, et al.
Targets and genomic constraints of ectopic Dnmt3b expression.
Elife. 2018; 7 [PubMed] Article available free on PMC after 01/05/2020 Related Publications
DNA methylation plays an essential role in mammalian genomes and expression of the responsible enzymes is tightly controlled. Deregulation of the de novo DNA methyltransferase DNMT3B is frequently observed across cancer types, yet little is known about its ectopic genomic targets. Here, we used an inducible transgenic mouse model to delineate rules for abnormal DNMT3B targeting, as well as the constraints of its activity across different cell types. Our results explain the preferential susceptibility of certain CpG islands to aberrant methylation and point to transcriptional state and the associated chromatin landscape as the strongest predictors. Although DNA methylation and H3K27me3 are usually non-overlapping at CpG islands, H3K27me3 can transiently co-occur with DNMT3B-induced DNA methylation. Our genome-wide data combined with ultra-deep locus-specific bisulfite sequencing suggest a distributive activity of ectopically expressed Dnmt3b that leads to discordant CpG island hypermethylation and provides new insights for interpreting the cancer methylome.

Chasapis CT
Shared gene-network signatures between the human heavy metal proteome and neurological disorders and cancer types.
Metallomics. 2018; 10(11):1678-1686 [PubMed] Related Publications
In this work, for the first time, the human heavy metal proteome was predicted. According to the results, aluminum, cadmium, mercury and lead metalloproteomes might constitute up to 8.9%, 18.4%, 15% and 4% of the entire human proteome, respectively. The abundance of the predicted heavy metal-binding proteins in various organ-specific proteomes was retrieved from the Human Protein Atlas database showing higher expression profiles for Cd- and Hg-binding proteins in all studied organs (especially in the prostate, heart and pancreas) compared with the other heavy metals. Possible perturbations in cellular trafficking and homeostasis of essential metals by heavy metal proteomes were highlighted. Furthermore, this study showed that molecular linkages between heavy metal proteomes and major neurological disorders or various types of cancer were more significant for Cd followed by Hg, Al and Pb. Interestingly, integrated gene network analysis revealed that Cd and Hg proteomes share so far unknown gene circuits with these two types of disorder.

Wagener R, López C, Kleinheinz K, et al.
IG-
Blood. 2018; 132(21):2280-2285 [PubMed] Article available free on PMC after 22/11/2019 Related Publications
The

Ferreira LB, Lima RT, Bastos ACSDF, et al.
OPNa Overexpression Is Associated with Matrix Calcification in Thyroid Cancer Cell Lines.
Int J Mol Sci. 2018; 19(10) [PubMed] Article available free on PMC after 22/11/2019 Related Publications
Osteopontin (OPN) spliced variants (OPN-SV: OPNa, OPNb, and OPNc) are aberrantly expressed in tumors and frequently associated with cancer progression. This holds true for papillary thyroid carcinoma (PTC), which is the most common type of thyroid cancer (TC). PTC often presents with desmoplasia and dystrophic calcification, including psammoma bodies (PB). This work aimed to investigate total OPN (tOPN) and OPN-SV expression and their association with the presence of PB in the PTC classical variants (cPTC), as well as the involvement of OPN-SV in matrix calcification of TC cell lines. We found that cPTC samples presenting PB showed higher OPN expression levels. In TC cell lines, OPNa overexpression promotes higher matrix calcification and collagen synthesis when compared to that of clones overexpressing OPNb or OPNc. In response to OPN knockdown, calcification was inhibited, paralleled with the downregulation of calcification markers. In conclusion, our data evidenced that OPN expression is associated with the presence of PB in cPTC samples. Among the OPN-SV, OPNa is the main contributor to matrix calcification in tested TC cells, providing clues to a better understanding on the biology and ethiopathogenesis of the calcification process in TC cells.

