RAD21

Gene Summary

Gene:RAD21; RAD21 cohesin complex component
Aliases: MGS, HR21, MCD1, NXP1, SCC1, CDLS4, hHR21, HRAD21
Location:8q24.11
Summary:The protein encoded by this gene is highly similar to the gene product of Schizosaccharomyces pombe rad21, a gene involved in the repair of DNA double-strand breaks, as well as in chromatid cohesion during mitosis. This protein is a nuclear phospho-protein, which becomes hyperphosphorylated in cell cycle M phase. The highly regulated association of this protein with mitotic chromatin specifically at the centromere region suggests its role in sister chromatid cohesion in mitotic cells. [provided by RefSeq, Jul 2008]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:double-strand-break repair protein rad21 homolog
Source:NCBIAccessed: 31 August, 2019

Ontology:

What does this gene/protein do?
Show (19)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 31 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Antigens, Nuclear
  • DNA Repair
  • Messenger RNA
  • Receptor, erbB-2
  • Apoptosis
  • Chromosomal Proteins, Non-Histone
  • Chromosomal Instability
  • Breast Cancer
  • Chromatin
  • siRNA
  • DNA Replication
  • Mitosis
  • Cell Cycle Proteins
  • Genes, Neoplasm
  • Drug Resistance
  • Gene Amplification
  • Proto-Oncogene Proteins
  • Cancer Gene Expression Regulation
  • Cell Proliferation
  • Case-Control Studies
  • Nuclear Proteins
  • Genetic Predisposition
  • Biomarkers, Tumor
  • Gene Expression Profiling
  • Neoplasm Proteins
  • Promoter Regions
  • Signal Transduction
  • Antineoplastic Agents
  • Chromosome 8
  • Trastuzumab
  • DNA-Binding Proteins
  • Chromatids
  • Gene Expression Regulation
  • High-Throughput Nucleotide Sequencing
  • Neoplasm Grading
  • Acute Myeloid Leukaemia
  • Up-Regulation
  • Phosphoproteins
  • RNA Interference
  • Disease Progression
Tag cloud generated 31 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (2)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: RAD21 (cancer-related)

Fazio G, Massa V, Grioni A, et al.
First evidence of a paediatric patient with Cornelia de Lange syndrome with acute lymphoblastic leukaemia.
J Clin Pathol. 2019; 72(8):558-561 [PubMed] Related Publications
Cornelia de Lange syndrome (CdLS) is a rare autosomal-dominant genetic disorder characterised by prenatal and postnatal growth and mental retardation, facial dysmorphism and upper limb abnormalities. Germline mutations of cohesin complex genes

Cuartero S, Weiss FD, Dharmalingam G, et al.
Control of inducible gene expression links cohesin to hematopoietic progenitor self-renewal and differentiation.
Nat Immunol. 2018; 19(9):932-941 [PubMed] Free Access to Full Article Related Publications
Cohesin is important for 3D genome organization. Nevertheless, even the complete removal of cohesin has surprisingly little impact on steady-state gene transcription and enhancer activity. Here we show that cohesin is required for the core transcriptional response of primary macrophages to microbial signals, and for inducible enhancer activity that underpins inflammatory gene expression. Consistent with a role for inflammatory signals in promoting myeloid differentiation of hematopoietic stem and progenitor cells (HPSCs), cohesin mutations in HSPCs led to reduced inflammatory gene expression and increased resistance to differentiation-inducing inflammatory stimuli. These findings uncover an unexpected dependence of inducible gene expression on cohesin, link cohesin with myeloid differentiation, and may help explain the prevalence of cohesin mutations in human acute myeloid leukemia.

Macagno N, Vogels R, Appay R, et al.
Grading of meningeal solitary fibrous tumors/hemangiopericytomas: analysis of the prognostic value of the Marseille Grading System in a cohort of 132 patients.
Brain Pathol. 2019; 29(1):18-27 [PubMed] Related Publications
The finding that meningeal solitary fibrous tumors (SFTs) and meningeal hemangiopericytomas (HPCs) are both characterized by NAB2-STAT6 gene fusion has pushed their inclusion in the WHO 2016 Classification of tumors of the central nervous system (CNS) as different manifestations of the same entity. Given that the clinical behavior of the CNS SFT/HPC spectrum ranges from benign to malignant, it is presently unclear whether the grading criteria are still adequate. Here, we present the results of a study that analyzed the prognostic value of an updated version of the Marseille Grading System (MGS) in a retrospectively assembled cohort of 132 primary meningeal SFTs/HPCs with nuclear overexpression of STAT6. The median patient follow-up was 64 months (range 4-274 months); 73 cases (55%) were MGS I, 50 cases (38%) MGS II and 9 cases (7%) were MGS III. Progression-free survival (PFS) and disease-specific survival (DSS) were investigated using univariate analysis: the prognostic factors for PFS included MGS, extent of surgery, radiotherapy, chemotherapy and mitotic activity ≥5/10 high-power field (HPF). Moreover, MGS, radiotherapy, mitotic activity ≥5/10 HPF, and necrosis were the prognostic factors measured for DSS. In multivariate analysis, extent of surgery, mitotic activity ≥5/10 HPF, MGS I and MGS III were the independent prognostic factors measured for PFS while necrosis, MGS III and radiotherapy were the independent prognostic factors for DSS. In conclusion, our results show that assessing the malignancy risk of SFT/HPC should not rely on one single criterion like mitotic activity. Therefore, MGS is useful as it combines the value of different criteria. In particular, the combination of a high mitotic activity and necrosis (MGS III) indicates a particularly poor prognosis.

Ioannidou A, Zachaki S, Karakosta M, et al.
Cohesin RAD21 Gene Promoter Methylation in Patients with Chronic Lymphocytic Leukemia.
Cytogenet Genome Res. 2018; 154(3):126-131 [PubMed] Related Publications
Chronic lymphocytic leukemia (CLL) is the most common type of leukemia in adults and is characterized by the presence of specific cytogenetic abnormalities. CLL research has been focused on epigenetic processes like gene promoter methylation of CpG islands. In the present study, the methylation status of the RAD21 gene is studied and associated with cytogenetic findings in CLL patients in order to investigate its possible implication in CLL pathogenesis and the formation of CLL chromosomal abnormalities.

