HSD17B2

Gene Summary

Gene:HSD17B2; hydroxysteroid 17-beta dehydrogenase 2
Aliases: HSD17, SDR9C2, EDH17B2
Location:16q23.3
Summary:-
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:estradiol 17-beta-dehydrogenase 2
Source:NCBIAccessed: 31 August, 2019

Ontology:

What does this gene/protein do?
Show (12)
Pathways:What pathways are this gene/protein implicaed in?
Show (1)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 31 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Disease Progression
  • Receptors, Progesterone
  • Steroids
  • Xenograft Models
  • Genotype
  • Chromosome 16
  • Progesterone
  • Gonadal Steroid Hormones
  • Aldo-Keto Reductase Family 1 Member C3
  • Haplotypes
  • Estrogen Receptor alpha
  • Polymerase Chain Reaction
  • Androgens
  • Genetic Variation
  • Cohort Studies
  • 17-Hydroxysteroid Dehydrogenases
  • Thailand
  • Estrogens
  • Prostate Cancer
  • Messenger RNA
  • Case-Control Studies
  • Enzymologic Gene Expression Regulation
  • Biomarkers, Tumor
  • Cell Proliferation
  • Sulfotransferases
  • Neoplasm Proteins
  • Aromatase
  • RTPCR
  • 3-Hydroxysteroid Dehydrogenases
  • Cancer Gene Expression Regulation
  • Steroid Isomerases
  • Stomach Cancer
  • Estradiol Dehydrogenases
  • Estradiol
  • Genetic Predisposition
  • Hydroxyprostaglandin Dehydrogenases
  • Ovarian Cancer
  • Endometrial Cancer
  • Single Nucleotide Polymorphism
  • Breast Cancer
Tag cloud generated 31 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (5)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: HSD17B2 (cancer-related)

Kikuchi K, McNamara KM, Miki Y, et al.
Effects of cytokines derived from cancer-associated fibroblasts on androgen synthetic enzymes in estrogen receptor-negative breast carcinoma.
Breast Cancer Res Treat. 2017; 166(3):709-723 [PubMed] Related Publications
PURPOSE: The tumor microenvironment plays pivotal roles in promotion of many malignancies. Cancer-associated fibroblasts (CAFs) have been well-known to promote proliferation, angiogenesis, and metastasis but mechanistic understanding of tumor-stroma interactions is not yet complete. Recently, estrogen synthetic enzymes were reported to be upregulated by co-culture with stromal cells in ER positive breast carcinoma (BC) but effects of co-culture on androgen metabolism have not been extensively examined. Therefore, we evaluated roles of CAFs on androgen metabolism in ER-negative AR-positive BC through co-culture with CAFs.
METHODS: Concentrations of steroid hormone in supernatant of co-culture of MDA-MB-453 and primary CAFs were measured using GC-MS. Cytokines derived from CAFs were determined using Cytokine Array. Expressions of androgen synthetic enzymes were confirmed using RT-PCR and Western blotting. Correlations between CAFs and androgen synthetic enzymes were analyzed using triple-negative BC (TNBC) patient tissues by immunohistochemistry.
RESULTS: CAFs were demonstrated to increase expressions and activities of 17βHSD2, 17βHSD5, and 5α-Reductase1. IL-6 and HGF that were selected as potential paracrine mediators using cytokine array induced 17βHSD2, 17βHSD5, and 5α-Reductase1 expression. Underlying mechanisms of IL-6 paracrine regulation of 17βHSD2 and 17βHSD5 could be partially dependent on phosphorylated STAT3, while phosphorylated ERK could be involved in HGF-mediated 5α-Reductase1 induction. α-SMA status was also demonstrated to be significantly correlated with 17βHSD2 and 17βHSD5 status in TNBC tissues, especially AR-positive cases.
CONCLUSIONS: Results of our present study suggest that both IL-6 and HGF derived from CAFs could contribute to the intratumoral androgen metabolism in ER-negative BC patients.

Hilborn E, Stål O, Jansson A
Estrogen and androgen-converting enzymes 17β-hydroxysteroid dehydrogenase and their involvement in cancer: with a special focus on 17β-hydroxysteroid dehydrogenase type 1, 2, and breast cancer.
Oncotarget. 2017; 8(18):30552-30562 [PubMed] Free Access to Full Article Related Publications
Sex steroid hormones such as estrogens and androgens are involved in the development and differentiation of the breast tissue. The activity and concentration of sex steroids is determined by the availability from the circulation, and on local conversion. This conversion is primarily mediated by aromatase, steroid sulfatase, and 17β-hydroxysteroid dehydrogenases. In postmenopausal women, this is the primary source of estrogens in the breast. Up to 70-80% of all breast cancers express the estrogen receptor-α, responsible for promoting the growth of the tissue. Further, 60-80% express the androgen receptor, which has been shown to have tissue protective effects in estrogen receptor positive breast cancer, and a more ambiguous response in estrogen receptor negative breast cancers. In this review, we summarize the function and clinical relevance in cancer for 17β-hydroxysteroid dehydrogenases 1, which facilitates the reduction of estrone to estradiol, dehydroepiandrosterone to androstendiol and dihydrotestosterone to 3α- and 3β-diol as well as 17β-hydroxysteroid dehydrogenases 2 which mediates the oxidation of estradiol to estrone, testosterone to androstenedione and androstendiol to dehydroepiandrosterone. The expression of 17β-hydroxysteroid dehydrogenases 1 and 2 alone and in combination has been shown to predict patient outcome, and inhibition of 17β-hydroxysteroid dehydrogenases 1 has been proposed to be a prime candidate for inhibition in patients who develop aromatase inhibitor resistance or in combination with aromatase inhibitors as a first line treatment. Here we review the status of inhibitors against 17β-hydroxysteroid dehydrogenases 1. In addition, we review the involvement of 17β-hydroxysteroid dehydrogenases 4, 5, 7, and 14 in breast cancer.

Cornel KM, Krakstad C, Delvoux B, et al.
High mRNA levels of 17β-hydroxysteroid dehydrogenase type 1 correlate with poor prognosis in endometrial cancer.
Mol Cell Endocrinol. 2017; 442:51-57 [PubMed] Related Publications
Most endometrial cancers (ECs) are diagnosed at an early stage and have a good prognosis. However, 20-30% develop recurrence and have poor survival. Recurrence-risk prediction at diagnosis is hampered by the scarcity of prognostic markers. Most ECs are estrogen related, and recent studies show that estrogen exposure in EC is controlled intracrinally. We aim at assessing any association between patient prognosis and the pathways controlling the intracrine estrogen generation in EC: (a) the balance between 17β-hydroxysteroid-dehydrogenase-type 1 (HSD17B1), that generates active estrogens, and HSD17B2, converting active into poorly active compounds; (b) the balance between steroid sulphatase (STS, that activates estrogens) and estrogen-sulphotransferase (SULT1E1, that deactivates estrogens); (c) the levels of aromatase (ARO), that converts androgen into estrogens. mRNA levels of HSD17B1, HSD17B2, STS, SULT1E1 and ARO were determined among 175 ECs using cDNA microarray. Proteins were explored by immunohistochemistry. Patients with high mRNA of HSD17B1 had a poorer prognosis compared with those with low levels. Combining the expression of HSD17B1 and HSD17B2, patients with high tumour expression of HSD17B1 and low levels of HSD17B2 had the poorest prognosis. Contrarily, women that had high tumour levels of HSD17B2 and low of HSD17B1 had the best outcome. No differences were seen between mRNA level of other the genes analysed and prognosis. At the protein level, HSD17B2, STS and SULT1E1 were highly expressed, whereas HSD17B1 was low and ARO was almost absent. In conclusion, HSD17B1 is a promising marker to predict EC prognosis. Immunohistochemical detection of this protein in ECs has low sensitivity and should be improved for future clinical applications.