Xu H, Yao F
Microarray-Based Gene Expression Analysis Identifies Potential Diagnostic and Prognostic Biomarkers for Waldenström Macroglobulinemia.
Acta Haematol. 2018; 140(2):87-96 [PubMed] Related Publications
Waldenström macroglobulinemia (WM), also known as lymphoplasmacytic lymphoma, is rare but a clinicopathologically distinct B-cell malignancy. This study assessed differentially expressed genes (DEGs) to identify potential WM biomarkers and uncover the underlying the molecular mechanisms of WM progression using gene expression profiles from the Gene Expression Omnibus database. DEGs were identified using the LIMMA package and their potential functions were then analyzed by using the gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses and the protein-protein interaction (PPI) network analysis by using the Search Tool for the Retrieval of Interacting Genes/Proteins database. Data showed that among 1,756 DEGs, 926 were upregulated and 830 were downregulated by comparing WM BM CD19+ with normal PB CD19+ B cell samples, whereas 241 DEGs (95 upregulated and 146 downregulated) were identified by comparing WM BM CD138+ with normal BM CD138+ plasma cell samples. The DEGs were enriched in different GO terms and pathways, including the apoptotic process, cell cycle arrest, immune response, cell adhesion, mitogen-activated protein kinase signaling pathway, toll-like receptor signaling pathway, and the gonadotropin-releasing hormone signaling pathway. Hub nodes in the PPI network included CDK1, JUN, CREBBP, EP300, CAD, CDK2, and MAPK14. Bioinformatics analysis of the GSE9656 dataset identified 7 hub genes that might play an important role in WM development and progression. Some of the candidate genes and pathways may serve as promising therapeutic targets for WM.

Li N, Jilisihan B, Wang W, et al.
Soluble LAG3 acts as a potential prognostic marker of gastric cancer and its positive correlation with CD8+T cell frequency and secretion of IL-12 and INF-γ in peripheral blood.
Cancer Biomark. 2018; 23(3):341-351 [PubMed] Related Publications
OBJECTIVE: Gastric cancer (GC) is the second most common lethal cancer worldwide and lymphocyte-activation gene 3 (LAG3) as a therapeutic target for cancers has been investigated. Herein, our study is to clarify the value of peripheral blood (PB) soluble LAG-3 (sLAG3) in GC.
METHODS: Peripheral serum samples of GC patients and healthy people were collected for the measurement of serum levels of sLAG3, carcinoembryonic antigen (CEA), IL-12 and IFN-γ. Additionally, ROC and Kaplan-Meier curves were adopted to identify the diagnostic and prognostic values of sLAG-3 in patients with GC. Then, GC-bearing mice were treated with recombinant sLAG3. The tumor volume was measured, and CD8+T cell frequency was detected in PB and tumor-ininfiltrating area. Additionally, the expression of IL-12 and IFN-γ in T cells was assayed and the overall survival of mice was analyzed.
RESULTS: sLAG3 in PB was poorly expressed and its expression was positively correlated with IL-12 and IFN-γ expression in GC patients. sLAG3 was proved to have a higher diagnostic value than CEA in GC. Moreover, high sLAG-3 expression is found in relation to a better prognosis in GC. The in vivo experiments indicated that sLAG-3 might inhibit the tumor growth, and promote the secretion of CD8+T cells, IL-12 and IFN-γ. Furthermore, sLAG-3 was able to prolong overall survival and increase survival rate of GC-bearing mice.
CONCLUSION: Based on these findings, we conclude that sLAG3 positively regulates CD8+T cells, IL-12 and IFN-γ, and function as a prognostic marker for GC, which might be a potential target in the treatment of GC.

