Gene Summary

Gene:ABI2; abl interactor 2
Aliases: AIP1, ABI-2, ABI2B, AIP-1, AblBP3, argBP1, SSH3BP2, argBPIA, argBPIB
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:abl interactor 2
Source:NCBIAccessed: 01 September, 2019


What does this gene/protein do?
Show (21)
Pathways:What pathways are this gene/protein implicaed in?
Show (2)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 01 September 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Mice, Transgenic
  • Chemotaxis
  • Fibronectins
  • Abi1 protein, mouse
  • Cysteine Endopeptidases
  • Protein Processing, Post-Translational
  • Homeodomain Proteins
  • Mutagenesis
  • Chronic Myelogenous Leukemia
  • Multienzyme Complexes
  • ABI2
  • Precursor B-Cell Lymphoblastic Leukemia-Lymphoma
  • Proto-Oncogene Proteins c-abl
  • Base Sequence
  • Sequence Deletion
  • Neoplasm Proteins
  • Translocation
  • ras Proteins
  • Chromosome 2
  • Fusion Proteins, bcr-abl
  • KMT2A protein, human
  • Cell Line
  • Leukemic Gene Expression Regulation
  • ABI1
  • Histone-Lysine N-Methyltransferase
  • Proline
  • KMT2A
  • src Homology Domains
  • Abi2 protein, mouse
  • Transfection
  • Amino Acid Sequence
  • Ubiquitins
  • Leukaemia
  • Peptide Fragments
  • Signal Transducing Adaptor Proteins
  • Recombinant Proteins
  • Acute Myeloid Leukaemia
  • Bone Marrow
  • Bone Marrow Transplantation
  • Cytoskeletal Proteins
Tag cloud generated 01 September, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (3)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: ABI2 (cancer-related)

Lee JH, Kim JE, Kim BG, et al.
STAT3-induced WDR1 overexpression promotes breast cancer cell migration.
Cell Signal. 2016; 28(11):1753-60 [PubMed] Related Publications
WD repeat domain 1 (WDR1), a protein that assists cofilin-mediated actin filament disassembly, is overexpressed in the invading front of invasive ductal carcinoma (IDC), but its implication of overexpression and how to be regulated have not been studied. In our study, we demonstrated that STAT3 bound to the 5' upstream sequence (-1971 to -1964), a putative promoter region, of WDR1 gene, and its activation induced WDR1 overexpression in breast cancer cells. The exogenous overexpression of WDR1 increased the migration of MDA-MB-231, which was attenuated by WDR1 knockdown. In the analysis of breast cancer patients, WDR1 overexpression was associated with a shorter distant metastasis-free survival (DMFS), more specifically in basal-like tumors.

Liu L, Xu C, Hsieh JT, et al.
DAB2IP in cancer.
Oncotarget. 2016; 7(4):3766-76 [PubMed] Free Access to Full Article Related Publications
DOC-2/DAB2 is a member of the disable gene family that features tumor-inhibiting activity. The DOC-2/DAB2 interactive protein, DAB2IP, is a new member of the Ras GTPase-activating protein family. It interacts directly with DAB2 and has distinct cellular functions such as modulating different signal cascades associated with cell proliferation, survival, apoptosis and metastasis. Recently, DAB2IP has been found significantly down regulated in multiple types of cancer. The aberrant alteration of DAB2IP in cancer is caused by a variety of mechanisms, including the aberrant promoter methylation, histone deacetylation, and others. Reduced expression of DAB2IP in neoplasm may indicate a poor prognosis of many malignant cancers. Moreover, DAB2IP stands for a promising direction for developing targeted therapies due to its capacity to inhibit tumor cell growth in vitro and in vivo. Here, we summarize the present understanding of the tumor suppressive role of DAB2IP in cancer progression; the mechanisms underlying the dysregulation of DAB2IP; the gene functional mechanism and the prospects of DAB2IP in the future cancer research.