Lee YE, He HL, Shiue YL, et al.
The prognostic impact of lipid biosynthesis-associated markers, HSD17B2 and HMGCS2, in rectal cancer treated with neoadjuvant concurrent chemoradiotherapy.
Tumour Biol. 2015; 36(10):7675-83 [PubMed] Related Publications
Neoadjuvant concurrent chemoradiotherapy has been widely used for rectal cancer to improve local tumor control. The varied response of individual tumors encouraged us to search for useful biomarkers to predict the therapeutic response. The study was aimed to evaluate the prognostic impact of lipid biosynthesis-associated biomarkers in rectal cancer patients treated with preoperative chemoradiotherapy. Through analysis of the previously published gene expression profiling database focusing on genes associated with lipid biosynthesis, we found that HSD17B2 and HMGCS2 were the top two significantly upregulated genes in the non-responders. We further evaluated their expression by immunohistochemistry in the pre-treatment tumor specimens from 172 patients with rectal cancer and statistically analyzed the associations between their expression and various clinicopathological factors, as well as survival. High expression of HMGCS2 or HSD17B2 was significantly associated with advanced pre- and post-treatment tumor or nodal status (P < 0.001) and lower tumor regression grade (P < 0.001). More importantly, high expression of either HMGCS2 or HSD17B2 was of prognostic significance, with HMGCS2 overexpression indicating poor prognosis for disease-free survival (P = 0.0003), local recurrence-free survival (P = 0.0115), and metastasis-free survival (P = 0.0119), while HSD17B2 overexpression was associated with poor prognosis for disease-free survival (P <0.0001), local recurrence-free survival (P = 0.0009), and metastasis-free survival (P < 0.0001). In multivariate analysis, only HSD17B2 overexpression remained as an independent prognosticator for shorter disease-free survival (P < 0.001) and metastasis-free survival (P = 0.008). In conclusion, high expression of either HSD17B2 or HMGCS2 predicted poor susceptibility of rectal cancer to preoperative chemoradiotherapy. Both acted as promising prognostic factors, particularly HSD17B2.

Ren X, Wu X, Hillier SG, et al.
Local estrogen metabolism in epithelial ovarian cancer suggests novel targets for therapy.
J Steroid Biochem Mol Biol. 2015; 150:54-63 [PubMed] Free Access to Full Article Related Publications
Epithelial ovarian cancer (EOC) accounts for about 90% of malignant ovarian tumors, and estrogen is often implicated in disease progression. We therefore compared the potential for gating of estrogen action via pre-receptor metabolism in normal human ovarian surface epithelium (OSE), EOC and selected EOC cell lines (SKOV3 and PEO1). Steroid sulphatase (STS), estrogen sulfotransferase (EST), 17β-hydroxysteroid dehydrogenases 2 (17BHSD2) and 5 (17BHSD5) mRNAs, proteins and enzymatic activities were all detectable in primary cell cultures of OSE and EOC, whereas aromatase and 17BHSD1 expression was negligible. qRT-PCR assay on total mRNA revealed significantly higher EST mRNA expression in OSE compared to EOC (P<0.05). Radioenzymatic measurements confirmed reduced sulfoconjugation (neutralization) of free estrogen in EOC relative to OSE. OSE cells were more effective at converting free [(3)H]-E1 to [(3)H]-E1S or [(3)H]-E2S, while EOC cell lines mainly converted [(3)H]-E1 to [(3)H]-E2 with minimal formation of [(3)H]-E1S or [(3)H]-E2S. IL1α treatment suppressed EST (P<0.01) and 17BHSD2 (P<0.001) mRNA levels in OSE and stimulated STS mRNA levels (P<0.001) in cancer (SKOV3) cells. These results show that estrogen is differentially metabolized in OSE and EOC cells, with E2 'activation' from conjugated estrogen predominating in EOC. Inflammatory cytokines may further augment the local production of E2 by stimulating STS and suppressing EST. We conclude that local estrogen metabolism may be a target for EOC treatment.

Fokidis HB, Yieng Chin M, Ho VW, et al.
A low carbohydrate, high protein diet suppresses intratumoral androgen synthesis and slows castration-resistant prostate tumor growth in mice.
J Steroid Biochem Mol Biol. 2015; 150:35-45 [PubMed] Related Publications
Dietary factors continue to preside as dominant influences in prostate cancer prevalence and progression-free survival following primary treatment. We investigated the influence of a low carbohydrate diet, compared to a typical Western diet, on prostate cancer (PCa) tumor growth in vivo. LNCaP xenograft tumor growth was studied in both intact and castrated mice, representing a more advanced castration resistant PCa (CRPC). No differences in LNCaP tumor progression (total tumor volume) with diet was observed for intact mice (P = 0.471) however, castrated mice on the Low Carb diet saw a statistically significant reduction in tumor growth rate compared with Western diet fed mice (P = 0.017). No correlation with serum PSA was observed. Steroid profiles, alongside serum cholesterol and cholesteryl ester levels, were significantly altered by both diet and castration. Specifically, DHT concentration with the Low Carb diet was 58% that of the CRPC-bearing mice on the Western diet. Enzymes in the steroidogenesis pathway were directly impacted and tumors isolated from intact mice on the Low Carb diet had higher AKR1C3 protein levels and lower HSD17B2 protein levels than intact mice on the Western diet (ARK1C3: P = 0.074; HSD17B2: P = 0.091, with α = 0.1). In contrast, CRPC tumors from mice on Low Carb diets had higher concentrations of both HSD17B2 (P = 0.016) and SRD5A1 (P = 0.058 with α = 0.1) enzymes. There was no correlation between tumor growth in castrated mice for Low Carb diet versus Western diet and (a) serum insulin (b) GH serum levels (c) insulin receptor (IR) or (d) IGF-1R in tumor tissue. Intact mice fed Western diet had higher serum insulin which was associated with significantly higher blood glucose and tumor tissue IR. We conclude that both diet and castration have a significant impact on the endocrinology of mice bearing LNCaP xenograft tumors. The observed effects of diet on cholesterol and steroid regulation impact tumor tissue DHT specifically and are likely to be mechanistic drivers behind the observed tumor growth suppression.

