ICAM1

Gene Summary

Gene:ICAM1; intercellular adhesion molecule 1
Aliases: BB2, CD54, P3.58
Location:19p13.2
Summary:This gene encodes a cell surface glycoprotein which is typically expressed on endothelial cells and cells of the immune system. It binds to integrins of type CD11a / CD18, or CD11b / CD18 and is also exploited by Rhinovirus as a receptor. [provided by RefSeq, Jul 2008]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:intercellular adhesion molecule 1
Source:NCBIAccessed: 30 August, 2019

Ontology:

What does this gene/protein do?
Show (49)
Pathways:What pathways are this gene/protein implicaed in?
Show (13)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 30 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • tat Gene Products, Human Immunodeficiency Virus
  • Skin Cancer
  • Retinoic Acid
  • TGFB1
  • Soft Tissue Cancers
  • Cell Adhesion
  • Cell Proliferation
  • TNF Receptor-Associated Factor 2
  • NF-kappa B
  • bcl-2-Associated X Protein
  • Single Nucleotide Polymorphism
  • Risk Factors
  • Remission Induction
  • Transcription
  • Smoking
  • Xeroderma Pigmentosum
  • Vaccinia virus
  • T-Lymphocytes, Cytotoxic
  • Research
  • Chromosome 19
  • Stomach Cancer
  • beta 2-Microglobulin
  • Cell Adhesion Molecules
  • Bladder Cancer
  • Soft Tissue Sarcoma
  • Polymorphism
  • Proto-Oncogene Proteins
  • Neoplasm Proteins
  • Phenotype
  • Vaccines
  • Silicones
  • Receptors, Growth Factor
  • Tumor Necrosis Factors
  • Vascular Cell Adhesion Molecule-1
  • Cancer Gene Expression Regulation
  • Melanoma
  • Proviruses
  • Monocytes
  • Intercellular Adhesion Molecule-1
  • Tumor Microenvironment
  • Neural Cell Adhesion Molecules
Tag cloud generated 30 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (5)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: ICAM1 (cancer-related)

Tuponchai P, Kukongviriyapan V, Prawan A, et al.
Myricetin ameliorates cytokine-induced migration and invasion of cholangiocarcinoma cells via suppression of STAT3 pathway.
J Cancer Res Ther. 2019 Jan-Mar; 15(1):157-163 [PubMed] Related Publications
Aim of Study: Cholangiocarcinoma (CCA) is an aggressive cancer with considerable metastatic potential. Various cytokines secreted by tumor cells or cells in the tumor environment can promote the metastasis of CCA. The aim of the present study was to investigate the effect of myricetin on the inhibition of cytokine-induced migration and invasion and the associated cellular mechanisms in human CCA cells.
Materials and Methods: CCA KKU-100 cells were treated with a pro-inflammatory cytokine mixture consisting of interleukin-6, interferon-γ, and tumor necrosis factor-α. The migratory and invasive ability of KKU-100 cells were determined using a wound-healing assay and transwell invasion assay. The effect of myricetin on cytokine-induced STAT3 activation in CCA cells was determined using Western blot analysis. The real-time polymerase chain reaction was performed to determine messenger RNA expression.
Results: Myricetin significantly inhibited cytokine-induced migration and invasion of KKU-100 cells. Detailed molecular analyses revealed that myricetin suppressed the activation of the STAT3 pathway, evidently by a decrease of the active phospho-STAT3 protein expression after myricetin treatment. The cytokine-mediated upregulation of metastasis- and inflammatory-associated genes, which are downstream genes of STAT3 including the intercellular adhesion molecule-1, matrix metalloproteinase-9, inducible nitric oxide synthase, and cyclo-oxygenase 2 (COX-2), were also significantly abolished by myricetin treatment. Moreover, the anti-migratory and anti-invasive activities of a widely prescribed COX inhibitor, indomethacin, were also revealed.
Conclusion: This finding reveals the anti-metastatic effect of myricetin against CCA cells which is mediated partly through suppression of the STAT3 pathway. This compound could be potentially useful as a therapeutic agent against CCA.

Tang D, Wu Q, Yuan Z, et al.
Identification of key pathways and gene changes in primary pancreatic stellate cells after cross-talk with pancreatic cancer cells (BXPC-3) using bioinformatics analysis.
Neoplasma. 2019; 2019(3):446-458 [PubMed] Related Publications
It is well known that as the king of cancer, pancreatic ductal adenocarcinoma (PDAC) has relatively malignant biological behavior and poor prognosis. The interaction between pancreatic stellate cells and PDAC cells promotes the development of PDAC. The aim of this study was to describe gene characteristics in pancreatic stellate cell (PSCs) after cross-talked with BXPC-3 and unravel their underlying mechanisms. The expression profiling analysis of genes in PSCs was completed after co-cultured with primary BXPC-3 for 48h. The Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) enrichment analysis and gene ontology (GO) analysis were performed, and the differentially expressed genes (DEGs) were identified by Agilent GeneSpring GX program. In total, 1804 DEGs were filtered out in PSCs, including 958 up-regulated genes and 846 downregulated genes. GO analysis showed that the up-regulated DEGs were significantly enriched in biological processes (BP) such as defense response, immune system process and immune response; the down-regulated DEGs were significantly enriched in biological regulation and cytoskeleton organization. KEGG pathway analysis showed that 28 pathways were upregulated and 5 were downregulated. By constructing PPI network, we selected out 10 key genes (IL6,IL8, IL1B, BCL2, CCL2, CSF2, KIT, ICAM1, PTPRC and IGF1) and significant enriched pathways. In conclusion, the current study suggests that the filtered DEGs contribute to our understanding of the molecular mechanisms underlying the interaction between PSCs and pancreatic cancer cells, and might be used as molecular targets to further the study the role of tumor microenvironment in the progression of PDAC.