Bady P, Kurscheid S, Delorenzi M, et al.
The DNA methylome of DDR genes and benefit from RT or TMZ in IDH mutant low-grade glioma treated in EORTC 22033.
Acta Neuropathol. 2018; 135(4):601-615 [PubMed] Free Access to Full Article Related Publications
The optimal treatment for patients with low-grade glioma (LGG) WHO grade II remains controversial. Overall survival ranges from 2 to over 15 years depending on molecular and clinical factors. Hence, risk-adjusted treatments are required for optimizing outcome and quality of life. We aim at identifying mechanisms and associated molecular markers predictive for benefit from radiotherapy (RT) or temozolomide (TMZ) in LGG patients treated in the randomized phase III trial EORTC 22033. As candidate biomarkers for these genotoxic treatments, we considered the DNA methylome of 410 DNA damage response (DDR) genes. We first identified 62 functionally relevant CpG sites located in the promoters of 24 DDR genes, using the LGG data from The Cancer Genome Atlas. Then we tested their association with outcome [progression-free survival (PFS)] depending on treatment in 120 LGG patients of EORTC 22033, whose tumors were mutant for isocitrate dehydrogenase 1 or 2 (IDHmt), the molecular hallmark of LGG. The results suggested that seven CpGs of four DDR genes may be predictive for longer PFS in one of the treatment arms that comprised MGMT, MLH3, RAD21, and SMC4. Most interestingly, the two CpGs identified for MGMT are the same, previously selected for the MGMT-STP27 score that is used to determine the methylation status of the MGMT gene. This score was higher in the LGG with 1p/19q codeletion, in this and other independent LGG datasets. It was predictive for PFS in the TMZ, but not in the RT arm of EORTC 22033. The results support the hypothesis that a high score predicts benefit from TMZ treatment for patients with IDHmt LGG, regardless of the 1p/19q status. This MGMT methylation score may identify patients who benefit from first-line treatment with TMZ, to defer RT for long-term preservation of cognitive function and quality of life.

Alcaraz N, List M, Batra R, et al.
De novo pathway-based biomarker identification.
Nucleic Acids Res. 2017; 45(16):e151 [PubMed] Free Access to Full Article Related Publications
Gene expression profiles have been extensively discussed as an aid to guide the therapy by predicting disease outcome for the patients suffering from complex diseases, such as cancer. However, prediction models built upon single-gene (SG) features show poor stability and performance on independent datasets. Attempts to mitigate these drawbacks have led to the development of network-based approaches that integrate pathway information to produce meta-gene (MG) features. Also, MG approaches have only dealt with the two-class problem of good versus poor outcome prediction. Stratifying patients based on their molecular subtypes can provide a detailed view of the disease and lead to more personalized therapies. We propose and discuss a novel MG approach based on de novo pathways, which for the first time have been used as features in a multi-class setting to predict cancer subtypes. Comprehensive evaluation in a large cohort of breast cancer samples from The Cancer Genome Atlas (TCGA) revealed that MGs are considerably more stable than SG models, while also providing valuable insight into the cancer hallmarks that drive them. In addition, when tested on an independent benchmark non-TCGA dataset, MG features consistently outperformed SG models. We provide an easy-to-use web service at http://pathclass.compbio.sdu.dk where users can upload their own gene expression datasets from breast cancer studies and obtain the subtype predictions from all the classifiers.

De Leo A, Chen HS, Hu CC, Lieberman PM
Deregulation of KSHV latency conformation by ER-stress and caspase-dependent RAD21-cleavage.
PLoS Pathog. 2017; 13(8):e1006596 [PubMed] Free Access to Full Article Related Publications
Kaposi's sarcoma (KS)-associated herpesvirus (KSHV) is a human gammaherpesvirus recognized as the principal causative agent of KS and primary effusion lymphoma (PEL). KSHV establishes persistent latent infection in B lymphocytes where viral gene expression is restricted, in part, by a cohesin-dependent chromosome conformation. Here, we show that endoplasmic reticulum (ER) stress induces a rapid, caspase-dependent cleavage of cohesin subunit RAD21. ER stress-induced cleavage of RAD21 correlated with a rapid and strong viral lytic transcriptional activation. This effect was observed in several KSHV positive PEL cells, but not in other B-cells or non-B-cell models of KSHV latency. The cleaved-RAD21 does not dissociate from viral genomes, nor disassemble from other components of the cohesin complex. However, RAD21 cleavage correlated with the disruption of the latency genome conformation as revealed by chromosome conformation capture (3C). Ectopic expression of C-terminal RAD21 cleaved form could partially induce KSHV lytic genes transcription in BCBLI cells, suggesting that ER-stress induced RAD21 cleavage was sufficient to induce KSHV reactivation from latency in PEL cells. Taken together our results reveal a novel aspect for control and maintenance of KSHV genome latency conformation mediated by stress-induced RAD21 cleavage. Our studies also suggest that RAD21 cleavage may be a general regulatory mechanism for rapid alteration of cellular chromosome conformation and cohesin-dependent transcription regulation.

Caswell-Jin JL, Gupta T, Hall E, et al.
Racial/ethnic differences in multiple-gene sequencing results for hereditary cancer risk.
Genet Med. 2018; 20(2):234-239 [PubMed] Related Publications
PurposeWe examined racial/ethnic differences in the usage and results of germ-line multiple-gene sequencing (MGS) panels to evaluate hereditary cancer risk.MethodsWe collected genetic testing results and clinical information from 1,483 patients who underwent MGS at Stanford University between 1 January 2013 and 31 December 2015.ResultsAsians and Hispanics presented for MGS at younger ages than whites (48 and 47 vs. 55; P = 5E-16 and 5E-14). Across all panels, the rate of pathogenic variants (15%) did not differ significantly between racial groups. Rates by gene did differ: in particular, a higher percentage of whites than nonwhites carried pathogenic CHEK2 variants (3.8% vs. 1.0%; P = 0.002). The rate of a variant of uncertain significance (VUS) result was higher in nonwhites than whites (36% vs. 27%; P = 2E-4). The probability of a VUS increased with increasing number of genes tested; this effect was more pronounced for nonwhites than for whites (1.1% absolute difference in VUS rates testing BRCA1/2 vs. 8% testing 13 genes vs. 14% testing 28 genes), worsening the disparity.ConclusionIn this diverse cohort undergoing MGS testing, pathogenic variant rates were similar between racial/ethnic groups. By contrast, VUS results were more frequent among nonwhites, with potential significance for the impact of MGS testing by race/ethnicity.