Frycz BA, Murawa D, Borejsza-Wysocki M, et al.
Expression of 17β-hydroxysteroid dehydrogenase type 2 is associated with some clinicopathological features in gastric cancer.
Biomed Pharmacother. 2015; 70:24-7 [PubMed] Related Publications
In most populations, gastric cancer (GC) incidence is higher in men than in women, which may suggest the role of sex steroid hormones in gastric cancerogenesis. Both, androgens and estrogens can be synthetised in peripherial tissues. This process is controlled by expression of steroidogenic enzymes. Therefore, we evaluate the 17β-hydroxysteroid dehydrogenase type 2 (HSD17B2) transcript and protein levels in gastric tumoral and nontumoral tissue. We also determined the association between HSD17B2 transcript and protein levels and some clinicopathological features in GC. We found significantly decreased levels of HSD17B2 transcript (P=0.00072) and protein (P=0.00017) in primary tumoral tissues of GC patients, as compared to nontumoral tissues. In patients above 60 years of age the amounts of HSD17B2 transcript (P=0.00044) and protein (P=0.00027) were significantly lower in tumoral than nontumoral tissues. Similarly, lower HSD17B2 levels, both in terms of the transcript and protein, were observed in tumoral tissues of male (P=0.013, P=0.0014), patients stomach (P=0.0062, P=0.045) and cardia (P=0.02, P=0.02) site of tumor, T3 (P=0.018, P=0.014) depth of invasion, N0 (P=0.017, P=0.045) lymph node metastasis, G3 (P=0.0027, P=0.014) malignancy grade. We also observed significantly reduced level of HSD17B2 transcript in tumoral tissue specimens of females (P=0.014), T4 depth of invasion (P=0.02), N3 lymph node metastasis (P=0.037) and G2 malignancy grade (P=0.045). Furthermore, diffuse GC histological types were associated with lower HSD17B2 protein level (P=0.024) than nontumoral tissues. We demonstrated that HSD17B2 transcript and protein levels are linked to some clinicopathological features in GC.

Burleigh A, McKinney S, Brimhall J, et al.
A co-culture genome-wide RNAi screen with mammary epithelial cells reveals transmembrane signals required for growth and differentiation.
Breast Cancer Res. 2015; 17:4 [PubMed] Free Access to Full Article Related Publications
INTRODUCTION: The extracellular signals regulating mammary epithelial cell growth are of relevance to understanding the pathophysiology of mammary epithelia, yet they remain poorly characterized. In this study, we applied an unbiased approach to understanding the functional role of signalling molecules in several models of normal physiological growth and translated these results to the biological understanding of breast cancer subtypes.
METHODS: We developed and utilized a cytogenetically normal clonal line of hTERT immortalized human mammary epithelial cells in a fibroblast-enhanced co-culture assay to conduct a genome-wide small interfering RNA (siRNA) screen for evaluation of the functional effect of silencing each gene. Our selected endpoint was inhibition of growth. In rigorous postscreen validation processes, including quantitative RT-PCR, to ensure on-target silencing, deconvolution of pooled siRNAs and independent confirmation of effects with lentiviral short-hairpin RNA constructs, we identified a subset of genes required for mammary epithelial cell growth. Using three-dimensional Matrigel growth and differentiation assays and primary human mammary epithelial cell colony assays, we confirmed that these growth effects were not limited to the 184-hTERT cell line. We utilized the METABRIC dataset of 1,998 breast cancer patients to evaluate both the differential expression of these genes across breast cancer subtypes and their prognostic significance.
RESULTS: We identified 47 genes that are critically important for fibroblast-enhanced mammary epithelial cell growth. This group was enriched for several axonal guidance molecules and G protein-coupled receptors, as well as for the endothelin receptor PROCR. The majority of genes (43 of 47) identified in two dimensions were also required for three-dimensional growth, with HSD17B2, SNN and PROCR showing greater than tenfold reductions in acinar formation. Several genes, including PROCR and the neuronal pathfinding molecules EFNA4 and NTN1, were also required for proper differentiation and polarization in three-dimensional cultures. The 47 genes identified showed a significant nonrandom enrichment for differential expression among 10 molecular subtypes of breast cancer sampled from 1,998 patients. CD79A, SERPINH1, KCNJ5 and TMEM14C exhibited breast cancer subtype-independent overall survival differences.
CONCLUSION: Diverse transmembrane signals are required for mammary epithelial cell growth in two-dimensional and three-dimensional conditions. Strikingly, we define novel roles for axonal pathfinding receptors and ligands and the endothelin receptor in both growth and differentiation.

Nyante SJ, Gammon MD, Kaufman JS, et al.
Genetic variation in estrogen and progesterone pathway genes and breast cancer risk: an exploration of tumor subtype-specific effects.
Cancer Causes Control. 2015; 26(1):121-31 [PubMed] Free Access to Full Article Related Publications
PURPOSE: To determine whether associations between estrogen pathway-related single nucleotide polymorphisms (SNPs) and breast cancer risk differ by molecular subtype, we evaluated associations between SNPs in cytochrome P450 family 19 subfamily A polypeptide 1 (CYP19A1), estrogen receptor (ESR1), 3-beta hydroxysteroid dehydrogenase type I (HSD3B1), 17-beta hydroxysteroid dehydrogenase type II (HSD17B2), progesterone receptor (PGR), and sex hormone-binding globulin (SHBG) and breast cancer risk in a case-control study in North Carolina.
METHODS: Cases (n = 1,972) were women 20-74 years old and diagnosed with breast cancer between 1993 and 2001. Population-based controls (n = 1,776) were frequency matched to cases by age and race. A total of 195 SNPs were genotyped, and linkage disequilibrium was evaluated using the r (2) statistic. Odds ratios (ORs) and 95 % confidence intervals (CIs) for associations with breast cancer overall and by molecular subtype were estimated using logistic regression. Monte Carlo methods were used to control for multiple comparisons; two-sided p values <3.3 × 10(-4) were statistically significant. Heterogeneity tests comparing the two most common subtypes, luminal A (n = 679) and basal-like (n = 200), were based on the Wald statistic.
RESULTS: ESR1 rs6914211 (AA vs. AT+TT, OR 2.24, 95 % CI 1.51-3.33), ESR1 rs985191 (CC vs. AA, OR 2.11, 95 % CI 1.43-3.13), and PGR rs1824128 (TT+GT vs. GG, OR 1.33, 95 % CI 1.14-1.55) were associated with risk after accounting for multiple comparisons. Rs6914211 and rs985191 were in strong linkage disequilibrium among controls (African-Americans r (2) = 0.70; whites r (2) = 0.95). There was no evidence of heterogeneity between luminal A and basal-like subtypes, and the three SNPs were also associated with elevated risk of the less common luminal B, HER2+/ER-, and unclassified subtypes.
CONCLUSIONS: ESR1 and PGR SNPs were associated with risk, but lack of heterogeneity between subtypes suggests variants in hormone-related genes may play similar roles in the etiology of breast cancer molecular subtypes.

Eriksen MB, Glintborg D, Nielsen MF, et al.
Testosterone treatment increases androgen receptor and aromatase gene expression in myotubes from patients with PCOS and controls, but does not induce insulin resistance.
Biochem Biophys Res Commun. 2014; 451(4):622-6 [PubMed] Related Publications
Polycystic ovary syndrome (PCOS) is associated with insulin resistance and increased risk of type 2 diabetes. Skeletal muscle is the major site of insulin mediated glucose disposal and the skeletal muscle tissue is capable to synthesize, convert and degrade androgens. Insulin sensitivity is conserved in cultured myotubes (in vitro) from patients with PCOS, but the effect of testosterone on this insulin sensitivity is unknown. We investigated the effect of 7days testosterone treatment (100nmol/l) on glucose transport and gene expression levels of hormone receptors and enzymes involved in the synthesis and conversion of testosterone (HSD17B1, HSD17B2, CYP19A1, SRD5A1-2, AR, ER-α, HSD17B6 and AKR1-3) in myotubes from ten patients with PCOS and ten matched controls. Testosterone treatment significantly increased aromatase and androgen receptor gene expression levels in patients and controls. Glucose transport in myotubes was comparable in patients with PCOS vs. controls and was unchanged by testosterone treatment (p=0.21 PCOS vs. controls). These results suggest that testosterone treatment of myotubes increases the aromatase and androgen receptor gene expression without affecting insulin sensitivity and if testosterone is implicated in muscular insulin resistance in PCOS, this is by and indirect mechanism.