Morgan JJ, McAvera RM, Crawford LJ
TRAF6 Silencing Attenuates Multiple Myeloma Cell Adhesion to Bone Marrow Stromal Cells.
Int J Mol Sci. 2019; 20(3) [PubMed] Free Access to Full Article Related Publications
The bone marrow (BM) microenvironment plays an important role in supporting proliferation, survival and drug resistance of Multiple Myeloma (MM) cells. MM cells adhere to bone marrow stromal cells leading to the activation of tumour-promoting signaling pathways. Activation of the NFκB pathway, in particular, is central to the pathogenesis of MM. Tumour necrosis factor receptor-associated factor 6 (TRAF6) is a key mediator of NFκB activation and has previously been highlighted as a potential therapeutic target in MM. Here, we demonstrate that adherence of MM cell lines to stromal cells results in a reciprocal increase in TRAF6 expression. Knockdown of TRAF6 expression attenuates the ability of MM cells to bind to stromal cells and this is associated with a decrease in NFκB-induced expression of the adhesion molecules ICAM1 and VCAM1. Finally, we show that knockdown of TRAF6 sensitizes MM cells to treatment with bortezomib when co-cultured with stromal cells. Inhibiting TRAF6 represents a promising strategy to target MM cells in the BM microenvironment.

Bagheri V, Abbaszadegan MR, Memar B, et al.
Induction of T cell-mediated immune response by dendritic cells pulsed with mRNA of sphere-forming cells isolated from patients with gastric cancer.
Life Sci. 2019; 219:136-143 [PubMed] Related Publications
Gastric cancer (GC) as the third most common cause of cancer-associated mortality worldwide is one of the cancers with very high heterogeneity. Cancer stem cells (CSCs) as a small subset of cancer cells in solid tumors with the self-renewal, differentiation and tumorigenic ability are responsible for tumor initiation, progression, recurrence, metastasis, and resistance to current treatments. Therefore, eradication of CSCs is very vital to cure cancer. Here, we first isolated and identified sphere-forming cells in tumor tissue from four GC patients and then analyzed T cell responses induced by monocyte-derived dendritic cells (DCs) loaded with total mRNA of sphere-forming cells in terms of interferon-gamma (IFN-γ) gene expression and specific cytotoxicity. Spheroid colonies were formed in serum-free media. Sphere-forming cells dissociated from tumorspheres heterogeneously expressed CD44, CD54, and epithelial cell adhesion molecule (EpCAM) markers and generated one tumor in nude mice. These results demonstrated that gastric CSCs were enriched in tumorspheres. Cytokine-matured DCs loaded with mRNA of sphere-forming cells were able to induce IFN-γ gene expression in T-lymphocytes after a 12-day co-culture. mRNA level of IFN-γ gene in these lymphocytes was more highly expressed compared to stimulated T-lymphocytes by DCs transfected with normal tissue (6.4-9.39 folds). Cytotoxic activity of primed T-lymphocytes with antigens of sphere-forming cells was significantly higher than normal tissue antigens and mock DCs (P ≤ 0.0001). Taken together, DCs loaded with mRNA of sphere-forming cells that elicit effectively specific T cell-mediated immune responses in vitro, may be considered as a promising therapeutic vaccination in GC patients in future.

Tanigaki R, Takahashi R, Nguyen MTT, et al.
4-Hydroxypanduratin A and Isopanduratin A Inhibit Tumor Necrosis Factor α-Stimulated Gene Expression and the Nuclear Factor κB-Dependent Signaling Pathway in Human Lung Adenocarcinoma A549 Cells.
Biol Pharm Bull. 2019; 42(1):26-33 [PubMed] Related Publications
Tumor necrosis factor α (TNF-α), a pro-inflammatory cytokine, regulates inflammatory and immune responses by up-regulating gene expression in a manner that is dependent on the transcription factor nuclear factor κB (NF-κB). In the present study, we found that 4-hydroxypanduratin A and isopanduratin A, constituents of the rhizomes of Boesenbergia pandurata, inhibited the TNF-α-stimulated up-regulation of intercellular adhesion molecule-1 (ICAM-1) in human lung adenocarcinoma A549 cells. 4-Hydroxypanduratin A and isopanduratin A also reduced ICAM-1 mRNA expression and NF-κB-responsive luciferase activity in TNF-α-stimulated A549 cells. Moreover, 4-hydroxypanduratin A and isopanduratin A prevented the TNF-α-stimulated translocation of the NF-κB subunit p65 to the nucleus and the phosphorylation and proteasomal degradation of the inhibitor of the NF-κB α protein. The present results revealed that 4-hydroxypanduratin A and isopanduratin A inhibit TNF-α-stimulated gene expression and the NF-κB-dependent signaling pathway in A549 cells.

Accardo A, Mannucci S, Nicolato E, et al.
Easy formulation of liposomal doxorubicin modified with a bombesin peptide analogue for selective targeting of GRP receptors overexpressed by cancer cells.
Drug Deliv Transl Res. 2019; 9(1):215-226 [PubMed] Related Publications
The article concerns the obtainment of liposomal doxorubicin (Dox) in which liposomes are externally modified with a targeting peptide able to drive the formulation in a selective way on membrane receptors overexpressed in tumors. We developed a kit composed by three different vials: (A) a vial containing a sterile, translucent, red dispersion of the liposomal doxorubicin drug (Doxil®), (B) a vial filled with a lyophilized powder of a modified phospholipid with a reactive function (DSPE-Peg-maleimide), and (C) a vial containing a 1-9 bombesin peptide analogue (Cys-BN-AA1) chemically modified to react in stoichiometric ratio respect to DSPE-Peg-maleimide. The chosen peptide is a stable analogue antagonist of the wild-type 1-9 bombesin peptide; it is very stable in serum; maintains high specificity, with nanomolar affinity, towards gastrin release peptide receptors (GRPRs indicated also as BB2); and is overexpressed in some cancer cells. Results on animal studies clearly indicate that in mice treated with the kit product (i.e., pegylated liposomal Dox modified with the bombesin analogue, Doxil-BN-AA1), tumor growth is reduced, with an improved efficacy respect to mice treated with non-modified pegylated liposomal Dox or with saline solution.

