FOLR1

Gene Summary

Gene:FOLR1; folate receptor alpha
Aliases: FBP, FOLR, FRalpha
Location:11q13.4
Summary:The protein encoded by this gene is a member of the folate receptor family. Members of this gene family bind folic acid and its reduced derivatives, and transport 5-methyltetrahydrofolate into cells. This gene product is a secreted protein that either anchors to membranes via a glycosyl-phosphatidylinositol linkage or exists in a soluble form. Mutations in this gene have been associated with neurodegeneration due to cerebral folate transport deficiency. Due to the presence of two promoters, multiple transcription start sites, and alternative splicing, multiple transcript variants encoding the same protein have been found for this gene. [provided by RefSeq, Oct 2009]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:folate receptor alpha
Source:NCBIAccessed: 31 August, 2019

Ontology:

What does this gene/protein do?
Show (11)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 31 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 31 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (7)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: FOLR1 (cancer-related)

Selmin OI, Donovan MG, Skovan B, et al.
Arsenic‑induced BRCA1 CpG promoter methylation is associated with the downregulation of ERα and resistance to tamoxifen in MCF7 breast cancer cells and mouse mammary tumor xenografts.
Int J Oncol. 2019; 54(3):869-878 [PubMed] Free Access to Full Article Related Publications
A significant percentage (~30%) of estrogen receptor‑α (ERα)‑positive tumors become refractory to endocrine therapies; however, the mechanisms responsible for this resistance remain largely unknown. Chronic exposure to arsenic through foods and contaminated water has been linked to an increased incidence of several tumors and long‑term health complications. Preclinical and population studies have indicated that arsenic exposure may interfere with endocrine regulation and increase the risk of breast tumorigenesis. In this study, we examined the effects of sodium arsenite (NaAsIII) exposure in ERα‑positive breast cancer cells in vitro and in mammary tumor xenografts. The results revealed that acute (within 4 days) and long‑term (10 days to 7 weeks) in vitro exposure to environmentally relevant doses reduced breast cancer 1 (BRCA1) and ERα expression associated with the gain of cyclin D1 (CCND1) and folate receptor 1 (FOLR1), and the loss of methylenetetrahydrofolate reductase (MTHFR) expression. Furthermore, long‑term exposure to NaAsIII induced the proliferation and compromised the response of MCF7 cells to tamoxifen (TAM). The in vitro exposure to NaAsIII induced BRCA1 CpG methylation associated with the increased recruitment of DNA methyltransferase 1 (DNMT1) and the loss of RNA polymerase II (PolII) at the BRCA1 gene. Xenografts of NaAsIII‑preconditioned MCF7 cells (MCF7NaAsIII) into the mammary fat pads of nude mice produced a larger tumor volume compared to tumors from control MCF7 cells and were more refractory to TAM in association with the reduced expression of BRCA1 and ERα, CpG hypermethylation of estrogen receptor 1 (ESR1) and BRCA1, and the increased expression of FOLR1. These cumulative data support the hypothesis that exposure to AsIII may contribute to reducing the efficacy of endocrine therapy against ERα‑positive breast tumors by hampering the expression of ERα and BRCA1 via CpG methylation, respectively of ESR1 and BRCA1.

Omote S, Takata K, Tanaka T, et al.
Overexpression of folate receptor alpha is an independent prognostic factor for outcomes of pancreatic cancer patients.
Med Mol Morphol. 2018; 51(4):237-243 [PubMed] Related Publications
Pancreatic cancer has a poor prognosis; hence, novel prognostic markers and effective therapeutic targets should be identified. We aimed to evaluate folate receptor alpha (FR-α) expression in pancreatic cancer and examine its association with clinicopathological features. We utilized tissue samples from 100 primary pancreatic cancer patients who underwent surgery. FR-α was expressed in 37 of 100 cases (37%). The FR-α-positive group (median, 18.8 months) had a significantly poorer prognosis than the FR-α-negative group [median 21.3 months; HR 1.89 (1.12-3.12); P = 0.017]. These groups were not significantly different regarding progression-free survival (P = 0.196). Furthermore, other serum tumor markers including CA19-9 (mean, 186 vs. 822 U/ml; P = 0.001), Dupan-2 (286 vs. 1133 U/ml; P = 0.000), and Span-1 (69.7 vs. 171.9 U/ml; P = 0.006) were significantly downregulated in the FR-α-positive group. CA19-9 was another prognostic factor, in addition to FR-α, and patient prognosis showed clear stratification curves with the expression of these two molecules. Along with CA19-9, FR-α expression was an independent prognostic factor for the overall survival. FR-α and CA19-9 helped predict patient prognosis based on stratification curves.

Zhou Y, Unno K, Hyjek E, et al.
Expression of functional folate receptors in multiple myeloma.
Leuk Lymphoma. 2018; 59(12):2982-2989 [PubMed] Related Publications
Receptor-targeted delivery of imaging and therapeutic agents has emerged as an attractive strategy to diagnosis and treat many diseases including cancer. One of the most well-studied receptors for targeted therapies is the folate receptor (FR) family. FR-α and FR-β are present on many cancers with little expression in normal tissues; leading to the testing of at least six folate-targeted drugs in human clinical trials for various cancers. However, the expression of FR in blood cancers has not been fully explored with no reports of FR expression in myelomas. Herein, we report the expression of both FR-α and FR-β on CD138 + plasma cells isolated from patients with multiple myeloma. In addition, all-trans retinoic acid was shown to increase the levels of FR-α and FR-β in two myeloma cell lines. Altogether, this data suggests that folate-targeted therapies for the treatment of multiple myeloma warrants further investigation.

Huang MJ, Zhang W, Wang Q, et al.
FOLR1 increases sensitivity to cisplatin treatment in ovarian cancer cells.
J Ovarian Res. 2018; 11(1):15 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Whether there is a mechanistic link between FOLR1 and response to cisplatin has not been extensively examined. In this study, we determine the expression of FOLR1 in ovarian cancer and examine if FOLR1 levels influence response to cisplatin.
RESULTS: (1) FOLR1 protein expression was lowest in normal ovarian tissue, higher in benign ovarian tumors, and highest in malignant tumors (P < 0.01). (2) FOLR1 expression was decreased in platinum drug-resistant ovarian tumors compared to sensitive tumors (P < 0.01). Consistent with this, FOLR1 expression in tumors progressing following cisplatin treatment was lower than levels in tumors in remission (P < 0.01). (3) FOLR1 was successfully overexpressed at both the mRNA and protein levels following transfection in SKOV3 cells. (4) SKOV3 cells with FOLR1 overexpression were the most sensitive to cisplatin treatment (IC50 = 3.60 μg/ml) and exhibited the highest inhibition rates in the presence of the drug (P < 0.05). (5) The rate of apoptosis of SKOV3 cells increased with cisplatin treatment in a dose- and time-dependent manner (P < 0.05). Cisplatin also induced S phase arrest in a concentration-dependent manner (P < 0.05). Apoptosis and S phase proportion were significantly altered by FOLR1 overexpression (P < 0.05).
CONCLUSION: FOLR1 may be a useful biomarker for ovarian cancer, and it may be useful as a therapeutic application to improve sensitivity to cisplatin treatment.