Khvostova EP, Otpuschennikov AA, Pustylnyak VO, Gulyaeva LF
Gene expression of androgen metabolising enzymes in benign and malignant prostatic tissues.
Horm Metab Res. 2015; 47(2):119-24 [PubMed] Related Publications
Benign prostatic hyperplasia (BPH) as well as prostate cancer (CaP) are prevalent in the aging male population, and both the diseases display androgen-dependence when the circulating testosterone from the gonads decreases. This suggests that the local or intracrine production of androgens may drive these diseases. Both diseases are dependent on the conversion of androgen by the epithelial compartment to the ligand with higher affinity and can be treated by blocking synthesis of this androgen metabolite. For this approach to be effective, a detailed knowledge of androgen biosynthesis in both disease states is required. The aim of the present study was to investigate the gene expression levels of androgen metabolising enzymes in BPH compared to normal adjacent prostate tissues and CaP. Expression of the genes HSD3B1, HSD17B3, and SRD5A2 was significantly increased in BPH tissues compared to normal adjacent prostate tissues. In contrast to BPH, CaP demonstrated significant decrease in the expression of HSD17B3, AKR1C2, and SRD5A2 compared to normal adjacent prostate tissues. HSD17B2 expression was significantly decreased in all samples. Moreover, HSD3B1 and SRD5A2 mRNA levels were upregulated in BPH compared with CaP. These results suggest that a change in androgen metabolism may be an important step in the pathogenesis of BPH, leading to increased cell proliferation due to in situ androgen synthesis. These features can be used to develop differential treatment strategies for BPH. HSD3B1 and SRD5A2 could be used as therapeutic target for BPH.

Zhang LS, Yuan F, Guan X, et al.
Association of genetic polymorphisms in HSD17B1, HSD17B2 and SHBG genes with hepatocellular carcinoma risk.
Pathol Oncol Res. 2014; 20(3):661-6 [PubMed] Related Publications
Genetic polymorphisms of enzymes involved in estrogen synthesizing/transporting can influence the risk of hormone-dependent diseases. The incidence rate and relative risk for hepatocellular carcinoma (HCC) are higher in men than in women. This study was conducted to explore the relationship of single nucleotide polymorphisms (SNPs) in 17 β-Hydroxysteroid dehydrogenases (HSD17B1 and HSD17B2) and sex hormone-binding globulin (SHBG) genes with the risk of HCC within Chinese Han population. Polymorphisms of HSD17B1 rs676387, HSD17B2 rs8191246 and SHBG rs6259 were genotyped in 253 HCC patients and 438 healthy control subjects using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Significantly increased HCC risk was found to be associated with T allele of rs676387 and G allele of rs8191246. Increased HCC risks were found in different genetic model (TT genotype in a recessive model, T allele carriers in a dominant model, TT genotype and TG genotype in a codominant model for HSD17B1 rs676387, G allele carriers in a dominant model and AG genotype in a codominant model for HSD17B2 rs8191246, respectively). No association between SHBG rs6259 and HCC risk was observed. The present study provided evidence that HSD17B1 rs676387 and HSD17B2 rs8191246 were association with HCC development. Further studies in diverse ethnic population with larger sample size were recommended to confirm the findings.

Straume AH, Knappskog S, Lønning PE
Effects of SNP variants in the 17β-HSD2 and 17β-HSD7 genes and 17β-HSD7 copy number on gene transcript and estradiol levels in breast cancer tissue.
J Steroid Biochem Mol Biol. 2014; 143:192-8 [PubMed] Related Publications
Breast cancers reveal elevated E2 levels compared to plasma and normal breast tissue. Previously, we reported intra-tumour E2 to be negatively correlated to transcription levels of 17β-HSD2 but positively correlated to 17β-HSD7. Here, we explored these mechanisms further by analysing the same breast tumours for 17β-HSD2 and -7 SNPs, as well as 17β-HSD7 gene copy number. Among the SNPs detected, we found the 17β-HSD2 rs4445895_T allele to be associated with lower intra-tumour mRNA (p=0.039) and an elevated intra-tumour E2 level (p=0.006). In contrast, we found the 17β-HSD7 rs1704754_C allele to be associated with elevated mRNA (p=0.050) but not to E2 levels in breast tumour tissue. Surprisingly, 17β-HSD7 - gene copy number was elevated in 19 out of 46 breast tumours examined. Elevated copy number was associated with an increased mRNA expression level (p=0.013) and elevated tumour E2 (p=0.025). Interestingly, elevated 17β-HSD7 - gene copy number was associated with increased expression not only of 17β-HSD7, but the 17β-HSD7_II pseudogene as well (p=0.019). Expression level of 17β-HSD7 and its pseudogene was significantly correlated both in tumour tissue (rs=0.457, p=0.001) and in normal tissue (rs=0.453, p=0.002). While in vitro transfection experiments revealed no direct impact of 17β-HSD7 expression on pseudogene level, the fact that 17β-HSD7 and 17β-HSD7_II share a 95.6% sequence identity suggests the two transcripts may be subject to common regulatory mechanisms. In conclusion, genetic variants of 17β-HSD2 and 17β-HSD7 may affect intra-tumour gene expression as well as breast cancer E2 levels in postmenopausal women.

Doherty D, Dvorkin SA, Rodriguez EP, Thompson PD
Vitamin D receptor agonist EB1089 is a potent regulator of prostatic "intracrine" metabolism.
Prostate. 2014; 74(3):273-85 [PubMed] Related Publications
BACKGROUND: A contributing factor to the emergence of castrate resistant prostate cancer (CRPC) is the ability of the tumor to circumvent low circulating levels of testosterone during androgen deprivation therapy (ADT), through the production of "intracrine" tumoral androgens from precursors including cholesterol and dehydroepiandrosterone (DHEA). As these processes promote AR signaling and prostate cancer progression their modulation is required for disease prevention and treatment.
METHODS: We evaluated the involvement of the vitamin D receptor ligand EB1089 in the regulation of genes with a role in androgen metabolism using the androgen dependent cell lines LNCaP and LAPC-4. EB1089 regulation of androgen metabolism was assessed using QRT-PCR, luciferase promoter assays, western blotting, enzyme activity assays, and LC-MS analyses.
RESULTS: EB1089 induced significant expression of genes involved in androgen metabolism in prostate cancer cells. Real-Time PCR analysis revealed that VDR mediated significant regulation of CYP3A4, CYP3A5, CYP3A43, AKR1C1-3, UGT2B15/17, and HSD17B2. Data revealed potent regulation of CYP3A4 at the level of mRNA, protein expression and enzymatic activity, with VDR identified as the predominant regulator. Inhibition of CYP3A activity using the specific inhibitor ritonavir resulted in alleviation of the anti-proliferative response of VDR ligands in prostate cancer cells. Mass spectrometry revealed that overexpression of CYP3A protein in prostate cancer cells resulted in a significant increase in the oxidative inactivation of testosterone and DHEA to their 6-β-hydroxy-testosterone and 16-α-hydroxy-DHEA metabolites, respectively.
CONCLUSIONS: These data highlight a potential application of VDR-based therapies for the reduction of growth-promoting androgens within the tumor micro-environment.