MacFawn I, Wilson H, Selth LA, et al.
Grainyhead-like-2 confers NK-sensitivity through interactions with epigenetic modifiers.
Mol Immunol. 2019; 105:137-149 [PubMed] Article available free on PMC after 01/01/2020 Related Publications
Natural Killer (NK) cells suppress tumor initiation and metastasis. Most carcinomas are heterogeneous mixtures of epithelial, mesenchymal and hybrid tumor cells, but the relationships of these phenotypes to NK susceptibility are understood incompletely. Grainyhead-like-2 (GRHL2) is a master programmer of the epithelial phenotype, that is obligatorily down-regulated during experimentally induced Epithelial-Mesenchymal Transition (EMT). Here, we utilize GRHL2 re-expression to discover unifying molecular mechanisms that link the epithelial phenotype with NK-sensitivity. GRHL2 enhanced the expression of ICAM-1, augmenting NK-target cell synaptogenesis and NK killing of target cells. The expression of multiple interferon response genes, including ICAM1, anti-correlated with EMT. We identified two novel GRHL2-interacting proteins, the histone methyltransferases KMT2C and KMT2D. Mesenchymal-epithelial transition, NK-sensitization and ICAM-1 expression were promoted by GRHL2-KMT2C/D interactions and by GRHL2 inhibition of p300, revealing novel and potentially targetable epigenetic mechanisms connecting the epithelial phenotype with target cell susceptibility to NK killing.

Qiu J, Zhang W, Zang C, et al.
Identification of key genes and miRNAs markers of papillary thyroid cancer.
Biol Res. 2018; 51(1):45 [PubMed] Article available free on PMC after 01/01/2020 Related Publications
OBJECTIVE: In this study, crucial genes and microRNAs (miRNAs) associated with the progression, staging, and prognosis of papillary thyroid cancer (PTC) were identified.
METHODS: Four PTC datasets, including our own mRNA-sequencing (mRNA-seq) dataset and three public datasets downloaded from Gene Expression Omnibus and The Cancer Genome Atlas, were used to analyze differentially expressed genes (DEGs) and miRNAs (DEMs) between PTC tumor tissues and paired normal tissues (control). Gene ontology (GO) terms and pathways associated with these DEGs were identified, and protein-protein interactions (PPIs) were analyzed. Additionally, an miRNA-mRNA regulatory network was constructed and the functions of DEMs were explored. Finally, miRNAs/mRNAs associated with tumor staging and prognosis were identified. The expression levels of several key genes and miRNAs were validated by qRT-PCR.
RESULTS: Numerous DEGs and DEMs were identified between tumor and control groups in four datasets. The DEGs were significantly enriched in cell adhesion and cancer-related GO terms and pathways. In the constructed PPI network, ITGA2, FN1, ICAM1, TIMP1 and CDH2 were hub proteins. In the miRNA-mRNA negative regulatory networks, miR-204-5p regulated the largest number of target genes, such as TNFRSF12A. miR-146b, miR-204, miR-7-2, and FN1 were associated with tumor stage in PTC, and TNFRSF12A and CLDN1 were related to prognosis.
CONCLUSIONS: Our results suggested the important roles of ITGA2, FN1, ICAM1, TIMP1 and CDH2 in the progression of PTC. miR-204-5p, miR-7-2, and miR-146b are potential biomarkers for PTC staging and FN1, CLDN1, and TNFRSF12A may serve as markers of prognosis in PTC.

Lin J, Wu YJ, Liang X, et al.
Network-based integration of mRNA and miRNA profiles reveals new target genes involved in pancreatic cancer.
Mol Carcinog. 2019; 58(2):206-218 [PubMed] Related Publications
Pancreatic cancer is regarded as the most fatal and aggressive malignancy cancer due to its low 5-year survival rate and poor prognosis. The approaches of early diagnosis and treatment are limited, which makes it urgent to identify the complex mechanism of pancreatic oncogenesis. In this study, we used RNA-seq to investigate the transcriptomic (mRNA and miRNA) profiles of pancreatic cancer in paired tumor and normal pancreatic samples from ten patients. More than 1000 differentially expressed genes were identified, nearly half of which were also found to be differentially expressed in the majority of examined patients. Functional enrichment analysis revealed that these genes were significantly enriched in multicellular organismal and metabolic process, secretion, mineral transport, and intercellular communication. In addition, only 24 differentially expressed miRNAs were found, all of which have been reported to be associated with pancreatic cancer. Furthermore, an integrated miRNA-mRNA interaction network was generated using multiple resources. Based on the calculation of disease correlation scores developed here, several genes present in the largest connected subnetwork, such as albumin, ATPase H

Luo L, Xia L, Zha B, et al.
miR-335-5p targeting ICAM-1 inhibits invasion and metastasis of thyroid cancer cells.
Biomed Pharmacother. 2018; 106:983-990 [PubMed] Related Publications
miRNAs is a kind of noncoding small RNAs with negative regulation function. Some miRNAs play a crucial role in the growth of tumor cells. In this study, we analyzed the role of miR-335-5p and its target gene intercellular adhesion molecule 1 (ICAM-1) in thyroid cancer. Real-time polymerase chain reaction (PCR) results showed that the expression level of ICAM-1 in cancer tissues was higher than that in their adjacent tissues. The expression level of ICAM-1 in papillary thyroid carcinoma was also significantly higher than that in other types of tumors. However, the expression of miR-335-5p is opposite to that of ICAM-1. In human thyroid cancer cell lines TPC-1, FTC-133, TT and human thyroid follicular cell line Nthyori 3-1, the expression level of ICAM-1 in TPC-1 was significantly higher than that of other cells, while the expression level of miR-335-5p in TPC-1 was significantly lower than that of other cells. When ICAM-1 expression was downregulated and miR-335-5p expression was upregulated in TPC-1 cells, ICAM-1 expression was upregulated and miR-335-5p expression was downregulated in FTC-133 cells, we found that ICAM-1 could promote the proliferation of thyroid cancer cells, while miR-335-5p could inhibit the proliferation of thyroid cancer cells. miR-335-5p could combine with 3'UTR of ICAM-1 by bioinformatics prediction. Luciferase reporter gene analysis and Western blotting detection further confirmed that miR-335-5p could target ICAM-1 and inhibit its expression. The expression level of miR-335-5p was downregulated, while the expression level of ICAM-1 was upregulated in thyroid cancer. This study will help us better understand the pathogenesis of thyroid cancer and provide new insights into the treatment of this disease.