Liu Z, Jin X, Pi W, Liu S
Folic acid inhibits nasopharyngeal cancer cell proliferation and invasion via activation of FRα/ERK1/2/TSLC1 pathway.
Biosci Rep. 2017; 37(6) [PubMed] Free Access to Full Article Related Publications
Folic acid (FA), which is necessary for normal cell division of mammals, has been implicated to be involved in many tumors. Dietary FA intake has been reported to be associated with a lower risk of nasopharyngeal cancer (NPC). However, the molecular mechanisms of FA in NPC cells remain unclear. In the present study, we found that FA treatment dose dependently inhibited the proliferation, invasion and migration of NPC cells, via folate receptor α (FRα). We further found that FA, bound to FRα, induced the activation of MEK/ERK1/2, and increased the expressions of TSLC1 and E-cadherin. Moreover, blocking of ERK1/2 activation attenuated FA-mediated increase in TSLC1 expression. In addition, knockdown of TSLC1 abolished the FA-mediated inhibition of cell proliferation, invasion and migration, and suppressed the FA-mediated increase oinE-cadherin expression in NPC cells. Taken together, our data suggest that FA treatment inhibits NPC cell proliferation and invasion via activation of FRα/ERK1/2/ TSLC1 signaling pathway. Therefore, FA could be explored as a therapeutic drug for the treatment of NPC, and TSLC1 may act as a tumor suppressor in NPC.

Sun Y, Wei G, Luo H, et al.
The long noncoding RNA SNHG1 promotes tumor growth through regulating transcription of both local and distal genes.
Oncogene. 2017; 36(49):6774-6783 [PubMed] Related Publications
Increasing evidence indicates that long noncoding RNAs (lncRNAs) have important roles in various physiological processes and dysfunction of lncRNAs could be a prevalent cause in human diseases. Here we functionally characterized the nuclear-enriched lncRNA SNHG1, which is highly expressed in multiple types of cancer. We also provide evidence that SNHG1 promotes cancer cell growth by regulating gene expression both in cis and in trans. SNHG1 was involved in the AKT signaling pathway as it promotes the neighboring transcription of the protein-coding gene SLC3A2 in cis by binding the Mediator complex to facilitate the establishment of enhancer-promoter interaction. In trans, SNHG1 directly interacted with central domain of FUBP1 and antagonize the binding of FBP-interacting repressor to FUBP1, thereby coordinating the expression of the oncogene MYC. Collectively, our findings demonstrate that lncRNA SNHG1 can function both in cis and in trans with distinct mechanisms to regulate transcription, promoting tumorigenesis and cancer progression.

Jones SK, Sarkar A, Feldmann DP, et al.
Revisiting the value of competition assays in folate receptor-mediated drug delivery.
Biomaterials. 2017; 138:35-45 [PubMed] Free Access to Full Article Related Publications
Polymeric nanoparticles have been studied for gene and drug delivery. These nanoparticles can be modified to utilize a targeted delivery approach to selectively deliver their payload to specific cells, while avoiding unwanted delivery to healthy cells. One commonly over-expressed receptor which can be targeted by ligand-conjugated nanoparticles is the folate receptor alpha (FRα). The ability to target FRα remains a promising concept, and therefore, understanding the binding dynamics of the receptor with the ligand of the nanoparticle therapeutic can provide valuable insight. This manuscript focuses on the interaction between self-assembled nanoparticles decorated with a folic acid (FA) ligand and FRα. The nanoparticles consist of micelles formed with a FA conjugated triblock copolymer (PEI-g-PCL-b-PEG-FA) which condensed siRNA to form micelleplexes. By combining biological and biophysical approaches, this manuscript explores the binding kinetics and force of the targeted siRNA containing nanoparticles to FRα in comparison with free FA. We demonstrate via flow cytometry and atomic force microscopy that multivalent micelleplexes bind to FRα with a higher binding probability and binding force than monovalent FA. Furthermore, we revisited why competitive inhibition studies of binding of multivalent nanoparticles to their respective receptor are often reported in literature to be inconclusive evidence of effective receptor targeting. In conclusion, the results presented in this paper suggest that multivalent targeted nanoparticles display strong receptor binding that a monovalent ligand may not be able to compete with under in vitro conditions and that high concentrations of competing monovalent ligands can lead to measurement artifacts.

Liu H, Sun Q, Zhang M, et al.
Differential expression of folate receptor 1 in medulloblastoma and the correlation with clinicopathological characters and target therapeutic potential.
Oncotarget. 2017; 8(14):23048-23060 [PubMed] Free Access to Full Article Related Publications
Medulloblastoma is the most common malignant brain tumor in children. Folate receptor 1 (Folr1) was abundantly expressed in some epithelial malignancies. However the expression profile and the role of clinicopathological significance and therapeutic target potential in medulloblastoma still remain elusive. Currently we detected the expression of Folr1 in medulloblastoma and identified the diagnostic application by evaluating the clinical, pathological and neuroimaging values. Then we developed a target therapeutic compound with Folr1, which exhibited promising efficiency in treatment of medulloblastoma. Folr1 expression was up-regulated in medulloblastoma and positively correlated with percentage of Ki-67 and MMP9 labeling, pathological subtypes, serum Folr1 levels and CSF spreading on MRI. The level of serum Folr1 showed rational sensitivity and specificity in predicting histological subgroups. Strong Folr1 expression was recommended as the independent value regarding the prognosis of patients with medulloblastoma. Folr1 targeted therapy attenuated the tumor growth and metastasis with down-regulation of MMPs proteins and activation of apoptosis. Immunostaining analysis in the xenograft samples showed the decreased Ki-67 and MMP9 index providing the strong evidences that Folr1 targeted application can suppress the proliferation and invasion. Our findings uncovered in Folr1 a predictive candidate and therapeutic target for medulloblastoma.