Sinreih M, Hevir N, Rižner TL
Altered expression of genes involved in progesterone biosynthesis, metabolism and action in endometrial cancer.
Chem Biol Interact. 2013; 202(1-3):210-7 [PubMed] Related Publications
Endometrial cancer (EC) is one of the most common gynecological malignancies worldwide. It is associated with prolonged exposure to estrogens that is unopposed by the protective effects of progesterone, which suggests that altered progesterone biosynthesis, metabolism and actions might be implicated in the development of EC. Our aim was to evaluate these processes through quantitative real-time PCR expression analysis in up to 47 pairs of EC tissue and adjacent control endometrium. First, we examined the expression of genes encoding proteins associated with progesterone biosynthesis: steroidogenic acute regulatory protein (STAR); a side chain cleavage enzyme (CYP11A1); and 3β-hydroxysteroid dehydrogenase/ketosteroid isomerase (HSD3B). There were 1.9- and 10.0-fold decreased expression of STAR and CYP11A1, respectively, in EC versus adjacent control endometrium, with no significant differences in the expression of HSD3B1 and HSD3B2. Next, we examined expression of genes encoding five progesterone metabolizing enzymes: the 3-keto and 20-ketosteroid reductases (AKR1C1-AKR1C3) and 5α-reductases (SRD5A1 and SRD5A2); and the opposing 20α-hydroxysteroid dehydrogenase (HSD17B2). These genes are expressed in EC and adjacent control endometrium. No statistically significant differences were seen in mRNA levels of AKR1C1, AKR1C2, AKR1C3 and SRD5A1. Expression of HSD17B2 was 3.0-fold increased, and expression of SRD5A2 was 3.7-fold decreased, in EC versus adjacent control endometrium. We also examined mRNA levels of progesterone receptors A and B (PGR), and separately the expression of progesterone receptor B (PR-B). Here we saw 1.8- and 2.0-fold lower mRNA levels of PGR and PR-B, respectively, in EC versus adjacent control endometrium. This down-regulation of STAR, CYP11A1 and PGR in endometrial cancer may lead to decreased progesterone biosynthesis and actions although the effects on progesterone levels should be further studied.

Lévesque É, Huang SP, Audet-Walsh É, et al.
Molecular markers in key steroidogenic pathways, circulating steroid levels, and prostate cancer progression.
Clin Cancer Res. 2013; 19(3):699-709 [PubMed] Related Publications
PURPOSE: Prostate cancer is a heterogeneous genetic disease, and molecular methods for predicting prognosis in patients with aggressive form of the disease are urgently needed to better personalize treatment approaches. The objective was to identify host genetic variations in candidate steroidogenic genes affecting hormone levels and prostate cancer progression.
EXPERIMENTAL DESIGN: The study examined two independent cohorts composed of 526 Caucasian men with organ-confined prostate cancer and 601 Taiwanese men on androgen-deprivation therapy. Caucasians were genotyped for 109 haplotype-tagging single-nucleotide polymorphisms (SNP) in CYP17A1, ESR1, CYP19A1, and HSD3B1, and their prognostic significance on disease progression was assessed using Kaplan-Meier survival curves and Cox regression models. Positive findings, including previously identified SRD5A1, SRD5A2, HSD17B2, HSD17B3, and HSD17B12 polymorphisms, were then explored in Taiwanese men (n = 32 SNPs). The influence of positive markers on the circulating hormonal levels was then appraised in Caucasians using specific and sensitive mass spectrometry-based methods.
RESULTS: After adjusting for known risk factors, variants of CYP17A1 (rs6162), HSD17B2 (rs4243229 and rs7201637), and ESR1 (rs1062577) were associated with progressive disease in both cohorts. Indeed, the presence of these variations was significantly associated with progression in Caucasians (HR, 2.29-4.10; P = 0.0014-2 × 10(-7)) and survival in Taiwanese patients [HR = 3.74; 95% confidence interval (CI): 1.71-8.19, P = 0.009]. Remarkably, the CYP17A1 rs6162 polymorphism was linked to plasma dehydroepiandrosterone-sulfate (DHEA-S) levels (P = 0.03), HSD17B2 rs7201637 with levels of dihydrotestosterone (P = 0.03), and ESR1 rs1062577 with levels of estrone-S and androsterone-glucuronide (P ≤ 0.05).
CONCLUSION: This study identifies, in different ethnic groups and at different disease stages, CYP17A1, HSD17B2, and ESR1 as attractive prognostic molecular markers of prostate cancer progression.

Cho LY, Yang JJ, Ko KP, et al.
Genetic susceptibility factors on genes involved in the steroid hormone biosynthesis pathway and progesterone receptor for gastric cancer risk.
PLoS One. 2012; 7(10):e47603 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The objective of the study was to investigate the role of genes (HSD3B1, CYP17A1, CYP19A1, HSD17B2, HSD17B1) involved in the steroid hormone biosynthesis pathway and progesterone receptor (PGR) in the etiology of gastric cancer in a population-based two-phase genetic association study.
METHODS: In the discovery phase, 108 candidate SNPs in the steroid hormone biosynthesis pathway related genes and PGR were analyzed in 76 gastric cancer cases and 322 controls in the Korean Multi-Center Cancer Cohort. Statistically significant SNPs identified in the discovery phase were re-evaluated in an extended set of 386 cases and 348 controls. Pooled- and meta-analyses were conducted to summarize the results.
RESULTS: Of the 108 SNPs in steroid hormone biosynthesis pathway related genes and PGR analyzed in the discovery phase, 23 SNPs in PGR in the recessive model and 10 SNPs in CYP19A1 in the recessive or additive models were significantly associated with increased gastric cancer risk (p<0.05). The minor allele frequencies of the SNPs in both the discovery and extension phases were not statistically different. Pooled- and meta-analyses showed CYP19A1 rs1004982, rs16964228, and rs1902580 had an increased risk for gastric cancer (pooled OR [95% CI] = 1.22 [1.01-1.48], 1.31 [1.03-1.66], 3.03 [1.12-8.18], respectively). In contrast, all PGR SNPs were not statistically significantly associated with gastric cancer risk.
CONCLUSIONS: Our findings suggest CYP19A1 that codes aromatase may play an important role in the association of gastric cancer risk and be a genetic marker for gastric cancer susceptibility.

Cong RJ, Huang ZY, Cong L, et al.
Polymorphisms in genes HSD17B1 and HSD17B2 and uterine leiomyoma risk in Chinese women.
Arch Gynecol Obstet. 2012; 286(3):701-5 [PubMed] Related Publications
PURPOSE: To evaluate the association of HSD17B1 and HSD17B2 gene polymorphisms with uterine leiomyoma in Chinese women.
METHODS: 121 Chinese women with clinically diagnosed uterine leiomyoma and 217 healthy normal Chinese women were investigated to compare three single nucleotide polymorphisms (SNPs) (rs605059 and rs676387 of HSD17B1 gene and rs8191246 of HSD17B2 gene) by polymerase chain reaction-restriction fragment length polymorphism and DNA sequencing method.
RESULTS: All the SNPs were polymorphisms in Chinese women. Frequencies of rs605059 AA genotype and A allele were significantly increased in patients with uterine leiomyoma compared to healthy controls (GG vs. AA, OR 0.40, 95 % CI 0.20-0.82; G vs. A, OR 0.68, 95 % CI 0.50-0.94).
CONCLUSION: The results suggest that the genotype of HSD17B1 rs605059 may play a role in the tumourgenesis of uterine leiomyoma.