Krisp C, Parker R, Pascovici D, et al.
Proteomic phenotyping of metastatic melanoma reveals putative signatures of MEK inhibitor response and prognosis.
Br J Cancer. 2018; 119(6):713-723 [PubMed] Article available free on PMC after 11/09/2019 Related Publications
BACKGROUND: Genotyping of melanomas is used to identify patients for treatment with BRAF and MEK inhibitors, but clinical responses are highly variable. This study investigated the utility of protein expression phenotyping to provide an integrated assessment of gene expression programs in BRAF/NRAS melanoma which would be useful for prognosis and may predict response to MEK inhibition.
METHODS: Mass spectrometry profiling of early passage cell lines established from Stage III cutaneous melanomas was conducted. Basal protein expression was correlated with in vitro response to the MEK inhibitor, selumetinib. Protein expression in a cohort of 32 drug naïve BRAF/NRAS metastatic melanoma specimens was examined. The prognostic utility of a subset of these proteins and mRNA transcripts from a separate cohort was determined.
RESULTS: Unsupervised analysis of basal cell line protein abundances delineated response to selumetinib, but BRAF/NRAS genotype did not. Resistance was associated with functions including cell motility, cell adhesion and cytoskeletal organization. Several of these response biomarkers were observed in lymph node biospecimens and correlated with melanoma-specific survival. Loss of ICAM-1 protein and mRNA expression was a strong prognosticator of diminished survival in BRAF/NRAS mutant melanoma.
CONCLUSIONS: These results demonstrate the utility of proteomic phenotyping to identify both putative biomarkers of response to MEK inhibition and prognostication associated with metastatic melanoma.

Messeha SS, Zarmouh NO, Mendonca P, et al.
The inhibitory effects of plumbagin on the NF-қB pathway and CCL2 release in racially different triple-negative breast cancer cells.
PLoS One. 2018; 13(7):e0201116 [PubMed] Article available free on PMC after 11/09/2019 Related Publications
Breast cancer (BC) is the second leading cause of death among women in the US, and its subtype triple-negative BC (TNBC) is the most aggressive BC with poor prognosis. In the current study, we investigated the anticancer effects of the natural product plumbagin (PL) on racially different TNBC cells. The PL effects were examined in two TNBC cell lines: MDA-MB-231 (MM-231) and MDA-MB-468 (MM-468), representing Caucasian Americans and African Americans, respectively. The results obtained indicate that PL inhibited cell viability and cell proliferation and induced apoptosis in both cell lines. Notably, MM-468 cells were 5-fold more sensitive to PL than MM-231 cells were. Testing PL and Taxol® showed the superiority of PL over Taxol® as an antiproliferative agent in MM-468 cells. PL treatment resulted in an approximately 20-fold increase in caspase-3 activity with 3 μM PL in MM-468 cells compared with an approximately 3-fold activity increase in MM-231 cells with 8 μM PL. Moreover, the results indicate a higher sensitivity to PL in MM-468 cells than in MM-231 cells. The results also show that PL downregulated CCL2 cytokine expression in MM-468 cells by 30% compared to a 90% downregulation in MM-231 cells. The ELISA results confirmed the array data (35% vs. 75% downregulation in MM-468 and MM-231 cells, respectively). Moreover, PL significantly downregulated IL-6 and GM-CSF in the MM-231 cells. Indeed, PL repressed many NF-қB-regulated genes involved in the regulation of apoptosis, proliferation, invasion, and metastasis. The compound significantly downregulated the same genes (BIRC3, CCL2, TLR2, and TNF) in both types of cells. However, PL impacted five more genes in MM-231 cells, including BCL2A1, ICAM1, IKBKE, IL1β, and LTA. In conclusion, the data obtained in this study indicate that the quinone compound PL could be a novel cancer treatment for TNBC in African American women.

Badawy AA, El-Magd MA, AlSadrah SA
Therapeutic Effect of Camel Milk and Its Exosomes on MCF7 Cells In Vitro and In Vivo.
Integr Cancer Ther. 2018; 17(4):1235-1246 [PubMed] Article available free on PMC after 11/09/2019 Related Publications
BACKGROUND/OBJECTIVES: In the Middle East, people consume camel milk regularly as it is believed to improve immunity against diseases and decrease the risk for cancer. Recently, it was noted that most of the beneficial effects of milk come from their nanoparticles, especially exosomes. Herein, we evaluated the anticancer potential of camel milk and its exosomes on MCF7 breast cancer cells (in vitro and in vivo) and investigated the possible underlying molecular mechanism of action.
METHODS/RESULTS: Administration of camel milk (orally) and its exosomes (orally and by local injection) decreased breast tumor progression as evident by ( a) higher apoptosis (indicated by higher DNA fragmentation, caspase-3 activity, Bax gene expression, and lower Bcl2 gene expression), ( b) remarkable inhibition of oxidative stress (decrease in MDA levels and iNOS gene expression); ( c) induction of antioxidant status (increased activities of SOD, CAT, and GPX), ( d) notable reduction in expression of inflammation-( IL1b, NFκB), angiogenesis-( VEGF) and metastasis-( MMP9, ICAM1) related genes; and ( e) higher immune response (high number of CD
CONCLUSIONS: Overall, administration of camel milk-derived exosomes showed better anticancer effect, but less immune response, than treatment by camel milk. Moreover, local injection of exosomes led to better improvement than oral administration. These findings suggest that camel milk and its exosomes have anticancer effect possibly through induction of apoptosis and inhibition of oxidative stress, inflammation, angiogenesis and metastasis in the tumor microenvironment. Thus, camel milk and its exosomes could be used as an anticancer agent for cancer treatment.

Hartana CA, Ahlén Bergman E, Zirakzadeh AA, et al.
Urothelial bladder cancer may suppress perforin expression in CD8+ T cells by an ICAM-1/TGFβ2 mediated pathway.
PLoS One. 2018; 13(7):e0200079 [PubMed] Article available free on PMC after 11/09/2019 Related Publications
The immune system plays a significant role in urothelial bladder cancer (UBC) progression, with CD8+ T cells being capable to directly kill tumor cells using perforin and granzymes. However, tumors avoid immune recognition by escape mechanisms. In this study, we aim to demonstrate tumor immune escape mechanisms that suppress CD8+ T cells cytotoxicity. 42 patients diagnosed with UBC were recruited. CD8+ T cells from peripheral blood (PB), sentinel nodes (SN), and tumor were analyzed in steady state and in vitro-stimulated conditions by flow cytometry, RT-qPCR, and ELISA. Mass spectrometry (MS) was used for identification of proteins from UBC cell line culture supernatants. Perforin was surprisingly found to be low in CD8+ T cells from SN, marked by 1.8-fold decrease of PRF1 expression, with maintained expression of granzyme B. The majority of perforin-deficient CD8+ T cells are effector memory T (TEM) cells with exhausted Tc2 cell phenotype, judged by the presence of PD-1 and GATA-3. Consequently, perforin-deficient CD8+ T cells from SN are low in T-bet expression. Supernatant from muscle invasive UBC induces perforin deficiency, a mechanism identified by MS where ICAM-1 and TGFβ2 signaling were causatively validated to decrease perforin expression in vitro. Thus, we demonstrate a novel tumor escape suppressing perforin expression in CD8+ T cells mediated by ICAM-1 and TGFβ2, which can be targeted in combination for cancer immunotherapy.