Ji W, Li Y, He Y, et al.
AIP1 Expression in Tumor Niche Suppresses Tumor Progression and Metastasis.
Cancer Res. 2015; 75(17):3492-504 [PubMed] Free Access to Full Article Related Publications
Studies from tumor cells suggest that tumor-suppressor AIP1 inhibits epithelial-mesenchymal transition (EMT). However, the role of AIP1 in the tumor microenvironment has not been examined. We show that a global or vascular endothelial cell (EC)-specific deletion of the AIP1 gene in mice augments tumor growth and metastasis in melanoma and breast cancer models. AIP1-deficient vascular environment not only enhances tumor neovascularization and increases premetastatic niche formation, but also secretes tumor EMT-promoting factors. These effects from AIP1 loss are associated with increased VEGFR2 signaling in the vascular EC and could be abrogated by systemic administration of VEGFR2 kinase inhibitors. Mechanistically, AIP1 blocks VEGFR2-dependent signaling by directly binding to the phosphotyrosine residues within the activation loop of VEGFR2. Our data reveal that AIP1, by inhibiting VEGFR2-dependent signaling in tumor niche, suppresses tumor EMT switch, tumor angiogenesis, and tumor premetastatic niche formation to limit tumor growth and metastasis.

Lechuga S, Baranwal S, Ivanov AI
Actin-interacting protein 1 controls assembly and permeability of intestinal epithelial apical junctions.
Am J Physiol Gastrointest Liver Physiol. 2015; 308(9):G745-56 [PubMed] Free Access to Full Article Related Publications
Adherens junctions (AJs) and tight junctions (TJs) are crucial regulators of the integrity and restitution of the intestinal epithelial barrier. The structure and function of epithelial junctions depend on their association with the cortical actin cytoskeleton that, in polarized epithelial cells, is represented by a prominent perijunctional actomyosin belt. The assembly and stability of the perijunctional cytoskeleton is controlled by constant turnover (disassembly and reassembly) of actin filaments. Actin-interacting protein (Aip) 1 is an emerging regulator of the actin cytoskeleton, playing a critical role in filament disassembly. In this study, we examined the roles of Aip1 in regulating the structure and remodeling of AJs and TJs in human intestinal epithelium. Aip1 was enriched at apical junctions in polarized human intestinal epithelial cells and normal mouse colonic mucosa. Knockdown of Aip1 by RNA interference increased the paracellular permeability of epithelial cell monolayers, decreased recruitment of AJ/TJ proteins to steady-state intercellular contacts, and attenuated junctional reassembly in a calcium-switch model. The observed defects of AJ/TJ structure and functions were accompanied by abnormal organization and dynamics of the perijunctional F-actin cytoskeleton. Moreover, loss of Aip1 impaired the apico-basal polarity of intestinal epithelial cell monolayers and inhibited formation of polarized epithelial cysts in 3-D Matrigel. Our findings demonstrate a previously unanticipated role of Aip1 in regulating the structure and remodeling of intestinal epithelial junctions and early steps of epithelial morphogenesis.

Yang L, Li Y, Ling X, et al.
A common genetic variant (97906C>A) of DAB2IP/AIP1 is associated with an increased risk and early onset of lung cancer in Chinese males.
PLoS One. 2011; 6(10):e26944 [PubMed] Free Access to Full Article Related Publications
DOC-2/DAB2 interactive protein (DAB2IP) is a novel identified tumor suppressor gene that inhibits cell growth and facilitates cell apoptosis. One genetic variant in DAB2IP gene was reported to be associated with an increased risk of aggressive prostate cancer recently. Since DAB2IP involves in the development of lung cancer and low expression of DAB2IP are observed in lung cancer, we hypothesized that the variations in DAB2IP gene can increase the genetic susceptibility to lung cancer. In a case-control study of 1056 lung cancer cases and 1056 sex and age frequency-matched cancer-free controls, we investigated the association between two common polymorphisms in DAB2IP gene (-1420T>G, rs7042542; 97906C>A, rs1571801) and the risk of lung cancer. We found that compared with the 97906CC genotypes, carriers of variant genotypes (97906AC+AA) had a significant increased risk of lung cancer (adjusted odds ratio [OR] = 1.33, 95%CI = 1.04-1.70, P = 0.023) and the number of variant (risk) allele worked in a dose-response manner (P(trend) = 0.0158). Further stratification analysis showed that the risk association was more pronounced in subjects aged less than 60 years old, males, non-smokers, non-drinkers, overweight groups and in those with family cancer history in first or second-degree relatives, and the 97906A interacted with overweight on lung cancer risk. We further found the number of risk alleles (97906A allele) were negatively correlated with early diagnosis age of lung cancer in male patients (P = 0.003). However, no significant association was observed on the -1420T>G polymorphism. Our data suggested that the 97906A variant genotypes are associated with the increased risk and early onset of lung cancer, particularly in males.