Cai J, Li B, Zhu Y, et al.
Prognostic Biomarker Identification Through Integrating the Gene Signatures of Hepatocellular Carcinoma Properties.
EBioMedicine. 2017; 19:18-30 [PubMed] Free Access to Full Article Related Publications
Many molecular classification and prognostic gene signatures for hepatocellular carcinoma (HCC) patients have been established based on genome-wide gene expression profiling; however, their generalizability is unclear. Herein, we systematically assessed the prognostic effects of these gene signatures and identified valuable prognostic biomarkers by integrating these gene signatures. With two independent HCC datasets (GSE14520, N=242 and GSE54236, N=78), 30 published gene signatures were evaluated, and 11 were significantly associated with the overall survival (OS) of postoperative HCC patients in both datasets. The random survival forest models suggested that the gene signatures were superior to clinical characteristics for predicting the prognosis of the patients. Based on the 11 gene signatures, a functional protein-protein interaction (PPI) network with 1406 nodes and 10,135 edges was established. With tissue microarrays of HCC patients (N=60), we determined the prognostic values of the core genes in the network and found that RAD21, CDK1, and HDAC2 expression levels were negatively associated with OS for HCC patients. The multivariate Cox regression analyses suggested that CDK1 was an independent prognostic factor, which was validated in an independent case cohort (N=78). In cellular models, inhibition of CDK1 by siRNA or a specific inhibitor, RO-3306, reduced cellular proliferation and viability for HCC cells. These results suggest that the prognostic predictive capacities of these gene signatures are reproducible and that CDK1 is a potential prognostic biomarker or therapeutic target for HCC patients.

Patel JL, Schumacher JA, Frizzell K, et al.
Coexisting and cooperating mutations in NPM1-mutated acute myeloid leukemia.
Leuk Res. 2017; 56:7-12 [PubMed] Related Publications
NPM1 insertion mutations represent a common recurrent genetic abnormality in acute myeloid leukemia (AML) patients. The frequency of these mutations varies from approximately 30% overall up to 50% in patients with a normal karyotype. Several recent studies have exploited advances in massively parallel sequencing technology to shed light on the complex genomic landscape of AML. We hypothesize that variant allele fraction (VAF) data derived from massively parallel sequencing studies may provide further insights into the clonal architecture and pathogenesis of NPM1-driven leukemogenesis. Diagnostic peripheral blood or bone marrow samples from NPM1-mutated AML patients (n=120) were subjected to targeted sequencing using a panel of fifty-seven genes known to be commonly mutated in myeloid malignancies. NPM1 mutations were always accompanied by additional mutations and NPM1 had the highest VAF in only one case. Nearly all NPM1-mutated AML patients showed concurrent mutations in genes involved in regulation of DNA methylation (DNMT3A, TET2, IDH1, IDH2), RNA splicing (SRSF2, SF3B1), or in the cohesin complex (RAD21, SMC1A, SMC3, STAG2). Mutations in these genes had higher median VAFs that were higher (40% or greater) than the co-existing NPM1 mutations (median VAF 16.8%). Mutations associated with cell signaling pathways (FLT3, NRAS, and PTPN11) are also frequently encountered in NPM1-mutated AML cases, but had relatively low VAFs (7.0-11.9%). No cases of NPM1-mutated AML with a concurrent IDH2

Chen HS, De Leo A, Wang Z, et al.
BET-Inhibitors Disrupt Rad21-Dependent Conformational Control of KSHV Latency.
PLoS Pathog. 2017; 13(1):e1006100 [PubMed] Free Access to Full Article Related Publications
Kaposi's Sarcoma-associated Herpesvirus (KSHV) establishes stable latent infection in B-lymphocytes and pleural effusion lymphomas (PELs). During latency, the viral genome persists as an epigenetically constrained episome with restricted gene expression programs. To identify epigenetic regulators of KSHV latency, we screened a focused small molecule library containing known inhibitors of epigenetic factors. We identified JQ1, a Bromodomain and Extended Terminal (BET) protein inhibitor, as a potent activator of KSHV lytic reactivation from B-cells carrying episomal KSHV. We validated that JQ1 and other BET inhibitors efficiently stimulated reactivation of KSHV from latently infected PEL cells. We found that BET proteins BRD2 and BRD4 localize to several regions of the viral genome, including the LANA binding sites within the terminal repeats (TR), as well as at CTCF-cohesin sites in the latent and lytic control regions. JQ1 did not disrupt the interaction of BRD4 or BRD2 with LANA, but did reduce the binding of LANA with KSHV TR. We have previously demonstrated a cohesin-dependent DNA-loop interaction between the latent and lytic control regions that restrict expression of ORF50/RTA and ORF45 immediate early gene transcripts. JQ1 reduced binding of cohesin subunit Rad21 with the CTCF binding sites in the latency and lytic control regions. JQ1 also reduced DNA-loop interaction between latent and lytic control regions. These findings implicate BET proteins BRD2 and BRD4 in the maintenance of KSHV chromatin architecture during latency and reveal BET inhibitors as potent activators of KSHV reactivation from latency.

Xu Q, Zhang Q, Ishida Y, et al.
EGF induces epithelial-mesenchymal transition and cancer stem-like cell properties in human oral cancer cells via promoting Warburg effect.
Oncotarget. 2017; 8(6):9557-9571 [PubMed] Free Access to Full Article Related Publications
"Warburg effect", the enhanced glycolysis or aerobic glycolysis, confers cancer cells the ability to survive and proliferate even under stressed conditions. In this study, we explored the role of epidermal growth factor (EGF) in orchestrating Warburg effect, the epithelial-mesenchymal transition (EMT) process, and the acquisition of cancer stem-like cell properties in human oral squamous cell carcinoma (OSCC) cells. Our results showed that EGF induces EMT process in OSCC cells, which correlates with the acquisition of cancer stem-like properties, including the enrichment of CD44+/CD24- population of cancer cells and an increased expression of CSC-related genes, aldehyde dehydrogenase-1 (ALDH1) and Bmi-1. We also showed that EGF concomitantly enhanced L-lactate production, while blocking glycolysis by 2-deoxy-D-glucose (2-DG) robustly reversed EGF-induced EMT process and CSC-like properties in OSCC cells. Mechanistically, we demonstrated that EGF promoted EMT process and CSC generation through EGFR/PI3K/HIF-1α axis-orchestrated glycolysis. Using an orthotopic tumor model of human OSCC (UM-SCC1) injected in the tongue of BALB/c nude mice, we showed that treatment with 2-DG in vivo significantly inhibited the metastasis of tumor cells to the regional cervical lymph nodes and reduced the expression of ALDH1 and vimentin in both in situ tumors and tumor cell-invaded regional lymph nodes. Taken together, these findings have unveiled a new mechanism that EGF drives OSCC metastasis through induction of EMT process and CSC generation, which is driven by an enhanced glycolytic metabolic program in OSCC cells.