Zhang HX, Liu OS, Deng C, et al.
Genome-wide gene expression profiling of tongue squamous cell carcinoma by RNA-seq.
Clin Oral Investig. 2018; 22(1):209-216 [PubMed] Related Publications
OBJECTIVE: Tongue squamous cell carcinoma (TSCC) is significantly more malignant than other type of oral squamous cell carcinoma (OSCC). In this study, we aimed to identify specific global gene expression signatures of TSCC to investigate the more invasive behavior of the deeply infiltrating cancer.
METHODS: Using RNA-seq technology, we detected gene expression of 20 TSCCs, 20 matched paratumor tissues, and 10 healthy normal mucosa tissues. Enrichment analysis of gene ontology (GO) and pathway was conducted using online tools DAVID for the dysregulated genes. Additionally, we performed the quantitative real-time RT-PCR (qRT-PCR) to validate the findings of RNA-Seq in 10 samples of TSCC, matched paratumor, and normal mucosa, respectively.
RESULTS: We detected 252 differentially expressed genes (DEGs) between TSCC and matched paratumor tissue, including 117 up-regulated and 135 down-regulated genes. For comparison between TSCC and normal mucosa, 234 DEGS were identified, consisting of 67 up-regulated and 167 down-regulated genes. For both two comparisons, GO categories of muscle contraction (GO: 0006936), epidermis development (GO: 0008544), epithelial cell differentiation (GO: 0030855), and keratinization (GO: 0031424) were commonly enriched. Altered gene expression affected some cancer-related pathways, such as tight junction. The qRT-PCR validation showed that gene expression patterns of FOLR1, NKX3-1, TFF3, PIGR, NEFL, MMP13, and HMGA2 were fully in concordance with RNA-Seq results.
CONCLUSION: Findings in this study demonstrated the genetic and molecular alterations associated with TSCC, providing new clues for understanding the molecular mechanisms of TSCC pathogenesis.

Rubinsak LA, Cohen C, Khanna N, et al.
Folate Receptor Alpha Expression in Platinum Resistant/Refractory Ovarian Carcinomas and Primary Endocervical Adenocarcinomas.
Appl Immunohistochem Mol Morphol. 2018; 26(8):567-572 [PubMed] Related Publications
INTRODUCTION: Treatment of advanced stage ovarian carcinoma is challenging, and despite surgical treatment and chemotherapy, the 5-year survival rate is estimated around 30%. Early recurrence and resistance to platinum-based chemotherapy are associated with poor prognosis and limited response to available second-line chemotherapy. The relative incidence of endocervical adenocarcinoma (EAC) compared with squamous cell carcinoma is increasing. Although the first-line treatment modality for early stage EAC is surgical resection, for locally advanced disease chemoradiation or neoadjuvant chemotherapy is used. Recently, folate along with its receptor alpha (FRA) has been studied as a potential target in gynecologic malignancy. The objective of this study was to elucidate FRA expression in chemotherapy resistant ovarian cancer and primary EAC.
METHODS: FRA expression was evaluated in tissue samples in an epithelial ovarian tumor microarray and 2 study groups: platinum resistant ovarian cancer and primary EAC. Staining intensity was analyzed with a semiquantitative staining algorithm.
RESULTS: FRA expression was positive in 32 of 40 (80%) ovarian tumors in the control group. In the platinum resistant ovarian cancer group, FRA was expressed in all 30 samples with moderate to strong staining. None of the EAC samples stained positive for FRA expression.
CONCLUSIONS: FRA expression occurs frequently in epithelial ovarian cancer. Our data supports that FRA expressions are maintained after chemotherapy treatment. Folate targeted therapies may be most useful in patients with chemotherapy resistant disease based on high levels of FRA expression in these tumors. There is likely no benefit to folate therapy as an adjuvant treatment in EAC.

Winder AD, Maniar KP, Wei JJ, et al.
Synuclein-γ in uterine serous carcinoma impacts survival: An NRG Oncology/Gynecologic Oncology Group study.
Cancer. 2017; 123(7):1144-1155 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Synuclein-γ (SNCG) is highly expressed in advanced solid tumors, including uterine serous carcinoma (USC). The objective of the current study was to determine whether SNCG protein was associated with survival and clinical covariates using the largest existing collection of USCs from the Gynecologic Oncology Group (GOG-8023).
METHODS: High-density tissue microarrays (TMAs) of tumor tissues from 313 patients with USC were stained by immunohistochemistry for SNCG, p53, p16, FOLR1, pERK, pAKT, ER, PR, and HER2/neu. Associations of SNCG and other tumor markers with overall and progression-free survival were assessed using log-rank tests and Cox proportional-hazards models, which also were adjusted for age, race, and stage.
RESULTS: The overall survival at 5 years was 46% for women with high SNCG expression and 62% for those with low SNCG expression (log-rank P = .021; hazard ratio [HR], 1.31; 95% confidence interval [CI], 0.91-1.9 in adjusted Cox model). The progression-free survival rate at 5 years was worse for women who had high SNCG expression, at 40%, compared with 56% for those who had low SNCG expression (log-rank P = .0081; HR, 1.36; 95% CI, 0.96-1.92 in adjusted Cox model). High levels of both p53 and p16 were significantly associated with worse overall survival (p53: HR, 4.20 [95% CI, 1.54-11.45]; p16: HR, 1.95 [95% CI, 1.01-3.75]) and progression-free survival (p53: HR, 2.16 [95% CI, 1.09-4.27]; p16: HR, 1.53 [95% CI, 0.87-2.69]) compared with low levels.
CONCLUSIONS: This largest collection of USCs to date demonstrates that SNCG was associated with poor survival in univariate analyses. SNCG does not predict survival outcome independent of p53 and p16 in models that jointly consider multiple markers. Cancer 2017;123:1144-1155. © 2016 American Cancer Society.