Jarzabek MA, Proctor WR, Vogt J, et al.
Interrogation of transcriptomic changes associated with drug-induced hepatic sinusoidal dilatation in colorectal cancer.
PLoS One. 2018; 13(6):e0198099 [PubMed] Article available free on PMC after 11/09/2019 Related Publications
Drug-related sinusoidal dilatation (SD) is a common form of hepatotoxicity associated with oxaliplatin-based chemotherapy used prior to resection of colorectal liver metastases (CRLM). Recently, hepatic SD has also been associated with anti-delta like 4 (DLL4) cancer therapies targeting the NOTCH pathway. To investigate the hypothesis that NOTCH signaling plays an important role in drug-induced SD, gene expression changes were examined in livers from anti-DLL4 and oxaliplatin-induced SD in non-human primate (NHP) and patients, respectively. Putative mechanistic biomarkers of bevacizumab (bev)-mediated protection against oxaliplatin-induced SD were also investigated. RNA was extracted from whole liver sections or centrilobular regions by laser-capture microdissection (LCM) obtained from NHP administered anti-DLL4 fragment antigen-binding (F(ab')2 or patients with CRLM receiving oxaliplatin-based chemotherapy with or without bev. mRNA expression was quantified using high-throughput real-time quantitative PCR. Significance analysis was used to identify genes with differential expression patterns (false discovery rate (FDR) < 0.05). Eleven (CCL2, CCND1, EFNB2, ERG, ICAM1, IL16, LFNG, NOTCH1, NOTCH4, PRDX1, and TGFB1) and six (CDH5, EFNB2, HES1, IL16, MIK67, HES1 and VWF) candidate genes were differentially expressed in the liver of anti-DLL4- and oxaliplatin-induced SD, respectively. Addition of bev to oxaliplatin-based chemotherapy resulted in differential changes in hepatic CDH5, HEY1, IL16, JAG1, MMP9, NOTCH4 and TIMP1 expression. This work implicates NOTCH and IL16 pathways in the pathogenesis of drug-induced SD and further explains the hepato-protective effect of bev in oxaliplatin-induced SD observed in CRLM patients.

Zhang B, Zhang Z, Li L, et al.
TSPAN15 interacts with BTRC to promote oesophageal squamous cell carcinoma metastasis via activating NF-κB signaling.
Nat Commun. 2018; 9(1):1423 [PubMed] Article available free on PMC after 11/09/2019 Related Publications
Beta-transducin repeat containing E3 ubiquitin protein ligase (BTRC) is crucial for the degradation of IκBα. Our previous transcriptome sequencing analysis revealed that tetraspanin 15 (TSPAN15) was significantly upregulated in clinical oesophageal squamous cell carcinoma (OSCC) tissues. Here, we show that high TSPAN15 expression in OSCC tissues is significantly associated with lymph node and distant metastasis, advanced clinical stage, and poor prognosis. Elevated TSPAN15 expression is, in part, caused by the reduction of miR-339-5p. Functional studies demonstrate that TSPAN15 promotes metastatic capabilities of OSCC cells. We further show that TSPAN15 specifically interacts with BTRC to promote the ubiquitination and proteasomal degradation of p-IκBα, and thereby triggers NF-κB nuclear translocation and subsequent activation of transcription of several metastasis-related genes, including ICAM1, VCAM1, uPA, MMP9, TNFα, and CCL2. Collectively, our findings indicate that TSPAN15 may serve as a new biomarker and/or provide a novel therapeutic target to OSCC patients.

Weiler J, Mohr M, Zänker KS, Dittmar T
Matrix metalloproteinase-9 (MMP9) is involved in the TNF-α-induced fusion of human M13SV1-Cre breast epithelial cells and human MDA-MB-435-pFDR1 cancer cells.
Cell Commun Signal. 2018; 16(1):14 [PubMed] Article available free on PMC after 11/09/2019 Related Publications
BACKGROUND: In addition to physiological events such as fertilisation, placentation, osteoclastogenesis, or tissue regeneration/wound healing, cell fusion is involved in pathophysiological conditions such as cancer. Cell fusion, which applies to both the proteins and conditions that induce the merging of two or more cells, is not a fully understood process. Inflammation/pro-inflammatory cytokines might be a positive trigger for cell fusion. Using a Cre-LoxP-based cell fusion assay we demonstrated that the fusion between human M13SV1-Cre breast epithelial cells and human MDA-MB-435-pFDR1 cancer cells was induced by the pro-inflammatory cytokine tumour necrosis factor-α (TNF-α).
METHODS: The gene expression profile of the cells in the presence of TNF-α and under normoxic and hypoxic conditions was analysed by cDNA microarray analysis. cDNA microarray data were verified by qPCR, PCR, Western blot and zymography. Quantification of cell fusion events was determined by flow cytometry. Proteins of interest were either blocked or knocked-down using a specific inhibitor, siRNA or a blocking antibody.
RESULTS: The data showed an up-regulation of various genes, including claudin-1 (CLDN1), ICAM1, CCL2 and MMP9 in M13SV1-Cre and/or MDA-MB-435-pFDR1 cells. Inhibition of these proteins using a blocking ICAM1 antibody, CLDN1 siRNA or an MMP9 inhibitor showed that only the blockage of MMP9 was correlated with a decreased fusion rate of the cells. Likewise, the tetracycline-based antibiotic minocycline, which exhibits anti-inflammatory properties, was also effective in both inhibiting the TNF-α-induced MMP9 expression in M13SV1-Cre cells and blocking the TNF-α-induced fusion frequency of human M13SV1-Cre breast epithelial cells and human MDA-MB-435-pFDR1 cancer cells.
CONCLUSIONS: The matrix metalloproteinase-9 (MMP9) is most likely involved in the TNF-α-mediated fusion of human M13SV1-Cre breast epithelial cells and human MDA-MB-435-pFDR1 cancer cells. Likewise, our data indicate that the tetracycline-based antibiotic minocycline might exhibit anti-fusogenic properties because it inhibits a cell fusion-related mechanism.