Locke JA, Zafarana G, Malloff CA, et al.
Allelic loss of the loci containing the androgen synthesis gene, StAR, is prognostic for relapse in intermediate-risk prostate cancer.
Prostate. 2012; 72(12):1295-305 [PubMed] Related Publications
BACKGROUND: Androgen deprivation therapy (ADT) and novel agents targeting the androgen synthesis axis (e.g., abiraterone acetate) are adjuvant therapies that are currently, or may in the future be, combined with radiotherapy to reduce the chance of disease relapse. Little is known about allelic loss or gain pertaining to genes associated with the androgen synthesis axis and whether this is prognostic in patients who receive localized radiotherapy. In this hypothesis generating study, we conducted an array comparative genomic hybridization (aCGH) analysis of 33 androgen synthesis genes to identify potential prognostic factors for radiotherapy outcome.
METHODS: aCGH analysis of tumor DNA prospectively derived from frozen needle biopsies of 126 men with intermediate-risk disease who underwent image-guided radiotherapy (IGRT) to a mean dose of 76.4 Gy was conducted. Statistical analyses were conducted for allelic loss or gain in genes as potential prognostic factors relative to prostate specific antigen, Gleason-score, and T-category.
RESULTS: We observed that allelic losses of loci containing the genes StAR and HSD17B2 were associated with increased genetic instability (as determined by percentage genome alteration). On multivariate analyses these loci were prognostic for biochemical disease-free relapse (StAR: HR = 2.84, 95% CI: 1.44-5.61, P = 0.00269; HSD17B2: HR = 1.97, 95% CI: 1.06-3.64, P = 0.031). The results were validated in a surgical cohort of 131 intermediate-risk patients.
CONCLUSIONS: Allelic losses of the loci containing StAR and HSD17B2 have significant prognostic value for intermediate-risk prostate cancer. With this hypothesis generating information future studies should test StAR and HSD17B2 losses as biomarkers of androgen response in combined modality protocols.

Audet-Walsh É, Bellemare J, Lacombe L, et al.
The impact of germline genetic variations in hydroxysteroid (17-beta) dehydrogenases on prostate cancer outcomes after prostatectomy.
Eur Urol. 2012; 62(1):88-96 [PubMed] Related Publications
BACKGROUND: The relationship between polymorphisms in the hydroxysteroid (17-beta) dehydrogenase (HSD17B) family of genes, which are involved in steroid hormone biotransformation, and the risk of prostate cancer (PCa) progression remains unexplored.
OBJECTIVE: Determine whether inherited variations in HSD17B genes are associated with PCa progression.
DESIGN, SETTING, AND PARTICIPANTS: We studied two independent Caucasian cohorts composed of 526 men with organ-confined PCa and 213 men with advanced disease who had a median follow-up of 7.4 yr and 7.8 yr after surgery, respectively.
MEASUREMENTS: Patients with localised PCa were genotyped for 88 haplotype-tagging single nucleotide polymorphisms in HSD17B type 1 (HSD17B1), type 2 (HSD17B2), type 3 (HSD17B3), type 4 (HSD17B4), type 5 (HSD17B5), and type 12 (HSD17B12), and their prognostic significance on disease progression was assessed using Kaplan-Meier survival curves and Cox regression models. Positive findings were then investigated in advanced disease.
RESULTS AND LIMITATIONS: After adjusting for known risk factors, 12 SNPs distributed across HSD17B2, HSD17B3, and HSD17B12 were significantly associated with risk of biochemical recurrence (BCR) in localised PCa (for variants in HSD17B2: hazard ratio [HR]: 1.92-2.93; p=0.025-0.004). In addition, four variants of HSD17B2 (rs1364287, rs2955162, rs1119933, rs9934209) were significantly associated with progression-free survival (HR: 2.96-4.69; p=0.004-0.00005) and overall survival in advanced disease (HR: 3.98-8.14; p=0.003-0.00002). Four variants of HSD17B3 and HSD17B12 were associated with a reduced risk of BCR (HR: 0.51-0.65; p=0.020-0.036) but not with progression in advanced disease. These results were generated mainly in Caucasians and should be studied in other ethnic groups.
CONCLUSIONS: This study suggests a prominent role for common genetic variants in the HSD17B2 pathway in PCa progression.

Friedlander TW, Roy R, Tomlins SA, et al.
Common structural and epigenetic changes in the genome of castration-resistant prostate cancer.
Cancer Res. 2012; 72(3):616-25 [PubMed] Related Publications
Progression of primary prostate cancer to castration-resistant prostate cancer (CRPC) is associated with numerous genetic and epigenetic alterations that are thought to promote survival at metastatic sites. In this study, we investigated gene copy number and CpG methylation status in CRPC to gain insight into specific pathophysiologic pathways that are active in this advanced form of prostate cancer. Our analysis defined and validated 495 genes exhibiting significant differences in CRPC in gene copy number, including gains in androgen receptor (AR) and losses of PTEN and retinoblastoma 1 (RB1). Significant copy number differences existed between tumors with or without AR gene amplification, including a common loss of AR repressors in AR-unamplified tumors. Simultaneous gene methylation and allelic deletion occurred frequently in RB1 and HSD17B2, the latter of which is involved in testosterone metabolism. Lastly, genomic DNA from most CRPC was hypermethylated compared with benign prostate tissue. Our findings establish a comprehensive methylation signature that couples epigenomic and structural analyses, thereby offering insights into the genomic alterations in CRPC that are associated with a circumvention of hormonal therapy. Genes identified in this integrated genomic study point to new drug targets in CRPC, an incurable disease state which remains the chief therapeutic challenge.

Sun T, Oh WK, Jacobus S, et al.
The impact of common genetic variations in genes of the sex hormone metabolic pathways on steroid hormone levels and prostate cancer aggressiveness.
Cancer Prev Res (Phila). 2011; 4(12):2044-50 [PubMed] Free Access to Full Article Related Publications
Our previous work suggested that there was no significant association between plasma steroid hormone levels and prostate cancer tumor grade at diagnosis. In this study, we systematically tested the hypothesis that inherited variations in the androgen and estrogen metabolic pathways may be associated with plasma levels of steroid hormones, or prostate cancer aggressiveness at diagnosis. Plasma hormone levels including total testosterone, total estradiol, and sex hormone-binding globulin were measured in a cohort of 508 patients identified with localized prostate cancer. D'Amico risk classification at diagnosis was also determined. A total of 143 single-nucleotide polymorphisms (SNPs) from 30 genes that are involved in androgen and estrogen metabolism were selected for analysis. The global association of genotypes with plasma hormone levels and prostate cancer aggressiveness (D'Amico risk classification) was statistically analyzed. Q values were estimated to account for multiple testing. We observed significant associations between plasma testosterone level and SNPs in HSD17B2 (rs1424151), HSD17B3 (rs9409407), and HSD17B1 (rs12602084), with P values of 0.002, 0.006, and 0.006, respectively. We also observed borderline significant associations between prostate aggressiveness at diagnosis and SNPs in AKR1C1 (rs11252845; P = 0.005), UGT2B15 (rs2045100; P = 0.007), and HSD17B12 (rs7932905; P = 0.008). No individual SNP was associated with both clinical variables. Genetic variants of genes in hormone metabolic pathways may influence plasma androgen levels or prostate cancer aggressiveness. However, it seems that the inherited variations affecting plasma hormone levels differ from those affecting disease aggressiveness.