Kanaan Z, Qadan M, Eichenberger MR, Galandiuk S
The actin-cytoskeleton pathway and its potential role in inflammatory bowel disease-associated human colorectal cancer.
Genet Test Mol Biomarkers. 2010; 14(3):347-53 [PubMed] Free Access to Full Article Related Publications
INTRODUCTION: To improve our understanding of the various clinical phenotypes in inflammatory bowel disease (IBD)-associated colorectal cancer (CRC) and provide potential targets for early diagnosis and future therapy, we sought to identify new candidate genes and molecular pathways involved in the pathogenesis and progression of this disorder. Recent evidence has implicated the actin-cytoskeleton pathway in the development of metastatic sporadic CRC through cytoskeletal proteins such as fascin-1. We hereby propose that similar genetic polymorphisms and mutations among regulatory genes of the actin-cytoskeleton pathway may also be associated with increased dysplasia, carcinogenesis, and susceptibility for invasion and metastasis in IBD-associated CRC, as compared with sporadic CRC.
MATERIALS AND METHODS: To test this hypothesis, we identified three patients with IBD-associated CRC. We subsequently retrieved normal, dysplastic, and cancerous tissue from within the same surgical colonic specimen. Messenger RNA was subsequently isolated from fresh frozen tissue, and oligonucleotide arrays were carried out to identify genes that were differentially expressed between the three various tissue types (normal, dysplasia, and cancer). By utilizing the same specimen to obtain each of the three various tissue types, we excluded intersubject variability during the analysis. Finally, we performed bioinformatic interaction pathway analysis using the "Ingenuity Pathway Analysis" software.
RESULTS: Computerized pathway analysis revealed that the actin-cytoskeleton pathway was significantly dysregulated in the progression of normal cells, via dysplasia, to IBD-associated CRC (p < 0.05). Significantly up-regulated genes identified in the analysis included the fibroblast growth factor, Abelson interactor gene-2, profilin-2, and radixin genes. Conversely, the diaphanous homolog gene appeared to be significantly down-regulated.
CONCLUSION: Via the dysregulation of these five genes within the actin-cytoskeleton pathway, we propose that this molecular pathway provides a potential mechanism for the malignant transformation and progression of normal tissue, via dysplasia, to IBD-associated CRC.

Kano S, Miyajima N, Fukuda S, Hatakeyama S
Tripartite motif protein 32 facilitates cell growth and migration via degradation of Abl-interactor 2.
Cancer Res. 2008; 68(14):5572-80 [PubMed] Related Publications
Tripartite motif protein 32 (TRIM32) mRNA has been reported to be highly expressed in human head and neck squamous cell carcinoma, but the involvement of TRIM32 in carcinogenesis has not been fully elucidated. In this study, we found by using yeast two-hybrid screening that TRIM32 binds to Abl-interactor 2 (Abi2), which is known as a tumor suppressor and a cell migration inhibitor, and we showed that TRIM32 mediates the ubiquitination of Abi2. Overexpression of TRIM32 promoted degradation of Abi2, resulting in enhancement of cell growth, transforming activity, and cell motility, whereas a dominant-negative mutant of TRIM32 lacking the RING domain inhibited the degradation of Abi2. In addition, we found that TRIM32 suppresses apoptosis induced by cis-diamminedichloroplatinum (II) in HEp2 cell lines. These findings suggest that TRIM32 is a novel oncogene that promotes tumor growth, metastasis, and resistance to anticancer drugs.