Chang AC, Chen PC, Lin YF, et al.
Osteoblast-secreted WISP-1 promotes adherence of prostate cancer cells to bone via the VCAM-1/integrin α4β1 system.
Cancer Lett. 2018; 426:47-56 [PubMed] Related Publications
Bone metastasis is a frequent occurrence in prostate cancer (PCa) that is associated with severe complications such as fracture, bone pain and hypercalcemia. The cross-talk between metastatic cancer cells and bone is critical to the development and progression of bone metastases. In our previous data, we have described how the involvement of the Wnt-induced secreted protein-1/vascular cell adhesion molecule-1 (WISP-1/VCAM-1) system in this tumor-bone interaction contributes to human PCa cell motility. In this study, we found that WISP-1 regulates bone mineralization by inducing bone morphogenetic protein-2 (BMP2), BMP4 and osteopontin (OPN) expression in osteoblasts. We also found that WISP-1 inhibited RANKL-dependent osteoclastogenesis. Moreover, osteoblast-derived WISP-1 enhanced VCAM-1 expression in PCa cells and subsequently promoted the adherence of cancer cells to osteoblasts. Furthermore, endothelin-1 (ET-1) expression in PCa cells was regulated by osteoblast-derived WISP-1, which promoted integrin α4β1 expression in osteoblasts via the MAPK pathway. Pretreatment of PCa cells with VCAM-1 antibody or osteoblasts with integrin α4β1 antibody attenuated the adherence of PCa cells to osteoblasts, suggesting that integrin α4β1 serves as a ligand that captures VCAM-1

Itoh H, Kadomatsu T, Tanoue H, et al.
TET2-dependent IL-6 induction mediated by the tumor microenvironment promotes tumor metastasis in osteosarcoma.
Oncogene. 2018; 37(22):2903-2920 [PubMed] Related Publications
The tumor microenvironment promotes epigenetic changes in tumor cells associated with tumor aggressiveness. Here we report that in primary tumor cells, increased interleukin-6 (IL-6) expression brought on by DNA demethylation of its promoter by ten-eleven translocation 2 (TET2) promotes lung metastasis in osteosarcoma (OS). Xenograft experiments show increased IL-6 expression and decreased methylation of its promoter in OS cells after implantation relative to before implantation. In addition, changes in IL-6 methylation and expression seen in OS cells at the primary site were maintained at the metastatic site. TET2 knockdown in OS cells suppressed upregulation of IL-6 and demethylation of its promoter in xenograft tumors and decreased tumor metastasis. We also present evidence showing that tumor cell-derived IL-6 facilitates glycolytic metabolism in tumor cells by activating the MEK/ERK1/2/hypoxia-inducible transcription factor-1α (HIF-1α) pathway and increases lung colonization by OS cells by upregulating expression of intercellular adhesion molecule-1 (ICAM-1), enhancing tumor metastasis. Blocking IL-6 signaling with a humanized monoclonal antibody against the IL-6 receptor reduced lung metastasis and prolonged survival of xenografted mice. These findings suggest that TET2-dependent IL-6 induction enables acquisition of aggressive phenotypes in OS cells via the tumor microenvironment and that blocking IL-6 signaling could be serve as a potential therapy to antagonize metastasis.

Guo P, Wang B, Liu D, et al.
Using Atomic Force Microscopy to Predict Tumor Specificity of ICAM1 Antibody-Directed Nanomedicines.
Nano Lett. 2018; 18(4):2254-2262 [PubMed] Related Publications
Atomic force microscopy (AFM) is a powerful tool to detect in vitro antibody-antigen interactions. To date, however, AFM-measured antibody-antigen interactions have yet to be exploited to predict in vivo tumor specificity of antibody-directed nanomedicines. In this study, we have utilized AFM to directly measure the biomechanical interaction between live triple negative breast cancer (TNBC) cells and an antibody against ICAM1, a recently identified TNBC target. For the first time, we provide proof-of-principle evidence that in vitro TNBC cell-ICAM1 antibody binding force measured by AFM on live cells more precisely correlates with in vivo tumor accumulation and therapeutic efficacy of ICAM1 antibody-directed liposomes than ICAM1 gene and surface protein overexpression levels. These studies demonstrate that live cell-antibody binding force measurements may be used as a novel in vitro metric for predicting the in vivo tumor recognition of antibody-directed nanomedicines.

Donnenberg VS, Zhang JJ, Moravcikova E, et al.
Antibody-based cell-surface proteome profiling of metastatic breast cancer primary explants and cell lines.
Cytometry A. 2018; 93(4):448-457 [PubMed] Related Publications
Flow cytometric cell surface proteomics provides a new and powerful tool to determine changes accompanying neoplastic transformation and invasion, providing clues to essential interactions with the microenvironment as well as leads for potential therapeutic targets. One of the most important advantages of flow cytometric cell surface proteomics is that it can be performed on living cells that can be sorted for further characterization and functional studies. Here, we document the surface proteome of clonogenic metastatic breast cancer (MBrCa) explants, which was strikingly similar to that of normal mesenchymal stromal cells (P = 0.017, associated with Pearson correlation coefficient) and transformed mammary epithelial cells (P = 0.022). Markers specifically upregulated on MBrCa included CD200 (Ox2), CD51/CD61 (Integrin α5/β3), CD26 (dipeptidyl peptidase-4), CD165 (c-Cbl), and CD54 (ICAM-1). Proteins progressively upregulated in a model of neoplastic transformation and invasion included CD26, CD63 (LAMP3), CD105 (Endoglin), CD107a (LAMP1), CD108 (Semaphorin 7A), CD109 (Integrin β4), CD151 (Raph blood group), and disialoganglioside G2. The proteome of the commonly used cell lines MDA-MB-231, MCF7, and BT-474 were uncorrelated with that of MBrCa (P = 1.0, 1.0, 0.9, respectively). The comparison has demonstrated the mesenchymal nature of clonogenic cells isolated by short-term culture of metastatic breast cancer, provided several leads for biomarkers and potential targets for anti-invasive therapy, including CD200, and highlighted the limitations of breast cancer cell lines for representing the cell surface biology of breast cancer. © 2017 International Society for Advancement of Cytometry.