Yang Y, He L, Liu Y, et al.
Promising Nanocarriers for PEDF Gene Targeting Delivery to Cervical Cancer Cells Mediated by the Over-expressing FRα.
Sci Rep. 2016; 6:32427 [PubMed] Free Access to Full Article Related Publications
Cervical cancer presents extremely low PEDF expression which is associated with tumor progression and poor prognosis. In this study, folate receptor α (FRα)-targeted nano-liposomes (FLP) were designed to enhance the anti-tumor effect by targeting delivery of exogenous PEDF gene to cervical cancer cells. The targeting molecule F-PEG-Chol was firstly synthesized by a novel simpler method. FLP encapsulating PEDF gene (FLP/PEDF) with a typical lipid-membrane structure were prepared by a film dispersion method. The transfection experiment found FLP could effectively transfect human cervical cancer cells (HeLa cells). FLP/PEDF significantly inhibited the growth of HeLa cells and human umbilical vein endothelial cells (HUVEC cells) and suppressed adhension, invasion and migration of HeLa cells in vitro. In the abdominal metastatic tumor model of cervical cancer, FLP/PEDF administered by intraperitoneal injection exhibited a superior anti-tumor effect probably due to the up-regulated PEDF. FLP/PEDF could not only sharply reduce the microvessel density but also dramatically inhibit proliferation and markedly induce apoptosis of tumor cells in vivo. Moreover, the preliminary safety investigation revealed that FLP/PEDF had no obvious toxicity. These results clearly showed that FLP were desired carriers for PEDF gene and FLP/PEDF might represent a potential novel strategy for gene therapy of cervical cancer.

Notaro S, Reimer D, Fiegl H, et al.
Evaluation of folate receptor 1 (FOLR1) mRNA expression, its specific promoter methylation and global DNA hypomethylation in type I and type II ovarian cancers.
BMC Cancer. 2016; 16:589 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: In this retrospective study we evaluated the respective correlations and clinical relevance of FOLR1 mRNA expression, FOLR1 promoter specific methylation and global DNA hypomethylation in type I and type II ovarian cancer.
METHODS: Two hundred fifty four ovarian cancers, 13 borderline tumours and 60 samples of healthy fallopian epithelium and normal ovarian epithelium were retrospectively analysed for FOLR1 expression with RT-PCR. FOLR1 DNA promoter methylation and global DNA hypomethylation (measured by means of LINE1 DNA hypomethylation) were evaluated with MethyLight technique.
RESULTS: No correlation between FOLR1 mRNA expression and its specific promoter DNA methylation was found neither in type I nor in type II cancers, however, high FOLR1 mRNA expression was found to be correlated with global DNA hypomethylation in type II cancers (p = 0.033). Strong FOLR1 mRNA expression was revealed for Grades 2-3, FIGO stages III-IV, residual disease > 0, and serous histotype. High FOLR1 expression was found to predict increased platinum sensitivity in type I cancers (odds ratio = 3.288; 1.256-10.75; p = 0.020). One-year survival analysis showed in type I cancers an independent better outcome for strong expression of FOLR1 in FIGO stage III and IV. For the entire follow up period no significant independent outcome for FOLR1 expression was revealed. In type I cancers LINE 1 DNA hypomethylation was found to exhibit a worse PFS and OS which were confirmed to be independent in multivariate COX regression model for both PFS (p = 0.026) and OS (p = 0.012).
CONCLUSION: No correlations were found between FOLR1 expression and its specific promoter methylation, however, high FOLR1 mRNA expression was associated with DNA hypomethylation in type II cancers. FOLR1 mRNA expression did not prove to predict clinical outcome in type II cancers, although strong FOLR1 expression generally denotes ovarian cancers with highly aggressive phenotype. In type I cancers, however, strong FOLR1 expression has been found to be a reliable indicator of improved platinum responsiveness reflecting a transient better one-year follow up outcome in highly FOLR1 expressing type I cancers. An independent prognostic role of global DNA hypomethylation was demonstrated in type I tumours.

Kloudová K, Hromádková H, Partlová S, et al.
Expression of tumor antigens on primary ovarian cancer cells compared to established ovarian cancer cell lines.
Oncotarget. 2016; 7(29):46120-46126 [PubMed] Free Access to Full Article Related Publications
In order to select a suitable combination of cancer cell lines as an appropriate source of antigens for dendritic cell-based immunotherapy of ovarian cancer, we analyzed the expression level of 21 tumor associated antigens (BIRC5, CA125, CEA, DDX43, EPCAM, FOLR1, Her-2/neu, MAGE-A1, MAGE-A2, MAGE-A3, MAGE-A4, MAGE-A6, MAGE-A10, MAGE-A12, MUC-1, NY-ESO-1, PRAME, p53, TPBG, TRT, WT1) in 4 established ovarian cancer cell lines and in primary tumor cells isolated from the high-grade serous epithelial ovarian cancer tissue. More than 90% of tumor samples expressed very high levels of CA125, FOLR1, EPCAM and MUC-1 and elevated levels of Her-2/neu, similarly to OVCAR-3 cell line. The combination of OV-90 and OVCAR-3 cell lines showed the highest overlap with patients' samples in the TAA expression profile.

He ZY, Deng F, Wei XW, et al.
Ovarian cancer treatment with a tumor-targeting and gene expression-controllable lipoplex.
Sci Rep. 2016; 6:23764 [PubMed] Free Access to Full Article Related Publications
Overexpression of folate receptor alpha (FRα) and high telomerase activity are considered to be the characteristics of ovarian cancers. In this study, we developed FRα-targeted lipoplexes loaded with an hTERT promoter-regulated plasmid that encodes a matrix protein (MP) of the vesicular stomatitis virus, F-LP/pMP(2.5), for application in ovarian cancer treatment. We first characterized the pharmaceutical properties of F-LP/pMP(2.5). The efficient expression of the MP-driven hTERT promoter in SKOV-3 cells was determined after an in-vitro transfection assay, which was significantly increased compared with a non-modified LP/pMP(2.5) group. F-LP/pMP(2.5) treatment significantly inhibited the growth of tumors and extended the survival of mice in a SKOV-3 tumor model compared with other groups. Such an anti-tumor effect was due to the increased expression of MP in tumor tissue, which led to the induction of tumor cell apoptosis, inhibition of tumor cell proliferation and suppression of tumor angiogenesis. Furthermore, a preliminary safety evaluation demonstrated a good safety profile of F-LP/pMP(2.5) as a gene therapy agent. Therefore, FRα-targeted lipoplexes with therapeutic gene expression regulated by an hTERT promoter might be a promising gene therapy agent and a potential translational candidate for the clinical treatment of ovarian cancer.