Shiba N, Yoshida K, Shiraishi Y, et al.
Whole-exome sequencing reveals the spectrum of gene mutations and the clonal evolution patterns in paediatric acute myeloid leukaemia.
Br J Haematol. 2016; 175(3):476-489 [PubMed] Related Publications
Acute myeloid leukaemia (AML) is a molecularly and clinically heterogeneous disease. Targeted sequencing efforts have identified several mutations with diagnostic and prognostic values in KIT, NPM1, CEBPA and FLT3 in both adult and paediatric AML. In addition, massively parallel sequencing enabled the discovery of recurrent mutations (i.e. IDH1/2 and DNMT3A) in adult AML. In this study, whole-exome sequencing (WES) of 22 paediatric AML patients revealed mutations in components of the cohesin complex (RAD21 and SMC3), BCORL1 and ASXL2 in addition to previously known gene mutations. We also revealed intratumoural heterogeneities in many patients, implicating multiple clonal evolution events in the development of AML. Furthermore, targeted deep sequencing in 182 paediatric AML patients identified three major categories of recurrently mutated genes: cohesion complex genes [STAG2, RAD21 and SMC3 in 17 patients (8·3%)], epigenetic regulators [ASXL1/ASXL2 in 17 patients (8·3%), BCOR/BCORL1 in 7 patients (3·4%)] and signalling molecules. We also performed WES in four patients with relapsed AML. Relapsed AML evolved from one of the subclones at the initial phase and was accompanied by many additional mutations, including common driver mutations that were absent or existed only with lower allele frequency in the diagnostic samples, indicating a multistep process causing leukaemia recurrence.

Sun L, Liang J, Wang Q, et al.
MicroRNA-137 suppresses tongue squamous carcinoma cell proliferation, migration and invasion.
Cell Prolif. 2016; 49(5):628-35 [PubMed] Related Publications
OBJECTIVES: Tongue squamous cell carcinoma (TSCC) is the most frequent type of oral malignancy. Increasing evidence has shown that miRNAs play key roles in many biological processes such as cell development, invasion, proliferation, differentiation, metabolism, apoptosis and migration.
MATERIALS AND METHODS: qRT-PCR analysis was performed to measure miR-137 expression. CCK-8 analysis, cell colony formation, wound-healing analysis and invasion were performed to detect resultant cell functions. The direct target of miR-137 was labelled and measured by luciferase assay and Western blotting.
RESULTS: We demonstrated that expression of miR-137 was downregulated in TSCC tissues compared to matched normal ones. miR-137 expression was downregulated in TSCC lines (SCC4, SCC1, UM1 and Cal27) compared to the immortalized NOK16B cell line and normal oral keratinocytes in culture (NHOK). In addition, we have shown that miR-137 expression was epigenetically regulated in TSCCs. Overexpression of miR-137 suppressed TSCC proliferation and colony formation. Ectopic expression of miR-137 promoted expression of the epithelial biomarker, E-cadherin, and inhibited the mesenchymal biomarker, N-cadherin, as well as vimentin and Snail expression, indicating that miR-137 suppressed TSCC epithelial-mesenchymal transition (EMT). We also showed that ectopic expression of miR-137 inhibited TSCC invasion and migration. In addition, we identified SP1 as a direct target gene of miR-137 in SCC1 cells. SP1 overexpression rescued inhibitory effects exerted by miR-137 on cell proliferation and EMT.
CONCLUSIONS: These results indicate that miR-137 acted as a tumour suppressor in TSCC by targeting SP1.

Ganguly BB, Kadam NN
Mutations of myelodysplastic syndromes (MDS): An update.
Mutat Res Rev Mutat Res. 2016 Jul-Sep; 769:47-62 [PubMed] Related Publications
The plethora of knowledge gained on myelodysplastic syndromes (MDS), a heterogeneous pre-malignant disorder of hematopoietic stem cells, through sequencing of several pathway genes has unveiled molecular pathogenesis and its progression to AML. Evolution of phenotypic classification and risk-stratification based on peripheral cytopenias and blast count has moved to five-tier risk-groups solely concerning chromosomal aberrations. Increased frequency of complex abnormalities, which is associated with genetic instability, defines the subgroup of worst prognosis in MDS. However, the independent effect of monosomal karyotype remains controversial. Recent discoveries on mutations in RNA-splicing machinery (SF3B1, SRSF2, ZRSR2, U2AF1, U2AF2); DNA methylation (TET2, DNMT3A, IDH1/2); chromatin modification (ASXL1, EZH2); transcription factor (TP53, RUNX1); signal transduction/kinases (FLT3, JAK2); RAS pathway (KRAS, NRAS, CBL, NF1, PTPN11); cohesin complex (STAG2, CTCF, SMC1A, RAD21); DNA repair (ATM, BRCC3, DLRE1C, FANCL); and other pathway genes have given insights into the independent effects and interaction of co-occurrence of mutations on disease-phenotype. RNA-splicing and DNA methylation mutations appeared to occur early and are reported as 'founder' mutations in over 50% MDS patients. TET2 mutation, through altered DNA methylation, has been found to have independent prognostic response to hypomethylating agents. Moreover, presence of DNMT3A, TET2 and ASXL1 mutations in normal elderly individuals forms the basis of understanding that accumulation of somatic mutations may not cause direct disease-development; however, cooperation with other mutations in the genes that are frequently mutated in myeloid and other hematopoietic cancers might result in clonal expansion through self-renewal and/or proliferation of hematopoietic stem cells. Identification of small molecules as inhibitors of epigenetic mutations has opened avenues for tailoring targeted drug development. The recommendations of a Clinical Advisory Committee is being considered by WHO for a revised classification of risk-groups of MDS, which is likely to be published in mid 2016, based on the new developments and discoveries of gene mutations.