Ito S, Fukagawa T, Noda M, et al.
Prognostic Impact of Immune-Related Gene Expression in Preoperative Peripheral Blood from Gastric Cancer Patients.
Ann Surg Oncol. 2018; 25(12):3755-3763 [PubMed] Related Publications
BACKGROUND: Anti-PD-1 therapy has shown a promising clinical outcome in gastric cancer (GC). We evaluated the clinical significance of systemic immune-related gene expression in GC patients who underwent surgery.
METHODS: The correlation between the preoperative PD-1, PD-L1, and CD8 mRNA levels in peripheral blood (PB) and clinicopathological factors, including survival, in 372 GC patients was evaluated using quantitative RT-PCR. PD-1- and PD-L1-expressing cells were identified by flow cytometric analysis.
RESULTS: The PD-1, PD-L1, and CD8 mRNA levels in GC patients were significantly higher than those in normal controls, respectively (all P < 0.0001). The levels of each gene were positively correlated with those of the other two genes (all P < 0.0001). GC patients with low PD-1, high PD-L1, and low CD8 mRNA levels had significantly poorer overall survival (OS) than those with high PD-1, low PD-L1, and high CD8 mRNA levels, respectively (P < 0.01, P < 0.05, and P < 0.05, respectively). Multivariate analysis showed that low PD-1 and high PD-L1 mRNA levels were independent poor prognostic factors for OS (PD-1: HR 2.38, 95% CI 1.27-4.78, P < 0.01; PD-L1: HR 1.81, 95% CI 1.15-2.78, P < 0.05). PD-1 and PD-L1 expression occurred on T cells (> 90%) and T cells or monocytes (> 70%), respectively.
CONCLUSIONS: The PD-1, PD-L1, and CD8 mRNA levels in preoperative PB reflected the anti-tumour immune response, and the low PD-1 and high PD-L1 mRNA levels in PB were independent poor prognostic markers in GC patients who underwent surgery.

Duggimpudi S, Kloetgen A, Maney SK, et al.
Transcriptome-wide analysis uncovers the targets of the RNA-binding protein MSI2 and effects of MSI2's RNA-binding activity on IL-6 signaling.
J Biol Chem. 2018; 293(40):15359-15369 [PubMed] Article available free on PMC after 05/10/2019 Related Publications
The RNA-binding protein Musashi 2 (MSI2) has emerged as an important regulator in cancer initiation, progression, and drug resistance. Translocations and deregulation of the

Palma M, Krstic A, Peña Perez L, et al.
Ibrutinib induces rapid down-regulation of inflammatory markers and altered transcription of chronic lymphocytic leukaemia-related genes in blood and lymph nodes.
Br J Haematol. 2018; 183(2):212-224 [PubMed] Related Publications
In chronic lymphocytic leukaemia (CLL) patients, treatment with the Bruton tyrosine kinase inhibitor ibrutinib induces a rapid shift of tumour cells from lymph nodes (LN) to peripheral blood (PB). Here, we characterized in depth the dynamics of ibrutinib-induced inflammatory, transcriptional and cellular changes in different compartments immediately after treatment initiation in seven relapsed/refractory CLL patients. Serial PB and LN samples were taken before start and during the first 29 days of treatment. Changes in plasma inflammation-related biomarkers, CLL cell RNA expression, B-cell activation and migration markers expression, and PB mononuclear cell populations were assessed. A significant reduction of 10 plasma inflammation markers, the majority of which were chemokines and not CLL-derived, was observed within hours, and was paralleled by very early increase of CD19

Wu SG, Liu YN, Yu CJ, et al.
Driver mutations of young lung adenocarcinoma patients with malignant pleural effusion.
Genes Chromosomes Cancer. 2018; 57(10):513-521 [PubMed] Related Publications
Young lung cancer patients have several distinct characteristics. However, there are limited epidemiological data of genetic abnormalities in this population. We conducted a prospective cohort study to delineate the various oncogenic driver mutations of lung adenocarcinoma in young Asian patients. We consecutively collected malignant pleural effusions (MPEs) from lung adenocarcinoma patients. RNA was extracted from MPEs for mutation analysis by reverse transcription-polymerase chain reaction and direct sequencing. Selected gene mutations for testing included EGFR, HER2, BRAF, KRAS, PIK3CA, JAK2, MEK1, NRAS, and AKT2 mutations, as well as EML4-ALK, ROS1, and RET fusions. We collected MPEs from 142 patients aged ≤50 years and 730 patients aged >50 years. Patients aged ≤50 years (91%) had a higher incidence of driver gene mutations than those aged >50 years (84%; P = .036), especially EML4-ALK (P < .001) and ROS1 (P < .001). Among patients aged ≤50 years, EGFR mutation was the major oncogenic driver mutation. The mutation rates of other genes were 18% EML4-ALK, 6% ROS1, 5% HER2, 1% RET, 1% BRAF, and 1% KRAS. We did not detect PIK3CA, JAK2, MEK1, NRAS, or AKT2 mutations. No difference in gender or smoking history was noted among those with different driver mutations. Patients who had a good performance status or received appropriate targeted therapy had longer overall survival. In conclusion, lung adenocarcinoma in Asian patients aged ≤50 years had a higher gene mutation rate than in those aged >50 years, especially EML4-ALK and ROS1 fusion. Mutation analysis may be helpful in determining targeted therapy for the majority of these patients.