Arvidsson G, Henriksson J, Sander B, Wright AP
Mixed-species RNAseq analysis of human lymphoma cells adhering to mouse stromal cells identifies a core gene set that is also differentially expressed in the lymph node microenvironment of mantle cell lymphoma and chronic lymphocytic leukemia patients.
Haematologica. 2018; 103(4):666-678 [PubMed] Article available free on PMC after 11/09/2019 Related Publications
A subset of hematologic cancer patients is refractory to treatment or suffers relapse, due in part to minimal residual disease, whereby some cancer cells survive treatment. Cell-adhesion-mediated drug resistance is an important mechanism, whereby cancer cells receive survival signals

Durgeau A, Virk Y, Corgnac S, Mami-Chouaib F
Recent Advances in Targeting CD8 T-Cell Immunity for More Effective Cancer Immunotherapy.
Front Immunol. 2018; 9:14 [PubMed] Article available free on PMC after 11/09/2019 Related Publications
Recent advances in cancer treatment have emerged from new immunotherapies targeting T-cell inhibitory receptors, including cytotoxic T-lymphocyte associated antigen (CTLA)-4 and programmed cell death (PD)-1. In this context, anti-CTLA-4 and anti-PD-1 monoclonal antibodies have demonstrated survival benefits in numerous cancers, including melanoma and non-small-cell lung carcinoma. PD-1-expressing CD8

Kopp S, Sahana J, Islam T, et al.
The role of NFκB in spheroid formation of human breast cancer cells cultured on the Random Positioning Machine.
Sci Rep. 2018; 8(1):921 [PubMed] Article available free on PMC after 11/09/2019 Related Publications
Human MCF-7 breast cancer cells were exposed to a Random Positioning Machine (RPM). After 24 hours (h) the cells grew either adherently within a monolayer (AD) or within multicellular spheroids (MCS). AD and MCS populations were separately harvested, their cellular differences were determined performing qPCR on genes, which were differently expressed in AD and MCS cells. Gene array technology was applied to detect RPM-sensitive genes in MCF-7 cells after 24 h. Furthermore, the capability to form multicellular spheroids in vitro was compared with the intracellular distribution of NF-kappaB (NFκB) p65. NFκB was equally distributed in static control cells, but predominantly localized in the cytoplasm in AD cells and nucleus in MCS cells exposed to the RPM. Gene array analyses revealed a more than 2-fold change of only 23 genes including some whose products are affected by oxygen levels or regulate glycolysis. Significant upregulations of the mRNAs of enzymes degrading heme, of ANXA1, ANXA2, CTGF, CAV2 and ICAM1, as well as of FAS, Casp8, BAX, p53, CYC1 and PARP1 were observed in MCS cells as compared with 1g-control and AD cells. An interaction analysis of 47 investigated genes suggested that HMOX-1 and NFκB variants are activated, when multicellular spheroids are formed.

Liu Y, Sun W, Ma X, et al.
Logistic regression analysis for the identification of the metastasis-associated signaling pathways of osteosarcoma.
Int J Mol Med. 2018; 41(3):1233-1244 [PubMed] Article available free on PMC after 11/09/2019 Related Publications
Osteosarcoma (OS) is the most common histological type of primary bone cancer. The present study was designed to identify the key genes and signaling pathways involved in the metastasis of OS. Microarray data of GSE39055 were downloaded from the Gene Expression Omnibus database, which included 19 OS biopsy specimens before metastasis (control group) and 18 OS biopsy specimens after metastasis (case group). After the differentially expressed genes (DEGs) were identified using the Linear Models for Microarray Analysis package, hierarchical clustering analysis and unsupervised clustering analysis were performed separately, using orange software and the self-organization map method. Based upon the Database for Annotation, Visualization and Integrated Discovery tool and Cytoscape software, enrichment analysis and protein-protein interaction (PPI) network analysis were conducted, respectively. After function deviation scores were calculated for the significantly enriched terms, hierarchical clustering analysis was performed using Cluster 3.0 software. Furthermore, logistic regression analysis was used to identify the terms that were significantly different. Those terms that were significantly different were validated using other independent datasets. There were 840 DEGs in the case group. There were various interactions in the PPI network [including intercellular adhesion molecule-1 (ICAM1), transforming growth factor β1 (TGFB1), TGFB1-platelet-derived growth factor subunit B (PDGFB) and PDGFB-platelet‑derived growth factor receptor-β (PDGFRB)]. Regulation of cell migration, nucleotide excision repair, the Wnt signaling pathway and cell migration were identified as the terms that were significantly different. ICAM1, PDGFB, PDGFRB and TGFB1 were identified to be enriched in cell migration and regulation of cell migration. Nucleotide excision repair and the Wnt signaling pathway were the metastasis-associated pathways of OS. In addition, ICAM1, PDGFB, PDGFRB and TGFB1, which were involved in cell migration and regulation of cell migration may affect the metastasis of OS.

Harada M, Morimoto K, Kondo T, et al.
Quinacrine Inhibits ICAM-1 Transcription by Blocking DNA Binding of the NF-κB Subunit p65 and Sensitizes Human Lung Adenocarcinoma A549 Cells to TNF-α and the Fas Ligand.
Int J Mol Sci. 2017; 18(12) [PubMed] Article available free on PMC after 11/09/2019 Related Publications
Quinacrine has been used for therapeutic drugs in some clinical settings. In the present study, we demonstrated that quinacrine decreased the expression of intercellular adhesion molecule-1 (ICAM-1) induced by tumor necrosis factor (TNF)-α and interleukin-1 (IL-1) α in human lung adenocarcinoma A549 cells. Quinacrine inhibited ICAM-1 mRNA expression and nuclear factor κB (NF-κB)-responsive luciferase reporter activity following a treatment with TNF-α and IL-1α. In the NF-κB signaling pathway, quinacrine did not markedly affect the TNF-α-induced degradation of the inhibitor of NF-κB or the TNF-α-induced phosphorylation of the NF-κB subunit, p65, at Ser-536 and its subsequent translocation to the nucleus. In contrast, a chromatin immunoprecipitation assay showed that quinacrine prevented the binding of p65 to the ICAM-1 promoter following TNF-α stimulation. Moreover, TNF-α and the Fas ligand effectively reduced the viability of A549 cells in the presence of quinacrine only. Quinacrine down-regulated the constitutive and TNF-α-induced expression of c-FLIP and Mcl-1 in A549 cells. These results revealed that quinacrine inhibits ICAM-1 transcription by blocking the DNA binding of p65 and sensitizes A549 cells to TNF-α and the Fas ligand.