Yong KJ, Milenic DE, Baidoo KE, Brechbiel MW
Cell Killing Mechanisms and Impact on Gene Expression by Gemcitabine and 212Pb-Trastuzumab Treatment in a Disseminated i.p. Tumor Model.
PLoS One. 2016; 11(7):e0159904 [PubMed] Free Access to Full Article Related Publications
In pre-clinical studies, combination therapy with gemcitabine and targeted radioimmunotherapy (RIT) using 212Pb-trastuzumab showed tremendous therapeutic potential in the LS-174T tumor xenograft model of disseminated intraperitoneal disease. To better understand the underlying molecular basis for the observed cell killing efficacy, gene expression profiling was performed after a 24 h exposure to 212Pb-trastuzumab upon gemcitabine (Gem) pre-treatment in this model. DNA damage response genes in tumors were quantified using a real time quantitative PCR array (qRT-PCR array) covering 84 genes. The combination of Gem with α-radiation resulted in the differential expression of apoptotic genes (BRCA1, CIDEA, GADD45α, GADD45γ, IP6K3, PCBP4, RAD21, and p73), cell cycle regulatory genes (BRCA1, CHK1, CHK2, FANCG, GADD45α, GTSE1, PCBP4, MAP2K6, NBN, PCBP4, and SESN1), and damaged DNA binding and repair genes (BRCA1, BTG2, DMC1, ERCC1, EXO1, FANCG, FEN1, MSH2, MSH3, NBN, NTHL1, OGG1, PRKDC, RAD18, RAD21, RAD51B, SEMA4G, p73, UNG, XPC, and XRCC2). Of these genes, the expression of CHK1, GTSE1, EXO1, FANCG, RAD18, UNG and XRCC2 were specific to Gem/212Pb-trastuzumab administration. In addition, the present study demonstrates that increased stressful growth arrest conditions induced by Gem/212Pb-trastuzumab could suppress cell proliferation possibly by up-regulating genes involved in apoptosis such as p73, by down-regulating genes involved in cell cycle check point such as CHK1, and in damaged DNA repair such as RAD51 paralogs. These events may be mediated by genes such as BRCA1/MSH2, a member of BARC (BRCA-associated genome surveillance complex). The data suggest that up-regulation of genes involved in apoptosis, perturbation of checkpoint genes, and a failure to correctly perform HR-mediated DSB repair and mismatch-mediated SSB repair may correlate with the previously observed inability to maintain the G2/M arrest, leading to cell death.

Yun J, Song SH, Kim HP, et al.
Dynamic cohesin-mediated chromatin architecture controls epithelial-mesenchymal plasticity in cancer.
EMBO Rep. 2016; 17(9):1343-59 [PubMed] Free Access to Full Article Related Publications
Epithelial to mesenchymal transition (EMT) and mesenchymal to epithelial transition (MET) are important interconnected events in tumorigenesis controlled by complex genetic networks. However, the cues that activate EMT-initiating factors and the mechanisms that reversibly connect EMT/MET are not well understood. Here, we show that cohesin-mediated chromatin organization coordinates EMT/MET by regulating mesenchymal genes. We report that RAD21, a subunit of the cohesin complex, is expressed in epithelial breast cancer cells, whereas its expression is decreased in mesenchymal cancer. Depletion of RAD21 in epithelial cancer cells causes transcriptional activation of TGFB1 and ITGA5, inducing EMT. Reduced binding of RAD21 changes intrachromosomal chromatin interactions within the TGFB1 and ITGA5 loci, creating an active transcriptional environment. Similarly, stem cell-like cancer cells also show an open chromatin structure at both genes, which correlates with high expression levels and mesenchymal fate characteristics. Conversely, overexpression of RAD21 in mesenchymal cancer cells induces MET-specific expression patterns. These findings indicate that dynamic cohesin-mediated chromatin structures are responsible for the initiation and regulation of essential EMT-related cell fate changes in cancer.

Dominguez D, Tsai YH, Gomez N, et al.
A high-resolution transcriptome map of cell cycle reveals novel connections between periodic genes and cancer.
Cell Res. 2016; 26(8):946-62 [PubMed] Free Access to Full Article Related Publications
Progression through the cell cycle is largely dependent on waves of periodic gene expression, and the regulatory networks for these transcriptome dynamics have emerged as critical points of vulnerability in various aspects of tumor biology. Through RNA-sequencing of human cells during two continuous cell cycles (>2.3 billion paired reads), we identified over 1 000 mRNAs, non-coding RNAs and pseudogenes with periodic expression. Periodic transcripts are enriched in functions related to DNA metabolism, mitosis, and DNA damage response, indicating these genes likely represent putative cell cycle regulators. Using our set of periodic genes, we developed a new approach termed "mitotic trait" that can classify primary tumors and normal tissues by their transcriptome similarity to different cell cycle stages. By analyzing >4 000 tumor samples in The Cancer Genome Atlas (TCGA) and other expression data sets, we found that mitotic trait significantly correlates with genetic alterations, tumor subtype and, notably, patient survival. We further defined a core set of 67 genes with robust periodic expression in multiple cell types. Proteins encoded by these genes function as major hubs of protein-protein interaction and are mostly required for cell cycle progression. The core genes also have unique chromatin features including increased levels of CTCF/RAD21 binding and H3K36me3. Loss of these features in uterine and kidney cancers is associated with altered expression of the core 67 genes. Our study suggests new chromatin-associated mechanisms for periodic gene regulation and offers a predictor of cancer patient outcomes.