Turkez H, Tozlu OO, Lima TC, et al.
A Comparative Evaluation of the Cytotoxic and Antioxidant Activity of
Oxid Med Cell Longev. 2018; 2018:2083923 [PubMed] Article available free on PMC after 05/10/2019 Related Publications
Cancer is a major public health problem around the globe. This disorder is affected by alterations in multiple physiological processes, and oxidative stress has been etiologically implicated in its pathogenesis. Glioblastoma (GBM) is considered the most common and aggressive brain tumor with poor prognosis despite recent improvements in surgical, radiation, and chemotherapy-based treatment approaches. The purpose of this study was to evaluate antitumor activity from

Moore DA, Balbi K, Ingham A, et al.
Analysis of a large cohort of non-small cell lung cancers submitted for somatic variant analysis demonstrates that targeted next-generation sequencing is fit for purpose as a molecular diagnostic assay in routine practice.
J Clin Pathol. 2018; 71(11):1001-1006 [PubMed] Related Publications
AIMS: Targeted next-generation sequencing (tNGS) is increasingly being adopted as an alternative to single gene testing in some centres. Our aim was to assess the overall fitness and utility of tNGS as a routine clinical test in non-small cell lung cancer (NSCLC).
METHODS: All NSCLC cases submitted to a single laboratory for tNGS analysis over a 3-year period were included. Rejection/failure rates and turnaround times were calculated. For reportable cases, data relating to observed genetic changes likely to be driving tumour growth and/or contributing to therapeutic resistance were extracted. The impact of varied referral site practices (tissue processing and sample format submitted) on analytical outcomes was also considered.
RESULTS: A total of 2796 cases were submitted, of which 217 (7.8%) were rejected and 131 (5.1%) failed. The median turnaround time was seven working days. Of 2448 reported cases, KRAS, EGFR or other recognised driver mutations were observed in 35%, 17% and 5.4%, respectively. Of the remaining cases, 3.5% demonstrated significant incidental evidence of gene amplification. In 15% of EGFR-driven cases, evidence of an EGFR tyrosine kinase inhibitor resistance mechanism was observed. Potential concerns around the provision of slides or precut 'rolls' only (cf, formalin fixed paraffin embedded (FFPE) tissue blocks) as standard practice by certain referral sites were identified.
CONCLUSIONS: A tNGS panel approach is practically achievable, with acceptable success rates and turnaround times, in the context of a routine clinical service. Furthermore, it provides additional clinically and analytically relevant information, which is not available from single gene testing alone.

Białkowska K, Marciniak W, Muszyńska M, et al.
Association of zinc level and polymorphism in MMP-7 gene with prostate cancer in Polish population.
PLoS One. 2018; 13(7):e0201065 [PubMed] Article available free on PMC after 05/10/2019 Related Publications
INTRODUCTION: Prostate cancer is one of the most commonly diagnosed malignancies among men in Western populations. Evidence reported in the literature suggests that zinc may be related to prostate cancer. In this study we evaluated the association of serum zinc levels and polymorphisms in genes encoding zinc-dependent proteins with prostate cancer in Poland.
METHODS: The study group consisted of 197 men affected with prostate cancer and 197 healthy men. Serum zinc levels were measured and 5 single nucleotide polymorphisms in MMP-1, MMP-2, MMP-7, MMP-13, MT2A genes were genotyped.
RESULTS: The mean serum zinc level was higher in prostate cancer patients than in healthy controls (898.9±12.01 μg/l vs. 856.6±13.05 μg/l, p<0.01). When compared in quartiles a significant association of higher zinc concentration with the incidence of prostate cancer was observed. The highest OR (OR = 4.41, 95%CI 2.07-9.37, p<0.01) was observed in 3rd quartile (>853.0-973.9 μg/l). Among five analyzed genetic variants, rs11568818 in MMP-7 appeared to be correlated with 2-fold increased prostate cancer risk (OR = 2.39, 95% CI = 1.19-4.82, p = 0.015).
CONCLUSION: Our results suggest a significant correlation of higher serum zinc levels with the diagnosis of prostate cancer. The polymorphism rs11568818 in MMP-7 gene was also associated with an increased prostate cancer risk in Poland.