Hijaz M, Das S, Mert I, et al.
Folic acid tagged nanoceria as a novel therapeutic agent in ovarian cancer.
BMC Cancer. 2016; 16:220 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Nanomedicine is a very promising field and nanomedical drugs have recently been used as therapeutic agents against cancer. In a previous study, we showed that Nanoceria (NCe), nanoparticles of cerium oxide, significantly inhibited production of reactive oxygen species, cell migration and invasion of ovarian cancer cells in vitro, without affecting cell proliferation and significantly reduced tumor growth in an ovarian cancer xenograft nude model. Increased expression of folate receptor-α, an isoform of membrane-bound folate receptors, has been described in ovarian cancer. To enable NCe to specifically target ovarian cancer cells, we conjugated nanoceria to folic acid (NCe-FA). Our aim was to investigate the pre-clinical efficacy of NCe-FA alone and in combination with Cisplatin.
METHODS: Ovarian cancer cell lines were treated with NCe or NCe-FA. Cell viability was assessed by MTT and colony forming units. In vivo studies were carried in A2780 generated mouse xenografts treated with 0.1 mg/Kg NCe, 0.1 mg/Kg; NCe-FA and cisplatinum, 4 mg/Kg by intra-peritoneal injections. Tumor weights and burden scores were determined. Immunohistochemistry and toxicity assays were used to evaluate treatment effects.
RESULTS: We show that folic acid conjugation of NCe increased the cellular NCe internalization and inhibited cell proliferation. Mice treated with NCe-FA had a lower tumor burden compared to NCe, without any vital organ toxicity. Combination of NCe-FA with cisplatinum decreased the tumor burden more significantly. Moreover, NCe-FA was also effective in reducing proliferation and angiogenesis in the xenograft mouse model.
CONCLUSION: Thus, specific targeting of ovarian cancer cells by NCe-FA holds great potential as an effective therapeutic alone or in combination with standard chemotherapy.

Samarin J, Laketa V, Malz M, et al.
PI3K/AKT/mTOR-dependent stabilization of oncogenic far-upstream element binding proteins in hepatocellular carcinoma cells.
Hepatology. 2016; 63(3):813-26 [PubMed] Free Access to Full Article Related Publications
UNLABELLED: Transcription factors of the far-upstream element-binding protein (FBP) family represent cellular pathway hubs, and their overexpression in liver cancer (hepatocellular carcinoma [HCC]) stimulates tumor cell proliferation and correlates with poor prognosis. Here we determine the mode of oncogenic FBP overexpression in HCC cells. Using perturbation approaches (kinase inhibitors, small interfering RNAs) and a novel system for rapalog-dependent activation of AKT isoforms, we demonstrate that activity of the phosphatidylinositol-4,5-biphosphate 3-kinase/AKT pathway is involved in the enrichment of nuclear FBP1 and FBP2 in liver cancer cells. In human HCC tissues, phospho-AKT significantly correlates with nuclear FBP1/2 accumulation and expression of the proliferation marker KI67. Mechanistic target of rapamycin (mTOR) inhibition or blockade of its downstream effector eukaryotic translation initiation factor 4E activity equally reduced FBP1/2 concentrations. The mTORC1 inhibitor rapamycin diminishes FBP enrichment in liver tumors after hydrodynamic gene delivery of AKT plasmids. In addition, the multikinase inhibitor sorafenib significantly reduces FBP levels in HCC cells and in multidrug resistance 2-deficient mice that develop HCC due to severe inflammation. Both FBP1/2 messenger RNAs are highly stable, with FBP2 being more stable than FBP1. Importantly, inhibition of phosphatidylinositol-4,5-biphosphate 3-kinase/AKT/mTOR signaling significantly diminishes FBP1/2 protein stability in a caspase-3/-7-dependent manner.
CONCLUSION: These data provide insight into a transcription-independent mechanism of FBP protein enrichment in liver cancer; further studies will have to show whether this previously unknown interaction between phosphatidylinositol-4,5-biphosphate 3-kinase/AKT/mTOR pathway activity and caspase-mediated FBP stabilization allows the establishment of interventional strategies in FBP-positive HCCs.

Song Y, Peng X, Wang M, et al.
Gene expression profiling of taxol-resistant nasopharyngeal carcinoma cells with siRNA-mediated FOLR1 downregulation.
Int J Clin Exp Pathol. 2015; 8(9):11314-22 [PubMed] Free Access to Full Article Related Publications
OBJECTIVES: Our previous study has shown that downregulation of FOLR1 by siRNA partially reversed taxol-resistant phenotype in taxol-resistant nasopharyngeal carcinoma cell lines. We aim to gain further insight into the molecular mechanisms of this process and identify the differentially expressed genes after FOLR1 downregulation.
METHOD: The global gene expression profile was identified and analyzed using the Affymetrix HG-U133 Plus 2.0 array.
RESULTS: There was a significant dysregulation in the global gene expression of the FOLR1-suppressed taxol-resistant nasopharyngeal carcinoma cell lines. There were 41 upregulated genes and 109 downregulated genes. QRT-PCR validation of the selected differentially expressed genes demonstrated there was a good correlation with the microarray analysis. There was a significant deregulation of expression in the apoptosis-related genes such as BIRC3, PRKX, TNFRSF10A and involved in Viral carcinogenesis, MAPK signaling pathways after FOLR1 was downregulated.
CONCLUSION: The suppression of FOLR1 by RNA interference altered gene expression profile of taxol-resistant nasopharyngeal carcinoma cell lines. The apoptosis-related genes and the gene alterations in viral carcinogenesis, MAPK signaling pathways might be important in FOLR1 siRNA-induced taxol-resistant reversal.