Nan YL, Hu YL, Liu ZK, et al.
Relationships between cell cycle pathway gene polymorphisms and risk of hepatocellular carcinoma.
World J Gastroenterol. 2016; 22(24):5558-67 [PubMed] Free Access to Full Article Related Publications
AIM: To investigate the associiations between the polymorphisms of cell cycle pathway genes and the risk of hepatocellular carcinoma (HCC).
METHODS: We enrolled 1127 cases newly diagnosed with HCC from the Tumor Hospital of Guangxi Medical University and 1200 non-tumor patients from the First Affiliated Hospital of Guangxi Medical University. General demographic characteristics, behavioral information, and hematological indices were collected by unified questionnaires. Genomic DNA was isolated from peripheral venous blood using Phenol-Chloroform. The genotyping was performed using the Sequenom MassARRAY iPLEX genotyping method. The association between genetic polymorphisms and risk of HCC was shown by P-value and the odd ratio (OR) with 95% confidence interval (CI) using the unconditional logistic regression after adjusting for age, sex, nationality, smoking, drinking, family history of HCC, and hepatitis B virus (HBV) infection. Moreover, stratified analysis was conducted on the basis of the status of HBV infection, smoking, and alcohol drinking.
RESULTS: The HCC risk was lower in patients with the MCM4 rs2305952 CC (OR = 0.22, 95%CI: 0.08-0.63, P = 0.01) and with the CHEK1 rs515255 TC, TT, TC/TT (OR = 0.73, 95%CI: 0.56-0.96, P = 0.02; OR = 0.67, 95%CI: 0.46-0.97, P = 0.04; OR = 0.72, 95%CI: 0.56-0.92, P = 0.01, respectively). Conversely, the HCC risk was higher in patients with the KAT2B rs17006625 GG (OR = 1.64, 95%CI: 1.01-2.64, P = 0.04). In addition, the risk was markedly lower for those who were carriers of MCM4 rs2305952 CC and were also HBsAg-positive and non-drinking and non-smoking (P < 0.05, respectively) and for those who were carriers of CHEK1 rs515255 TC, TT, TC/TT and were also HBsAg-negative and non-drinking (P < 0.05, respectively). Moreover, the risk was higher for those who were carriers of KAT2B rs17006625 GG and were also HBsAg-negative (P < 0.05).
CONCLUSION: Of 12 cell cycle pathway genes, MCM4, CHEK1 and KAT2B polymorphisms may be associated with the risk of HCC.

Hill VK, Kim JS, Waldman T
Cohesin mutations in human cancer.
Biochim Biophys Acta. 2016; 1866(1):1-11 [PubMed] Free Access to Full Article Related Publications
Cohesin is a highly-conserved protein complex that plays important roles in sister chromatid cohesion, chromatin structure, gene expression, and DNA repair. In humans, cohesin is a ubiquitously expressed, multi-subunit protein complex composed of core subunits SMC1A, SMC3, RAD21, STAG1/2 and regulatory subunits WAPL, PDS5A/B, CDCA5, NIPBL, and MAU2. Recent studies have demonstrated that genes encoding cohesin subunits are somatically mutated in a wide range of human cancers. STAG2 is the most commonly mutated subunit, and in a recent analysis was identified as one of only 12 genes that are significantly mutated in four or more cancer types. In this review we summarize the findings reported to date and comment on potential functional implications of cohesin mutation in the pathogenesis of human cancer.

Dasgupta T, Antony J, Braithwaite AW, Horsfield JA
HDAC8 Inhibition Blocks SMC3 Deacetylation and Delays Cell Cycle Progression without Affecting Cohesin-dependent Transcription in MCF7 Cancer Cells.
J Biol Chem. 2016; 291(24):12761-70 [PubMed] Free Access to Full Article Related Publications
Cohesin, a multi-subunit protein complex involved in chromosome organization, is frequently mutated or aberrantly expressed in cancer. Multiple functions of cohesin, including cell division and gene expression, highlight its potential as a novel therapeutic target. The SMC3 subunit of cohesin is acetylated (ac) during S phase to establish cohesion between replicated chromosomes. Following anaphase, ac-SMC3 is deacetylated by HDAC8. Reversal of SMC3 acetylation is imperative for recycling cohesin so that it can be reloaded in interphase for both non-mitotic and mitotic functions. We blocked deacetylation of ac-SMC3 using an HDAC8-specific inhibitor PCI-34051 in MCF7 breast cancer cells, and examined the effects on transcription of cohesin-dependent genes that respond to estrogen. HDAC8 inhibition led to accumulation of ac-SMC3 as expected, but surprisingly, had no influence on the transcription of estrogen-responsive genes that are altered by siRNA targeting of RAD21 or SMC3. Knockdown of RAD21 altered estrogen receptor α (ER) recruitment at SOX4 and IL20, and affected transcription of these genes, while HDAC8 inhibition did not. Rather, inhibition of HDAC8 delayed cell cycle progression, suppressed proliferation and induced apoptosis in a concentration-dependent manner. We conclude that HDAC8 inhibition does not change the estrogen-specific transcriptional role of cohesin in MCF7 cells, but instead, compromises cell cycle progression and cell survival. Our results argue that candidate inhibitors of cohesin function may differ in their effects depending on the cellular genotype and should be thoroughly tested for predicted effects on cohesin's mechanistic roles.

Zhu S, Zhao L, Li Y, et al.
Suppression of RAD21 Induces Senescence of MDA-MB-231 Human Breast Cancer Cells Through RB1 Pathway Activation Via c-Myc Downregulation.
J Cell Biochem. 2016; 117(6):1359-69 [PubMed] Related Publications
Cellular senescence impedes cancer progression by limiting uncontrolled cell proliferation. To identify new genetic events controlling senescence, we performed a small interfering RNA screening human cancer cells and identified a number of targets potentially involved in senescence of MDA-MB-231 human breast cancer cells. Importantly, we showed that knockdown of RAD21 resulted in the appearance of several senescent markers, including enhanced senescence-associated β-galactosidase activity and heterochromatin focus formation, as well as elevated p21 protein levels and RB1 pathway activation. Further biochemical analyses revealed that RAD21 knockdown led to the downregulation of c-Myc and its targets, including CDK4, a negative regulator of RB1, and blockedRB1 phosphorylation (pRB1), and the RB1-mediated transcriptional repression of E2F. Moreover, c-Myc downregulation was partially mediated by proteasome-dependent degradation within promyelocytic leukemia (PML) nuclear bodies, which were found to be highly abundant during RAD21 knockdown-induced senescence. Exogenous c-Myc reconstitution rescued cells from RAD21 silencing-induced senescence. Altogether, data arising from this study implicate a novel function of RAD21 in cellular senescence in MDA-MB-231 cells that is mainly dependent onRB1 pathway activation via c-Myc downregulation.