Fernandes E Silva E, Figueira FS, Cañedo AD, et al.
C-phycocyanin to overcome the multidrug resistance phenotype in human erythroleukemias with or without interaction with ABC transporters.
Biomed Pharmacother. 2018; 106:532-542 [PubMed] Related Publications
The phenotype of multidrug resistance (MDR) is one of the main causes of chemotherapy failure. Our study investigated the effect of C-phycocyanin (C-PC) in three human erythroleukemia cell lines with or without the MDR phenotype: K562 (non-MDR; no overexpression of drug efflux proteins), K562-Lucena (MDR; overexpression of ATP-binding cassette, sub-family B/ABCB1), and FEPS (MDR; overexpression of ABCB1 and ATP-binding cassette, sub-family C/ABCC1). Using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, we showed that 20 and 200 μg/mL C-PC decreased K562 viable cells after 24 h and 200 μg/mL C-PC decreased K562-Lucena cell proliferation after 48 h. C-PC did not decrease viable cells of FEPS cells. On the other hand, the MTT assay showed that exposure of 2, 20, and 200 μg/mL C-PC for 24 or 48 h was not cytotoxic to peritoneal macrophages. At 72 h, the trypan blue exclusion assay showed that 20 μg/mL C-PC decreased K562 and K562-Lucena cell proliferation and in FEPS cells, only 200 μg/mL C-PC decreased proliferation. In addition, protein-protein docking showed differences in energy and binding sites of ABCB1 and ABCC1 for C-PC, and these results were confirmed by the efflux protein activity assay. Only ABCC1 activity was altered in the presence of C-PC and FEPS cells showed lower C-PC accumulation, suggesting C-PC extrusion by ABCC1, conferring C-PC resistance. In combination with chemotherapy (vincristine [VCR] and daunorubicin [DNR]), the sensitivity of K562-Lucena cells for C-PC + VCR did not increase, whereas FEPS cell sensitivity for C-PC + DNR was increased. In molecular docking experiments, the estimated free energies of binding for C-PC associated with chemotherapy were similar (VCR: -6.9 kcal/mol and DNR: -7.2 kcal/mol) and these drugs were located within the C-PC cavity. However, C-PC exhibited specificity for tumor cells and K562 cells were more sensitive than K562-Lucena cells, followed by FEPS cells. Thus, C-PC is a possible chemotherapeutic agent for cells with the MDR phenotype, both alone in K562-Lucena cells (resistance due to ABCB1), or in combination with other drugs for cells similar to FEPS (resistance due to ABCC1). Moreover, C-PC did not damage healthy cells (peritoneal macrophages of Mus musculus).

Fukushima T, Kawaguchi M, Yamamoto K, et al.
Aberrant methylation and silencing of the SPINT2 gene in high-grade gliomas.
Cancer Sci. 2018; 109(9):2970-2979 [PubMed] Article available free on PMC after 05/10/2019 Related Publications
Hepatocyte growth factor activator inhibitor type 2 (HAI-2), encoded by the SPINT2 gene, is a membrane-anchored protein that inhibits proteases involved in the activation of hepatocyte growth factor (HGF), a ligand of MET receptor. Epigenetic silencing of the SPINT2 gene has been reported in a human glioblastoma cell line (U87) and glioblastoma-derived cancer stem cells. However, the incidence of SPINT2 methylation in tumor tissues obtained from glioma patients is unknown. In this study, we analyzed the methylation status of the SPINT2 gene of eight human glioblastoma cell lines and surgically resected glioma tissues of different grades (II, III, and IV) by bisulfite sequence analysis and methylation-specific PCR. Most glioblastoma lines (7/8) showed methylation of the SPINT2 gene with a significantly reduced level of SPINT2mRNA compared to cultured astrocytes and normal brain tissues. However, all glioblastoma lines expressed mRNA for HGF activator (HGFAC), a target protease of HAI-2/SPINT2. Forced expression of SPINT2 reduced MET phosphorylation of U87 glioblastoma cells both in vitro and in intracranial xenografts in nude mice. Methylation-specific PCR analysis of the resected glioma tissues indicated notable methylation of the SPINT2 gene in 33.3% (2/6), 71.4% (10/14), and 74.3% (26/35) of grade II, III, and IV gliomas, respectively. Analysis of RNA sequencing data in a public database indicated an increased HGFAC/SPINT2 expression ratio in high-grade compared to low-grade gliomas (P = .01). In summary, aberrant methylation of the SPINT2 gene is frequently observed in high-grade gliomas and might confer MET signaling in the glioma cells.