Driver BR, Barrios R, Ge Y, et al.
Folate Receptor α Expression Level Correlates With Histologic Grade in Lung Adenocarcinoma.
Arch Pathol Lab Med. 2016; 140(7):682-5 [PubMed] Related Publications
CONTEXT: -Folate receptor α (FRA) is a glycosylphosphatidylinositol-anchored high-affinity folate receptor that localizes to the apical surface of epithelia when it is expressed in normal tissue. Unlike normal tissues, FRA may localize to the basolateral side in tumors. These features make FRA an attractive drug target, and several FRA-targeted drugs have been developed and are in phases of clinical testing. Folate receptor α protein expression shows intertumoral variability that may correlate with response to therapy and to clinicopathologic parameters. Using immunohistochemistry, a recent study of breast carcinomas found FRA protein expression was associated with triple-negative status and high histologic grade in breast cancer. Although a prior study of lung adenocarcinomas found the expression level of the gene encoding FRA, FOLR1, was significantly increased in low-histologic-grade tumors compared to high-histologic-grade tumors, the relationship between FRA protein expression and histologic grade has not been reported for lung adenocarcinomas.
OBJECTIVE: -To investigate the relationship between FRA protein expression level and clinicopathologic parameters in lung adenocarcinomas, including histologic grade, by performing immunohistochemistry for FRA on a cohort of non-small cell lung carcinomas.
DESIGN: -High-density tissue microarrays constructed from 188 non-small cell lung carcinomas and used in prior studies were immunostained with FRA-specific antibody clone 26B3. Folate receptor α membranous staining intensity was given a semiquantitative score from 0 to 3+ for triplicate cores of tumor and averaged for each tumor. An average semiquantitative score from 0 to 1.4 was considered low expression, and an average semiquantitative score greater than 1.4 was considered high expression.
RESULTS: -The majority (60 of 78; 77%) of lung adenocarcinomas and a minority (4 of 41; 10%) of lung squamous cell carcinomas were positive for FRA. Folate receptor α expression in lung adenocarcinomas compared with squamous cell carcinomas was statistically different (P < .001, χ(2) test). In lung adenocarcinomas, FRA expression level correlated with histologic grade (P = .005, χ(2) test for trend), but no other clinicopathologic parameter. The majority (23 of 27; 85%) of grade 1 adenocarcinomas had high FRA protein expression, whereas approximately half of grade 2 (10 of 19; 53%) and grade 3 (12 of 25; 48%) adenocarcinomas had high FRA protein expression. Out of adenocarcinomas with lepidic growth pattern, 16 of 20 (80%) showed high FRA protein expression. Out of adenocarcinomas with solid growth pattern, 2 of 6 (33%) showed high FRA protein expression. In lung adenocarcinomas, FRA expression level did not correlate with thyroid transcription factor 1, napsin A, or survival.
CONCLUSIONS: -Folate receptor α protein was expressed in the majority of lung adenocarcinomas and a minority of lung squamous cell carcinomas. Folate receptor α protein expression correlated with histologic grade for lung adenocarcinomas, and the greatest difference was observed between grade 1 and grade 3. Our results indicate that poorly differentiated adenocarcinomas or focuses of poor differentiation in a heterogeneous tumor may lack FRA protein expression and be more likely to be resistant to FRA-targeting drugs.

Kurosaki A, Hasegawa K, Kato T, et al.
Serum folate receptor alpha as a biomarker for ovarian cancer: Implications for diagnosis, prognosis and predicting its local tumor expression.
Int J Cancer. 2016; 138(8):1994-2002 [PubMed] Related Publications
Folate receptor alpha (FRA) is a GPI-anchored glycoprotein and encoded by the FOLR1 gene. High expression of FRA is observed in specific malignant tumors of epithelial origin, including ovarian cancer, but exhibits very limited normal tissue expression, making it as an attractive target for the ovarian cancer therapy. FRA is known to shed from the cell surface into the circulation which allows for its measurement in the serum of patients. Recently, methods to detect the soluble form of FRA have been developed and serum FRA (sFRA) is considered a highly promising biomarker for ovarian cancer. We prospectively investigated the levels of sFRA in patients clinically suspected of having malignant ovarian tumors. A total of 231 patients were enrolled in this study and analyzed for sFRA as well as tumor expression of FRA by immunohistochemistry. High sFRA was predominantly observed in epithelial ovarian cancer patients, but not in patients with benign or borderline gynecological disease or metastatic ovarian tumors from advanced colorectal cancers. Levels of sFRA were highly correlated to clinical stage, tumor grade and histological type and demonstrated superior accuracy for the detection of ovarian cancer than did serum CA125. High sFRA was significantly associated with shorter progression-free survival in both early and advanced ovarian cancer patients. Finally, tumor FRA expression status was strongly correlated with sFRA levels. Taken together, these data suggest that sFRA might be a useful noninvasive serum biomarkers for future clinical trials assessing FRA-targeted therapy.

Randle SJ, Laman H
F-box protein interactions with the hallmark pathways in cancer.
Semin Cancer Biol. 2016; 36:3-17 [PubMed] Related Publications
F-box proteins (FBP) are the substrate specifying subunit of Skp1-Cul1-FBP (SCF)-type E3 ubiquitin ligases and are responsible for directing the ubiquitination of numerous proteins essential for cellular function. Due to their ability to regulate the expression and activity of oncogenes and tumour suppressor genes, FBPs themselves play important roles in cancer development and progression. In this review, we provide a comprehensive overview of FBPs and their targets in relation to their interaction with the hallmarks of cancer cell biology, including the regulation of proliferation, epigenetics, migration and invasion, metabolism, angiogenesis, cell death and DNA damage responses. Each cancer hallmark is revealed to have multiple FBPs which converge on common signalling hubs or response pathways. We also highlight the complex regulatory interplay between SCF-type ligases and other ubiquitin ligases. We suggest six highly interconnected FBPs affecting multiple cancer hallmarks, which may prove sensible candidates for therapeutic intervention.

Uddin S, Bhat AA, Krishnankutty R, et al.
Involvement of F-BOX proteins in progression and development of human malignancies.
Semin Cancer Biol. 2016; 36:18-32 [PubMed] Related Publications
The Ubiquitin Proteasome System (UPS) is a core regulator with various protein components (ubiquitin-activating E1 enzymes, ubiquitin-conjugating E2 enzymes, ubiquitin-protein E3 ligases, and the 26S proteasome) which work together in a coordinated fashion to ensure the appropriate and efficient proteolysis of target substrates. E3 ubiquitin ligases are essential components of the UPS machinery, working with E1 and E2 enzymes to bind substrates and assist the transport of ubiquitin molecules onto the target protein. As the UPS controls the degradation of several oncogenes and tumor suppressors, dysregulation of this pathway leads to several human malignancies. A major category of E3 Ub ligases, the SCF (Skp-Cullin-F-box) complex, is composed of four principal components: Skp1, Cul1/Cdc53, Roc1/Rbx1/Hrt1, and an F-box protein (FBP). FBPs are the substrate recognition components of SCF complexes and function as adaptors that bring substrates into physical proximity with the rest of the SCF. Besides acting as a component of SCF complexes, FBPs are involved in DNA replication, transcription, cell differentiation and cell death. This review will highlight the recent literature on three well characterized FBPs SKP2, Fbw7, and beta-TRCP. In particular, we will focus on the involvement of these deregulated FBPs in the progression and development of various human cancers. We will also highlight some novel substrates recently identified for these FBPs.