Buganim Y, Madar S, Rais Y, et al.
Transcriptional activity of ATF3 in the stromal compartment of tumors promotes cancer progression.
Carcinogenesis. 2011; 32(12):1749-57 [PubMed] Related Publications
Compelling evidences have rendered the tumor microenvironment a crucial determinant in cancer outcome. Activating transcription factor 3 (ATF3), a stress response transcription factor, is known to have a dichotomous role in tumor cells, acting either as a tumor suppressor or an oncogene in a context-dependent manner. However, its expression and possible role in the tumor microenvironment are hitherto unknown. Here we show that ATF3 is upregulated in the stromal compartment of several types of cancer. Accordingly, Cancer-associated fibroblasts (CAFs) ectopically expressing ATF3 proliferated faster as indicated by increased colony-forming capacity and promoted the growth of adjacent tumor cells when co-injected into nude mice. Utilizing a genome-wide profiling approach, we unraveled a robust gene expression program induced by ATF3 in CAFs. Focusing on a specific subset of genes, we found that the ability of stromal ATF3 to promote cancer progression is mediated by transcriptional repression of CLDN1 and induction of CXCL12 and RGS4. In addition, regulation of LIF, CLDN1, SERPINE2, HSD17B2, ITGA7 and PODXL by ATF3 mediated the increased proliferation capacity of CAFs. In sum, our findings implicate ATF3 as a novel stromal tumor promoter and suggest that targeting ATF3 pathway might be beneficial for anticancer therapy.

Lin JH, Manson JE, Kraft P, et al.
Estrogen and progesterone-related gene variants and colorectal cancer risk in women.
BMC Med Genet. 2011; 12:78 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Observational studies and randomized trials have suggested that estrogens and/or progesterone may lower the risk for colorectal cancer. Inherited variation in the sex-hormone genes may be one mechanism by which sex hormones affect colorectal cancer, although data are limited.
METHOD: We conducted a comprehensive evaluation of single nucleotide polymorphisms (SNPs) in genes encoding 3 hormone receptors (ESR1, ESR2, PGR) and 5 hormone synthesizers (CYP19A1 and CYP17A1, HSD17B1, HSD17B2, HSD17B4) among 427 women with incident colorectal cancer and 871 matched controls who were Caucasians of European ancestry from 93676 postmenopausal women enrolled in the Women's Health Initiative Observational cohort. A total of 242 haplotype-tagging and functional SNPs in the 8 genes were included for analysis. Unconditional logistic regression with adjustment for age and hysterectomy status was used to estimate odds ratios (ORs) and 95% confidence intervals (CIs).
RESULTS: We observed a weak association between the CYP17A1 rs17724534 SNP and colorectal cancer risk (OR per risk allele (A) = 1.39, 95% CI = 1.09-1.78, corrected p-value = 0.07). In addition, a suggestive interaction between rs17724534 and rs10883782 in 2 discrete LD blocks of CYP17A1 was observed in relation to colorectal cancer (empirical p value = 0.04). Moreover, one haplotype block of CYP19A1 was associated with colorectal cancer (corrected global p value = 0.02), which likely reflected the association with the tagging SNP, rs1902584, in the block.
CONCLUSION: Our findings offer some support for a suggestive association of CYP17A1 and CYP19A1 variants with colorectal cancer risk.

Pfeiffer MJ, Smit FP, Sedelaar JP, Schalken JA
Steroidogenic enzymes and stem cell markers are upregulated during androgen deprivation in prostate cancer.
Mol Med. 2011; 17(7-8):657-64 [PubMed] Free Access to Full Article Related Publications
Considerable levels of testosterone and dihydrotestosterone (DHT) are found in prostate cancer (PCa) tissue after androgen deprivation therapy. Treatment of surviving cancer-initiating cells and the ability to metabolize steroids from precursors may be the keystones for the appearance of recurrent tumors. To study this hypothesis, we assessed the expression of several steroidogenic enzymes and stem cell markers in clinical PCa samples and cell cultures during androgen depletion. Gene expression profiles were determined by microarray or qRT-PCR. In addition, we measured cell viability and analyzed stem cell marker expression in DuCaP cells by immunocytochemistry. Seventy patient samples from different stages of PCa, and the PCa cell line DuCaP were included in this study. The androgen receptor (AR) and enzymes (AKR1C3, HSD17B2, HSD17B3, UGT2B15 and UGT2B17 ) that are involved in the metabolism of adrenal steroids were upregulated in castration resistant prostate cancer (CRPC). In vitro, some DuCaP cells survived androgen depletion, and eventually gave rise to a culture adapted to these conditions. During and after this transition, most of the steroidogenic enzymes were upregulated. These cells also are enriched with stem/progenitor cell markers cytokeratin 5 (CK5) and ATP-binding cassette sub-family G member 2 (ABCG2). Similarly, putative stem/progenitor cell markers CK5, c-Kit, nestin, CD44, c-met, ALDH1A1, α2-integrin, CD133, ABCG2, CXCR4 and POU5F1 were upregulated in clinical CRPC. The upregulation of steroidogenic enzymes and stem cell markers in recurrent tumors suggests that cancer initiating cells can expand by adaptation to their T/DHT deprived environment. Therapies targeting the metabolism of adrenal steroids by the tumor may prove effective in preventing tumor regrowth.

Karageorgi S, McGrath M, Lee IM, et al.
Polymorphisms in genes hydroxysteroid-dehydrogenase-17b type 2 and type 4 and endometrial cancer risk.
Gynecol Oncol. 2011; 121(1):54-8 [PubMed] Free Access to Full Article Related Publications
OBJECTIVE: Hydroxysteroid-dehydrogenase-17b (HSD17b) genes control the last step in estrogen biosynthesis. The isoenzymes HSD17b2 and HSD17b4 in the uterus preferentially catalyze the conversion of estradiol, the most potent and active form of estrogen, to estrone, the inactive form of estrogen. Endometrial adenocarcinoma is linked to excessive exposure to estrogens. We hypothesized that single nucleotide polymorphisms (SNPs) in genes HSD17b2 and HSD17b4 may alter the enzyme activity, estradiol levels and risk of disease.
METHODS: Pairwise tag SNPs were selected from the HapMap Caucasian database to capture all known common (minor allele frequency >0.05) genetic variation with a correlation of at least 0.80. Forty-eight SNPs were genotyped in the case-control studies nested within the Nurses' Health Study (NHS) (cases=544, controls=1296) and the Women's Health Study (WHS) (cases=130, controls=389). The associations with endometrial cancer were examined using conditional logistic regression to estimate odds ratio and 95% confidence intervals adjusted for known risk factors. Results from the two studies were using fixed effects models. We additionally investigated whether SNPs are predictive of plasma estradiol and estrone levels in the NHS using linear regression.
RESULTS: Four intronic SNPs were significantly associated with endometrial cancer risk (p-value<0.05). After adjustment for multiple testing, we did not observe any significant associations between SNPs and endometrial cancer risk or plasma hormone levels.
CONCLUSIONS: This is the first study to comprehensively evaluate variation in HSD17b2 and HSD17b4 in relation to endometrial cancer risk. Our findings suggest that variation in HSD17b2 and HSD17b4 does not substantially influence the risk of endometrial cancer in Caucasians.