Wichert S, Pettersson Å, Hellmark T, et al.
Bone marrow eosinophils in plasma cell disorders.
Exp Hematol. 2018; 66:27-31.e5 [PubMed] Related Publications
In experimental studies, eosinophils have been shown to promote the survival, proliferation, and retention of plasma cells in the bone marrow (BM). The clinical significance of eosinophils in plasma cell disorders (PCDs) in humans is largely unknown. This study focuses on the frequency and phenotype of eosinophils in the BM and peripheral blood (PB) in patients with untreated PCD compared with healthy controls. The number of eosinophils per se did not correlate with the number of BM plasma cells or disease stage. The expression of chemokine receptor 4, which is important in the homing capacity to bone marrow stromal cells, was significantly higher in patient eosinophils and increased with disease stage. BM eosinophils from patients, especially from those with manifest disease, were more activated. Another finding in this study was that eosinophils in PB and BM from both patients and healthy controls expressed CD80 (B7-1). We discuss probable immunomodulatory consequences of surface expression of CD80 by eosinophils in conditions with marked T-cell exhaustion (e.g., multiple myeloma). Finally, we found that patients treated with corticosteroids had low levels of circulating eosinophils but preserved levels of eosinophils in the BM.

Hartana CA, Ahlén Bergman E, Zirakzadeh AA, et al.
Urothelial bladder cancer may suppress perforin expression in CD8+ T cells by an ICAM-1/TGFβ2 mediated pathway.
PLoS One. 2018; 13(7):e0200079 [PubMed] Article available free on PMC after 05/10/2019 Related Publications
The immune system plays a significant role in urothelial bladder cancer (UBC) progression, with CD8+ T cells being capable to directly kill tumor cells using perforin and granzymes. However, tumors avoid immune recognition by escape mechanisms. In this study, we aim to demonstrate tumor immune escape mechanisms that suppress CD8+ T cells cytotoxicity. 42 patients diagnosed with UBC were recruited. CD8+ T cells from peripheral blood (PB), sentinel nodes (SN), and tumor were analyzed in steady state and in vitro-stimulated conditions by flow cytometry, RT-qPCR, and ELISA. Mass spectrometry (MS) was used for identification of proteins from UBC cell line culture supernatants. Perforin was surprisingly found to be low in CD8+ T cells from SN, marked by 1.8-fold decrease of PRF1 expression, with maintained expression of granzyme B. The majority of perforin-deficient CD8+ T cells are effector memory T (TEM) cells with exhausted Tc2 cell phenotype, judged by the presence of PD-1 and GATA-3. Consequently, perforin-deficient CD8+ T cells from SN are low in T-bet expression. Supernatant from muscle invasive UBC induces perforin deficiency, a mechanism identified by MS where ICAM-1 and TGFβ2 signaling were causatively validated to decrease perforin expression in vitro. Thus, we demonstrate a novel tumor escape suppressing perforin expression in CD8+ T cells mediated by ICAM-1 and TGFβ2, which can be targeted in combination for cancer immunotherapy.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. SPINT2, Cancer Genetics Web: http://www.cancer-genetics.org/SPINT2.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 30 August, 2019     Cancer Genetics Web, Established 1999