Zhao J, Fu W, Liao H, et al.
The regulatory and predictive functions of miR-17 and miR-92 families on cisplatin resistance of non-small cell lung cancer.
BMC Cancer. 2015; 15:731 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Chemotherapy is an important therapeutic approach for non-small cell lung cancer (NSCLC). However, a successful long-term treatment can be prevented by the occurring of chemotherapy resistance frequently, and the molecular mechanisms of chemotherapy resistance in NSCLC remain unclear. In this study, abnormal expressions of miR-17 and miR-92 families are observed in cisplatin-resistant cells, suggesting that miR-17 and miR-92 families are involved in the regulation of cisplatin resistance in NSCLC.
METHODS: miRNA microarray shows that miR-17 and miR-92 families are all down-regulated in cisplatin-resistant A549/DDP cells compared with cisplatin-sensitive A549 cells. The aim of this study is to investigate the regulatory functions of miR-17 and miR-92 families on the formation of cisplatin resistance and the predictive functions of them as biomarkers of platinum-based chemotherapy resistance in NSCLC.
RESULTS: The low expressions of miR-17 and miR-92 families can maintain cisplatin resistance through the regulation of CDKN1A and RAD21. As a result of high expressions of CDKN1A and RAD21, the inhibition of DNA synthesis and the repair of DNA damage are achieved and these may be two major contributing factors to cisplatin resistance. Moreover, we demonstrate that the expressions of miR-17 and miR-92 families in NSCLC tissues are significantly associated with platinum-based chemotherapy response.
CONCLUSION: Our study indicates that miR-17 and miR-92 families play important roles in cisplatin resistance and can be used as potential biomarkers for better predicting the clinical response to platinum-based chemotherapy in NSCLC.

Yun J, Song SH, Kang JY, et al.
Reduced cohesin destabilizes high-level gene amplification by disrupting pre-replication complex bindings in human cancers with chromosomal instability.
Nucleic Acids Res. 2016; 44(2):558-72 [PubMed] Free Access to Full Article Related Publications
Gene amplification is a hallmark of cancer with chromosomal instability although the underlying mechanism by which altered copy numbers are maintained is largely unclear. Cohesin, involved in sister chromatid cohesion, DNA repair, cell cycle progression and transcriptional regulation of key developmental genes, is frequently overexpressed in human cancer. Here we show that cohesin-dependent change in DNA replication controls the copy numbers of amplified genes in cancer cells with chromosomal instability. We found that the down-regulation of elevated cohesin leads to copy number-associated gene expression changes without disturbing chromosomal segregation. Highly amplified genes form typical long-range chromatin interactions, which are stabilized by enriched cohesin. The spatial proximities among cohesin binding sites within amplified genes are decreased by RAD21-knockdown, resulting in the rapid decline of amplified gene expression. After several passages, cohesin depletion inhibits DNA replication initiation by reducing the recruitment of pre-replication complexes such as minichromosome maintenance subunits 7 (MCM7), DNA polymerase α, and CDC45 at replication origins near the amplified regions, and as a result, decreases the DNA copy numbers of highly amplified genes. Collectively, our data demonstrate that cohesin-mediated chromatin organization and DNA replication are important for stabilizing gene amplification in cancer cells with chromosomal instability.

Kaliyaperumal K, Sharma AK, McDonald DG, et al.
S-Nitrosoglutathione-mediated STAT3 regulation in efficacy of radiotherapy and cisplatin therapy in head and neck squamous cell carcinoma.
Redox Biol. 2015; 6:41-50 [PubMed] Free Access to Full Article Related Publications
S-nitrosoglutathione (GSNO) is an endogenous nitric oxide (NO) carrier that plays a critical role in redox based NO signaling. Recent studies have reported that GSNO regulates the activities of STAT3 and NF-κB via S-nitrosylation dependent mechanisms. Since STAT3 and NF-κB are key transcription factors involved in tumor progression, chemoresistance, and metastasis of head and neck cancer, we investigated the effect of GSNO in cell culture and mouse xenograft models of head and neck squamous cell carcinoma (HNSCC). For the cell culture studies, three HNSCC cell lines were tested (SCC1, SCC14a and SCC22a). All three cell lines had constitutively activated (phosphorylated) STAT3 (Tyr(705)). GSNO treatment of these cell lines reversibly decreased the STAT3 phosphorylation in a concentration dependent manner. GSNO treatment also decreased the basal and cytokine-stimulated activation of NF-κB in SCC14a cells and reduced the basal low degree of nitrotyrosine by inhibition of inducible NO synthase (iNOS) expression. The reduced STAT3/NF-κB activity by GSNO treatment was correlated with the decreased cell proliferation and increased apoptosis of HNSCC cells. In HNSCC mouse xenograft model, the tumor growth was reduced by systemic treatment with GSNO and was further reduced when the treatment was combined with radiation and cisplatin. Accordingly, GSNO treatment also resulted in decreased levels of phosphorylated STAT3. In summary, these studies demonstrate that GSNO treatment blocks the NF-κB and STAT3 pathways which are responsible for cell survival, proliferation and that GSNO mediated mechanisms complement cispaltin and radiation therapy, and thus could potentiate the therapeutic effect in HNSCC.

Li X, Zhang TW, Tang JL, et al.
Loss of STAG2 causes aneuploidy in normal human bladder cells.
Genet Mol Res. 2015; 14(1):2638-46 [PubMed] Related Publications
The aim of this study was to determine how the function of human stromal antigen 2 (STAG2) plays an important role in proper chromosome separation. STAG2 mRNA in normal bladder cells and bladder tumor cells was evaluated by RT-PCR. The protein levels of STAG2 in normal bladder cells and bladder tumor cells were determined by western blot. A cell proliferation assay was used to measure the growth of tumor cells and STAG2-inhibited normal cells, and STAG2- inhibited normal cells were subjected to karyotype analysis. Both STAG-2 mRNA and protein expression levels were lower in bladder cancer cells compared to the controls. Knockdown of STAG2 caused aneuploidy in normal bladder cells, leading to a decreased expression of the cohesin complex components SMC1, SMC3 and RAD21, but there was no obvious effect of STAG2 knockdown on cell proliferation. Our study indicated that abnormal expression of STAG2 could cause aneuploidy in normal bladder cells.

Davis SJ, Sheppard KE, Anglesio MS, et al.
Enhanced GAB2 Expression Is Associated with Improved Survival in High-Grade Serous Ovarian Cancer and Sensitivity to PI3K Inhibition.
Mol Cancer Ther. 2015; 14(6):1495-503 [PubMed] Related Publications
Identification of genomic alterations defining ovarian carcinoma subtypes may aid the stratification of patients to receive targeted therapies. We characterized high-grade serous ovarian carcinoma (HGSC) for the association of amplified and overexpressed genes with clinical outcome using gene expression data from 499 HGSC patients in the Ovarian Tumor Tissue Analysis cohort for 11 copy number amplified genes: ATP13A4, BMP8B, CACNA1C, CCNE1, DYRK1B, GAB2, PAK4, RAD21, TPX2, ZFP36, and URI. The Australian Ovarian Cancer Study and The Cancer Genome Atlas datasets were also used to assess the correlation between gene expression, patient survival, and tumor classification. In a multivariate analysis, high GAB2 expression was associated with improved overall and progression-free survival (P = 0.03 and 0.02), whereas high BMP8B and ATP13A4 were associated with improved progression-free survival (P = 0.004 and P = 0.02). GAB2 overexpression and copy number gain were enriched in the AOCS C4 subgroup. High GAB2 expression correlated with enhanced sensitivity in vitro to the dual PI3K/mTOR inhibitor PF-04691502 and could be used as a genomic marker for identifying patients who will respond to treatments inhibiting PI3K signaling.