Schutsky K, Song DG, Lynn R, et al.
Rigorous optimization and validation of potent RNA CAR T cell therapy for the treatment of common epithelial cancers expressing folate receptor.
Oncotarget. 2015; 6(30):28911-28 [PubMed] Free Access to Full Article Related Publications
Using lentiviral technology, we recently demonstrated that incorporation of CD27 costimulation into CARs greatly improves antitumor activity and T cell persistence. Still, virus-mediated gene transfer is expensive, laborious and enables long-term persistence, creating therapies which cannot be easily discontinued if toxic. To address these concerns, we utilized a non-integrating RNA platform to engineer human T cells to express FRα-specific, CD27 CARs and tested their capacity to eliminate human FRα(+) cancer. Novel CARs comprised of human components were constructed, C4-27z and C4opt-27z, a codon-optimized variant created for efficient expression. Following RNA electroporation, C4-27z and C4opt-27z CAR expression is initially ubiquitous but progressively declines across T cell populations. In addition, C4-27z and C4opt-27z RNA CAR T cells secrete high levels of Th-1 cytokines and display strong cytolytic function against human FRα(+) cancers in a time- and antigen-dependent manner. Further, C4-27z and C4opt-27z CAR T cells exhibit significant proliferation in vivo, facilitate the complete regression of fully disseminated human ovarian cancer xenografts in mice and reduce the progression of solid ovarian cancer. These results advocate for rapid progression of C4opt-27z RNA CAR to the clinic and establish a new paradigm for preclinical optimization and validation of RNA CAR candidates destined for clinical translation.

Lai WF, Lin MC
Folate-conjugated chitosan-poly(ethylenimine) copolymer as an efficient and safe vector for gene delivery in cancer cells.
Curr Gene Ther. 2015; 15(5):472-80 [PubMed] Related Publications
Folic acid (FA) has high affinity to folate receptors (FRs), which have three isoforms: FRα, FRβ and FRγ. Among them, FRα is a tumor specific receptor, as it is frequently over-expressed in diverse malignancies but not in normal tissues. In this study, we have conjugated FA to a chitosan-poly(ethylenimine) copolymer, and have confirmed the low cytotoxicity of the product (namely "CP1.3K-FA") in cancer cells. The transfection efficiency of CP1.3K-FA has been shown by the EGFP transfection assay to be higher than that of the unmodified chitosan-poly(ethylenimine) copolymer under optimal conditions. Results of the luciferase activity assay have also indicated that the transfection efficiency of CP1.3K-FA is comparable to that of Fugene HD in B16 and U87 cells. Our results have suggested that CP1.3K-FA warrants further development as a vector for gene delivery in cancer cells.

Kano M, Matsushita K, Rahmutulla B, et al.
Adenovirus-mediated FIR demonstrated TP53-independent cell-killing effect and enhanced antitumor activity of carbon-ion beams.
Gene Ther. 2016; 23(1):50-6 [PubMed] Related Publications
Combination therapy of carbon-ion beam with the far upstream element-binding protein (FBP)-interacting repressor, FIR, which interferes with DNA damage repair proteins, was proposed as an approach for esophageal cancer treatment with low side effects regardless of TP53 status. In vivo therapeutic antitumor efficacy of replication-defective adenovirus (E1 and E3 deleted adenovirus serotype 5) encoding human FIR cDNA (Ad-FIR) was demonstrated in the tumor xenograft model of human esophageal squamous cancer cells, TE-2. Bleomycin (BLM) is an anticancer agent that introduces DNA breaks. The authors reported that Ad-FIR involved in the BLM-induced DNA damage repair response and thus applicable for other DNA damaging agents. To examine the effect of Ad-FIR on DNA damage repair, BLM, X-ray and carbon-ion irradiation were used as DNA damaging agents. The biological effects of high linear energy transfer (LET) radiotherapy used with carbon-ion irradiation are more expansive than low-LET conventional radiotherapy, such as X-rays or γ rays. High LET radiotherapy is suitable for the local control of tumors because of its high relative biological effectiveness. Ad-FIR enhanced BLM-induced DNA damage indicated by γH2AX in vitro. BLM treatment increased endogenous nuclear FIR expression in TE-2 cells, and P27Kip1 expression was suppressed by TP53 siRNA and BLM treatment. Further, Ad-FIRΔexon2, a dominant-negative form of FIR that lacks exon2 transcriptional repression domain, decreased Ku86 expression. The combination of Ad-FIR and BLM in TP53 siRNA increased DNA damage. Additionally, Ad-FIR showed synergistic cell toxicity with X-ray in vitro and significantly increased the antitumor efficacy of carbon-ion irradiation in the xenograft mouse model of TE-2 cells (P=0.03, Mann-Whitney's U-test) and was synergistic with the sensitization enhancement ratio (SER) value of 1.15. Therefore, Ad-FIR increased the cell-killing activity of the carbon-ion beam that avoids late-phase severe adverse effects independently of the TP53 status in vitro. Our findings indicated the feasibility of the combination of Ad-FIR with DNA damaging agents for future esophageal cancer treatment.

Müller B, Bovet M, Yin Y, et al.
Concomitant expression of far upstream element (FUSE) binding protein (FBP) interacting repressor (FIR) and its splice variants induce migration and invasion of non-small cell lung cancer (NSCLC) cells.
J Pathol. 2015; 237(3):390-401 [PubMed] Related Publications
Transcription factors integrate a variety of oncogenic input information, facilitate tumour growth and cell dissemination, and therefore represent promising therapeutic target structures. Because over-expression of DNA-interacting far upstream element binding protein (FBP) supports non-small cell lung cancer (NSCLC) migration, we asked whether its repressor, FBP-interacting repressor (FIR) is functionally inactivated and how FIR might affect NSCLC cell biology. Different FIR splice variants were highly expressed in the majority of NSCLCs, with the highest levels in tumours carrying genomic gains of chromosome 8q24.3, which contained the FIR gene locus. Nuclear FIR expression was significantly enriched at the invasion front of primary NSCLCs, but this did not correlate with tumour cell proliferation. FIR accumulation was associated with worse patient survival and tumour recurrence; in addition, FIR over-expression significantly correlated with lymph node metastasis in squamous cell carcinomas (SCCs). In vitro, we applied newly developed methods and modelling approaches for the quantitative and time-resolved description of the pro-migratory and pro-invasive capacities of SCC cells. siRNA-mediated silencing of all FIR variants significantly reduced the speed and directional movement of tumour cells in all phases of migration. Furthermore, sprouting efficiency and single cell invasiveness were diminished following FIR inhibition. Interestingly, the silencing of FIR isoforms lacking exon 2 (FIR(Δexon2)) alone was sufficient to reduce lateral migration and invasion. In summary, by using scale-spanning data derived from primary human tissues, quantitative cellular analyses and mathematical modelling, we have demonstrated that concomitant over-expression of FIR and its splice variants drives NSCLC migration and dissemination.