Haynes BP, Straume AH, Geisler J, et al.
Intratumoral estrogen disposition in breast cancer.
Clin Cancer Res. 2010; 16(6):1790-801 [PubMed] Related Publications
PURPOSE: The concentration of estradiol (E(2)) in breast tumors is significantly higher than that in plasma, particularly in postmenopausal women. The contribution of local E(2) synthesis versus uptake of E(2) from the circulation is controversial. Our aim was to identify possible determinants of intratumoral E(2) levels in breast cancer patients.
EXPERIMENTAL DESIGN: The expression of genes involved in estrogen synthesis, metabolism, and signaling was measured in 34 matched samples of breast tumor and normal breast tissue, and their correlation with estrogen concentrations assessed.
RESULTS: ESR1 (9.1-fold; P < 0.001) and HSD17B7 (3.5-fold; P < 0.001) were upregulated in ER(+) tumors compared with normal tissues, whereas STS (0.34-fold; P < 0.001) and HSD17B5 (0.23-fold; P < 0.001) were downregulated. Intratumoral E(2) levels showed a strong positive correlation with ESR1 expression in all patients (Spearman r = 0.55, P < 0.001) and among the subgroups of postmenopausal (r = 0.76, P < 0.001; n = 23) and postmenopausal ER(+) patients (r = 0.59, P = 0.013; n = 17). HSD17B7 expression showed a significant positive correlation (r = 0.59, P < 0.001) whereas HSD17B2 (r = -0.46, P = 0.0057) and HSD17B12 (r = -0.45, P = 0.0076) showed significant negative correlations with intratumoral E(2) in all patients. Intratumoral E(2) revealed no correlation to CYP19, STS, and HSD17B1 expression. Multivariate models comprising ESR1 and plasma E(2) predicted between 50% and 70% of intratumoral E(2) variability.
CONCLUSION: Uptake due to binding to the ER, rather than intratumoral estrogen synthesis by aromatase or sulfatase, is the single most important correlate and a probable determinant of intratumoral E(2). An increased expression of HSD17B7 may explain the increased ratio of E(2) to estrone (E(1)) in breast tumors compared with normal tissue.

Lin J, Zee RY, Liu KY, et al.
Genetic variation in sex-steroid receptors and synthesizing enzymes and colorectal cancer risk in women.
Cancer Causes Control. 2010; 21(6):897-908 [PubMed] Free Access to Full Article Related Publications
OBJECTIVES: Several lines of evidence have suggested that female hormones may lower the risk for developing colorectal cancer. However, the mechanisms by which sex hormones affect colorectal cancer development remain unknown. We sought to determine whether the association may be under genetic control by evaluating genetic variation in estrogen receptors (ESR1 and ESR2), progesterone receptor (PGR), aromatase cytochrome 450 enzyme (CYP19A1), and 17 beta-hydroxysteroid dehydrogenase type 2 gene (HSD17B2).
METHODS: We included 158 incident cases of colorectal cancer and 563 randomly chosen control subjects from 28,345 women in the Women's Health Study aged 45 or older who provided blood samples and had no history of cancer or cardiovascular disease at baseline in 1993. All cases and controls were Caucasians of European descent. A total of 63 tagging and putative functional SNPs in the 5 genes were included for analysis. Unconditional logistic regression was used to estimate odds ratio (ORs) and 95% confidence intervals (CIs).
RESULTS: There was no association between variation in ESR1, ESR2, PGR, CYP19A1 and HSD17B2 and colorectal cancer risk after correction for multiple comparisons (p values after correction > or =0.25). There was also no association with any of the haplotypes examined (p > or = 0.15) and no evidence of joint effects of variants in the 5 genes (p > or = 0.51).
CONCLUSION: Our data offer insufficient support for an association between variation in ESR1, ESR2, PGR, CYP19A1, and HSD17B2 and risk for developing colorectal cancer.

Takahashi-Shiga N, Utsunomiya H, Miki Y, et al.
Local biosynthesis of estrogen in human endometrial carcinoma through tumor-stromal cell interactions.
Clin Cancer Res. 2009; 15(19):6028-34 [PubMed] Related Publications
PURPOSE: The metabolism and synthesis of intratumoral estrogens are thought to play a very important role in the etiology and progression of endometrial carcinoma. Aromatase is a key enzyme in the conversion of androgens to estrogens, and aromatase localization studies have reported that aromatase immunoreactivity and mRNA were detected mainly in stromal cells. However, the effect of tumor-stromal interactions on local estrogen biosynthesis in endometrial carcinomas remains largely unknown.
EXPERIMENTAL DESIGN: The endometrial carcinoma cell lines (Ishikawa and RL95-2) and breast carcinoma cell line (MCF-7) were cocultured with stromal cells isolated from endometrial carcinomas, and aromatization activity was measured using liquid chromatography-tandem mass spectrometry. We then confirmed the local biosynthesis of estrogens and tumor-stromal interactions on aromatase activity in Ishikawa and RL95-2 cells. In addition, we also examined the effects of aromatase inhibitors on cell proliferation.
RESULTS: Aromatase activity was significantly higher in cocultures with Ishikawa or RL95-2 than in each monoculture, respectively. Estrone (E(1)) concentrations were significantly higher than estradiol (E(2)) concentrations in Ishikawa and RL95-2 cells, whereas E(2) was significantly higher than E(1) in MCF-7 cells. Cell proliferation was significantly inhibited in Ishikawa and RL95-2 cell cultures treated with aromatase inhibitors compared with control cultures.
CONCLUSIONS: These results indicate the contribution of not only E(2) but also E(1) to cancer cell proliferation in endometrial carcinoma. Our study may provide important information on metabolism and synthesis of intratumoral estrogens with regard to the etiology and progression of endometrial carcinoma, thus helping to achieve improved clinical responses in patients with endometrial carcinoma, who are treated with aromatase inhibitors.

Bhavani V, Srinivasulu M, Ahuja YR, Hasan Q
Role of BRCA1, HSD17B1 and HSD17B2 methylation in breast cancer tissue.
Cancer Biomark. 2009; 5(4):207-13 [PubMed] Related Publications
The pattern of altered gene expression due to epigenetic change is of major importance in malignancies. Aberrant DNA methylation is one of the many potential causes for this and is considered to be an early event in the etiology of breast carcinogenesis. The present study assessed the methylation status of three genes relevant in breast cancer (BC): The breast cancer susceptibility gene 1 (BRCA1), 17 beta hydroxy steroid dehydrogenase type 1 (HSD17B1) and type 2 (HSD17B2). Restriction enzyme based Methylation specific PCR (REMS PCR) was carried out in 104 tumor samples from sporadic BC patients and 48 samples of adjacent normal breast tissue. The percentage of tumor samples showing BRCA1, HSD17B1 and HSD17B2 methylation was 20.4%, 83.3% and 31.3%, respectively. Methylation was higher in tumors when compared to adjacent normal breast tissue samples. This suggests that methylation of these three genes plays an important role in BC etiology. Methylation is responsible for gene silencing and since BRCA1 and HSD17B2 were not found to be methylated in the same tissue samples, this suggests that the etiology of > 50% of the tumors could be accounted for by the independent epigenetic silencing of these two genes. BRCA1 and HSD17B2 genes may increase the risk of developing BC via enhanced estradiol activity. It is for the first time that the role of HSD17B gene methylation in BC pathophysiology is being proposed.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. HSD17B2, Cancer Genetics Web: http://www.cancer-genetics.org/HSD17B2.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 31 August, 2019     Cancer Genetics Web, Established 1999