Bian Y, Han J, Kannabiran V, et al.
MEK inhibitor PD-0325901 overcomes resistance to CK2 inhibitor CX-4945 and exhibits anti-tumor activity in head and neck cancer.
Int J Biol Sci. 2015; 11(4):411-22 [PubMed] Free Access to Full Article Related Publications
The serine-threonine kinase CK2 exhibits genomic alterations and aberrant overexpression in human head and neck squamous cell carcinomas (HNSCC). Here, we investigated the effects of CK2 inhibitor CX-4945 in human HNSCC cell lines and xenograft models. The IC50's of CX-4945 for 9 UM-SCC cell lines measured by MTT assay ranged from 3.4-11.9 μM. CX-4945 induced cell cycle arrest and cell death measured by DNA flow cytometry, and inhibited prosurvival mediators phospho-AKT and p-S6 in UM-SCC1 and UM-SCC46 cells. CX-4945 decreased NF-κB and Bcl-XL reporter gene activities in both cell lines, but upregulated proapoptotic TP53 and p21 reporter activities, and induced phospho-ERK, AP-1, and IL-8 activity in UM-SCC1 cells. CX-4945 exhibited modest anti-tumor activity in UM-SCC1 xenografts. Tumor immunostaining revealed significant inhibition of PI3K-Akt-mTOR pathway and increased apoptosis marker TUNEL, but also induced p-ERK, c-JUN, JUNB, FOSL1 and proliferation (Ki67) markers, as a possible resistance mechanism. To overcome the drug resistance, we tested MEK inhibitor PD-0325901 (PD-901), which inhibited ERK-AP-1 activation alone and in combination with CX-4945. PD-901 alone displayed significant anti-tumor effects in vivo, and the combination of PD-901 and CX-4945 slightly enhanced anti-tumor activity when compared with PD-901 alone. Immunostaining of tumor specimens after treatment revealed inhibition of p-AKT S129 and p-AKT T308 by CX-4945, and inhibition of p-ERK T202/204 and AP-1 family member FOSL-1 by PD-901. Our study reveals a drug resistance mechanism mediated by the MEK-ERK-AP-1 pathway in HNSCC. MEK inhibitor PD-0325901 is active in HNSCC resistant to CX-4945, meriting further clinical investigation.

Stedt H, Samaranayake H, Kurkipuro J, et al.
Tomato thymidine kinase-based suicide gene therapy for malignant glioma--an alternative for Herpes Simplex virus-1 thymidine kinase.
Cancer Gene Ther. 2015; 22(3):130-7 [PubMed] Related Publications
Malignant gliomas (MGs) are the most common malignant primary brain tumors with a short life estimate accompanied by a marked reduction in the quality of life. Herpes Simplex virus-1 thymidine kinase ganciclovir (HSV-TK/GCV) system is the best characterized enzyme prodrug therapy in use. However, lipophobicity of GCV and low enzymatic activity of HSV-TK reduce the treatment efficacy. Tomato TK (ToTK) has shown high activity in combination with its specific substrate azidothymidine (AZT). The aim of this study was to evaluate whether ToTK/AZT could be used as an alternative to HSV-TK/GCV therapy. Both treatments demonstrated cytotoxicity in human MG cells in vitro. In vivo, both treatments decreased tumor growth and tumors were smaller in comparison with controls in mouse orthotopic MG model. Survival of ToTK/AZT-treated mice was significantly increased compared with control mice (*P<0.05) but not as compared with HSV-TK/GCV-treated mice. No significant differences were observed in clinical chemistry safety analyses. We conclude that both treatments showed a beneficial treatment response in comparison to controls on tumor growth and ToTK/AZT also on survival. There were no significant differences between these treatments. Therefore ToTK/AZT could be considered as an alternative treatment option for MG because of its favorable therapeutic characteristics.

Cicchini M, Chakrabarti R, Kongara S, et al.
Autophagy regulator BECN1 suppresses mammary tumorigenesis driven by WNT1 activation and following parity.
Autophagy. 2014; 10(11):2036-52 [PubMed] Free Access to Full Article Related Publications
Earlier studies reported allelic deletion of the essential autophagy regulator BECN1 in breast cancers implicating BECN1 loss, and likely defective autophagy, in tumorigenesis. Recent studies have questioned the tumor suppressive role of autophagy, as autophagy-related gene (Atg) defects generally suppress tumorigenesis in well-characterized mouse tumor models. We now report that, while it delays or does not alter mammary tumorigenesis driven by Palb2 loss or ERBB2 and PyMT overexpression, monoallelic Becn1 loss promotes mammary tumor development in 2 specific contexts, namely following parity and in association with wingless-type MMTV integration site family, member 1 (WNT1) activation. Our studies demonstrate that Becn1 heterozygosity, which results in immature mammary epithelial cell expansion and aberrant TNFRSF11A/TNR11/RANK (tumor necrosis factor receptor superfamily, member 11a, NFKB activator) signaling, promotes mammary tumorigenesis in multiparous FVB/N mice and in cooperation with the progenitor cell-transforming WNT1 oncogene. Similar to our Becn1(+/-);MMTV-Wnt1 mouse model, low BECN1 expression and an activated WNT pathway gene signature correlate with the triple-negative subtype, TNFRSF11A axis activation and poor prognosis in human breast cancers. Our results suggest that BECN1 may have nonautophagy-related roles in mammary development, provide insight in the seemingly paradoxical roles of BECN1 in tumorigenesis, and constitute the basis for further studies on the pathophysiology and treatment of clinically aggressive triple negative breast cancers (TNBCs).

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. RAD21, Cancer Genetics Web: http://www.cancer-genetics.org/RAD21.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 31 August, 2019     Cancer Genetics Web, Established 1999