Slattery ML, Mullany LE, Sakoda L, et al.
The NF-κB signalling pathway in colorectal cancer: associations between dysregulated gene and miRNA expression.
J Cancer Res Clin Oncol. 2018; 144(2):269-283 [PubMed] Article available free on PMC after 11/09/2019 Related Publications
BACKGROUND: The nuclear factor-kappa B (NF-κB) signalling pathway is a regulator of immune response and inflammation that has been implicated in the carcinogenic process. We examined differentially expressed genes in this pathway and miRNAs to determine associations with colorectal cancer (CRC).
METHODS: We used data from 217 CRC cases to evaluate differences in NF-κB signalling pathway gene expression between paired carcinoma and normal mucosa and identify miRNAs that are associated with these genes. Gene expression data from RNA-Seq and miRNA expression data from Agilent Human miRNA Microarray V19.0 were analysed. We evaluated genes most strongly associated and differentially expressed (fold change (FC) of > 1.5 or < 0.67) that were statistically significant after adjustment for multiple comparisons.
RESULTS: Of the 92 genes evaluated, 22 were significantly downregulated and nine genes were significantly upregulated in all tumours. Two additional genes (CD14 and CSNK2A1) were dysregulated in MSS tumours and two genes (CARD11 and VCAM1) were downregulated and six genes were upregulated (LYN, TICAM2, ICAM1, IL1B, CCL4 and PTGS2) in MSI tumours. Sixteen of the 21 dysregulated genes were associated with 40 miRNAs. There were 76 miRNA:mRNA associations of which 38 had seed-region matches. Genes were associated with multiple miRNAs, with TNFSRF11A (RANK) being associated with 15 miRNAs. Likewise several miRNAs were associated with multiple genes (miR-150-5p with eight genes, miR-195-5p with four genes, miR-203a with five genes, miR-20b-5p with four genes, miR-650 with six genes and miR-92a-3p with five genes).
CONCLUSIONS: Focusing on the genes and their associated miRNAs within the entire signalling pathway provides a comprehensive understanding of this complex pathway as it relates to CRC and offers insight into potential therapeutic agents.

Woodcock CC, Huang Y, Woodcock SR, et al.
Nitro-fatty acid inhibition of triple-negative breast cancer cell viability, migration, invasion, and tumor growth.
J Biol Chem. 2018; 293(4):1120-1137 [PubMed] Article available free on PMC after 11/09/2019 Related Publications
Triple-negative breast cancer (TNBC) comprises ∼20% of all breast cancers and is the most aggressive mammary cancer subtype. Devoid of the estrogen and progesterone receptors, along with the receptor tyrosine kinase ERB2 (HER2), that define most mammary cancers, there are no targeted therapies for patients with TNBC. This, combined with a high metastatic rate and a lower 5-year survival rate than for other breast cancer phenotypes, means there is significant unmet need for new therapeutic strategies. Herein, the anti-neoplastic effects of the electrophilic fatty acid nitroalkene derivative, 10-nitro-octadec-9-enoic acid (nitro-oleic acid, NO

Min IM, Shevlin E, Vedvyas Y, et al.
CAR T Therapy Targeting ICAM-1 Eliminates Advanced Human Thyroid Tumors.
Clin Cancer Res. 2017; 23(24):7569-7583 [PubMed] Article available free on PMC after 11/09/2019 Related Publications

Guesmi F, Prasad S, Tyagi AK, Landoulsi A
Antinflammatory and anticancer effects of terpenes from oily fractions of Teucruim alopecurus, blocker of IκBα kinase, through downregulation of NF-κB activation, potentiation of apoptosis and suppression of NF-κB-regulated gene expression.
Biomed Pharmacother. 2017; 95:1876-1885 [PubMed] Related Publications
Teucrium alopecurus is an endemic plant limited to southern Tunisia. In the present study, the chemical composition, anticancer and nuclear factor-κB (NF-κB) inhibitory effects of Teucrium alopecurus leaf essential oil was investigated. The analysis of Teucrium alopecurus (TA-1) with Gas Chromatography-Mass Spectrometry (GC/MS) showed that α-Bisabolol, (+)-epi-Bicyclosesquiphellandrene and α-Cadinol, were found in relatively high amounts (16.16%, 15.40% and 8.52%, respectively). Cell viability was determined by 3-(4-5-dimethylthiazol-2-yl) 2-5-diphenyl-tetrazolium (MTT) assay. Cell cycle and apoptosis assay were determined by flow cytometry. TA-1 functions as an anticancer agent by triggering apoptosis potentiated by chemotherapeutic agents and TNF in human myeloid leukemia cells (KBM5) through a mechanism involving poly(ADP-ribose) polymerase (PARP) cleavage and initiator and effector caspases activation. Moreover, electrophoretic mobility shift assay (EMSA) revealed that TA-1 downregulated nuclear localization of NF-κB and its phosphorylation induced by TNF-α and this, allows the suppression of the degradation and phosphorylation of IκB and the inhibition of the phosphorylation of p65 phosphorylation and the p50-p65 heterodimer nuclear translocation, causing attenuation of NF-κB-regulated antiapoptotic (Survivin, Bcl-2, c-IAP1/2, Bcl-xL, Mcl-1, and cFLIP), invasion (ICAM1), metasatsis (MMP-9), and angiogenesis (VEGF) gene expression in KBM5; and finally reporter gene expression. Furthermore, treatment with essential oil and TNF-α suppressed the NF-κB DNA binding activity. Finally, the activation of nuclear factor-κB induced by different plasmids (TNFR1, TRADD, TRAF2, NIK, TAK1/TAB1, and IKKβ) was inhibited following treatment with TA-1. Overall, TA-1 inhibits NF-κB activation and further growth and proliferation of cancer cells.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. ICAM1, Cancer Genetics Web: http://www.cancer-genetics.org/ICAM1.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 30 August, 2019     Cancer Genetics Web, Established 1999