O'Shannessy DJ, Somers EB, Wang LC, et al.
Expression of folate receptors alpha and beta in normal and cancerous gynecologic tissues: correlation of expression of the beta isoform with macrophage markers.
J Ovarian Res. 2015; 8:29 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Folate receptor alpha (FOLR1/FRA) is expressed in a number of epithelial cancers and in particular epithelial ovarian cancer (EOC), especially of the serous histotype. Recent studies have shown that EOC originates from the fallopian tube fimbriae rather than from epithelial cells lining the ovary. We have previously shown by immunohistochemistry a strong correlation between FRA expression in EOC and normal and fallopian adenocarcinoma. Folate receptor beta (FOLR2/FRB) has been described to be expressed by macrophages both in inflammatory disorders and certain epithelial cancers. Given the high sequence identity of these two folate receptor family members we sought to investigate the architectural and cell-specific expression of these two receptors in gynecologic tissues.
METHODS: RNA scope, a novel chromogenic in situ hybridization assay tool, was used to examine expression of the alpha (FOLR1) and beta (FOLR2) isoforms of folate receptor relative to each other as well as to the macrophage markers CD11b and CD68, in samples of normal fallopian tube and fallopian adenocarcinoma as well as normal ovary and EOC.
RESULTS: We demonstrated expression of both FOLR1 and FOLR2 in EOC, normal fallopian tube and fallopian adenocarcinoma tissue while very little expression of either marker was observed in normal ovary. Furthermore, FOLR2 was shown to be expressed almost exclusively in macrophages, of both the M1 and M2 lineages, as determined by co-expression of CD11b and/or CD68, with little or no expression in epithelial cells.
CONCLUSIONS: These findings further substantiate the hypothesis that the cell of origin of EOC is tubal epithelium and that the beta isoform of folate receptor is primarily restricted to macrophages. Further, macrophages expressing FOLR2 may represent tumor associated or infiltrating macrophages (TAMs) in epithelial cancers.

Farkas SA, Befekadu R, Hahn-Strömberg V, Nilsson TK
DNA methylation and expression of the folate transporter genes in colorectal cancer.
Tumour Biol. 2015; 36(7):5581-90 [PubMed] Related Publications
Folate has a central role in the cell metabolism. This study aims to explore the DNA methylation pattern of the folate transporter genes FOLR1, PCFT, and RFC1 as well as the corresponding protein expressions in colorectal cancer (CRC) tissue and adjacent non-cancerous mucosa (ANCM). Our results showed statistically significant differences in the DNA-methylated fraction of all three genes at several gene regions; we identified three differentially methylated CpG sites in the FOLR1 gene, five CpG sites in the PCFT gene, and six CpG sites in the RFC1 gene. There was a pronounced expression of the FRα and RFC proteins in both the CRC and ANCM tissues, though the expression was attenuated in cancer compared to the paired ANCM tissues. The PCFT protein was undetectable or expressed at a very low level in both tissue types. Higher methylated fractions of the CpG sites 3-5 in the RFC1 gene were associated with a lower protein expression, suggestive of epigenetic regulation by DNA methylation of the RFC1 gene in the colorectal cancer. Our results did not show any association between the RFC and FRα protein expression and tumor stage, TNM classification, or tumor location. In conclusion, this is the first study to simultaneously evaluate both DNA methylation and protein expression of all three folate transporter genes, FOLR1, PCFT, and RFC1, in colorectal cancer. The results encourage further investigation into the possible prognostic implications of folate transporter expression and DNA methylation.

Wang P, Sun C, Zhu T, Xu Y
Structural insight into mechanisms for dynamic regulation of PKM2.
Protein Cell. 2015; 6(4):275-287 [PubMed] Free Access to Full Article Related Publications
Pyruvate kinase isoform M2 (PKM2) converts phosphoenolpyruvate (PEP) to pyruvate and plays an important role in cancer metabolism. Here, we show that post-translational modifications and a patient-derived mutation regulate pyruvate kinase activity of PKM2 through modulating the conformation of the PKM2 tetramer. We determined crystal structures of human PKM2 mutants and proposed a "seesaw" model to illustrate conformational changes between an inactive T-state and an active R-state tetramers of PKM2. Biochemical and structural analyses demonstrate that PKM2(Y105E) (phosphorylation mimic of Y105) decreases pyruvate kinase activity by inhibiting FBP (fructose 1,6-bisphosphate)-induced R-state formation, and PKM2(K305Q) (acetylation mimic of K305) abolishes the activity by hindering tetramer formation. K422R, a patient-derived mutation of PKM2, favors a stable, inactive T-state tetramer because of strong intermolecular interactions. Our study reveals the mechanism for dynamic regulation of PKM2 by post-translational modifications and a patient-derived mutation and provides a structural basis for further investigation of other modifications and mutations of PKM2 yet to be discovered.

Chen J, Lee HJ, Wu X, et al.
Gain of glucose-independent growth upon metastasis of breast cancer cells to the brain.
Cancer Res. 2015; 75(3):554-65 [PubMed] Free Access to Full Article Related Publications
Breast cancer brain metastasis is resistant to therapy and a particularly poor prognostic feature in patient survival. Altered metabolism is a common feature of cancer cells, but little is known as to what metabolic changes benefit breast cancer brain metastases. We found that brain metastatic breast cancer cells evolved the ability to survive and proliferate independent of glucose due to enhanced gluconeogenesis and oxidations of glutamine and branched chain amino acids, which together sustain the nonoxidative pentose pathway for purine synthesis. Silencing expression of fructose-1,6-bisphosphatases (FBP) in brain metastatic cells reduced their viability and improved the survival of metastasis-bearing immunocompetent hosts. Clinically, we showed that brain metastases from human breast cancer patients expressed higher levels of FBP and glycogen than the corresponding primary tumors. Together, our findings identify a critical metabolic condition required to sustain brain metastasis and suggest that targeting gluconeogenesis may help eradicate this deadly feature in advanced breast cancer patients.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. FOLR1, Cancer Genetics Web: http://www.cancer-genetics.org/FOLR1.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 31 August, 2019     Cancer Genetics Web, Established 1999