Puca R, Nardinocchi L, Pistritto G, D'Orazi G
Overexpression of HIPK2 circumvents the blockade of apoptosis in chemoresistant ovarian cancer cells.
Gynecol Oncol. 2008; 109(3):403-10 [PubMed] Related Publications
OBJECTIVE: Chemoresistance, due to inhibition of apoptotic response, is the major reason for the failure of anticancer therapies. HIPK2 regulates p53-apoptotic function via serine-46 (Ser46) phosphorylation and activation of p53 is a key determinant in ovarian cancer cell death. In this study we determined whether HIPK2 overexpression restored apoptotic response in chemoresistant cancer cells.
METHODS: Using cisplatin chemosensitive (2008) and chemoresistant (2008C13) ovarian cancer cell lines we compared drug-induced activation of the HIPK2/p53Ser46 apoptotic pathway. The levels of HIPK2, Ser46 phosphorylation, and PARP cleavage were detected by Western blotting. The p53Ser46 apoptotic commitment was evaluated by luciferase assay using the Ser46 specific AIP1 target gene promoter. The apoptotic pathway was detected by caspase-3, -8, and -9 activities.
RESULTS: HIPK2 was expressed differently in sensitive versus chemoresistant cells in response to different chemotherapeutic drugs (i.e., cisplatin and adriamycin), though the p53Ser46 apoptotic pathway was not defective in chemoresistant 2008C13 cells. Thus, 2008C13 cells were resistant to cisplatin but sensitive to adriamycin-induced apoptosis through activation of the HIPK2/p53Ser46 pathway. HIPK2 knock-down inhibited the adriamycin-induced apoptosis in 2008C13 cells. Exogenous HIPK2 triggered apoptosis in chemoresistant cells, associated with induction of p53Ser46-target gene AIP1.
CONCLUSIONS: HIPK2 is an important regulator of p53 activity in response to a chemotherapeutic drug. These results suggest that different drug-activated pathways may regulate HIPK2 and that HIPK2/p53Ser46 deregulation is involved in chemoresistance. Exogenous HIPK2 might represent a novel therapeutic approach to circumvent inhibition of apoptosis in treatment of chemoresistant ovarian cancers with wtp53.

Zupnick A, Prives C
Mutational analysis of the p53 core domain L1 loop.
J Biol Chem. 2006; 281(29):20464-73 [PubMed] Related Publications
The p53 tumor suppressor gene acquires missense mutations in over 50% of human cancers, and most of these mutations occur within the central core DNA binding domain. One structurally defined region of the core, the L1 loop (residues 112-124), is a mutational "cold spot" in which relatively few tumor-derived mutations have been identified. To further understand the L1 loop, we subjected this region to both alanine- and arginine-scanning mutagenesis and tested mutants for DNA binding in vitro. Select mutants were then analyzed for transactivation and cell cycle analysis in either transiently transfected cells or cells stably expressing wild-type and mutant proteins at regulatable physiological levels. We focused most extensively on two p53 L1 loop mutants, T123A and K120A. The T123A mutant p53 displayed significantly better DNA binding in vitro as well as stronger transactivation and apoptotic activity in vivo than wild-type p53, particularly toward its pro-apoptotic target AIP1. By contrast, K120A mutant p53, although capable of strong binding in vitro and wild-type levels of transactivation and apoptosis when transfected into cells, showed impaired activity when expressed at normal cellular levels. Our experiments indicate a weaker affinity for DNA in vivo by K120A p53 as the main reason for its defects in transactivation and apoptosis. Overall, our findings demonstrate an important, yet highly modular role for the L1 loop in the recognition of specific DNA sequences, target transactivation, and apoptotic signaling by p53.

Luo X, Levens E, Williams RS, Chegini N
The expression of Abl interactor 2 in leiomyoma and myometrium and regulation by GnRH analogue and transforming growth factor-beta.
Hum Reprod. 2006; 21(6):1380-6 [PubMed] Related Publications
BACKGROUND: Abelson (Abl) interactor 2 (Abi-2) has been considered as a key regulator of cell/tissue structural organization and is differentially expressed in leiomyomas. The objective of this study was to evaluate the expression of Abi-2 in leiomyoma/myometrium during the menstrual cycle and following GnRH analogue (GnRHa) therapy, as well as regulation by transforming growth factor (TGF)-beta1 in leiomyoma and myometrial smooth muscle cells (LSMC and MSMC).
METHODS: We used real-time PCR, Western blotting and immunohistochemistry to determine the expression of Abi-2 in paired leiomyoma and myometrium (n = 27) from proliferative (n = 8) and secretory (n = 12) phases of the menstrual cycle and from patients who received GnRHa therapy (n = 7). Time-dependent action of TGF-beta1 (2.5 ng/ml) and GnRHa (0.1 microM) on Abi-2 expression was determined in LSMC and MSMC.
RESULTS: Leiomyomas express elevated levels of Abi-2 as compared with myometrium from the proliferative but not the secretory phase of the menstrual cycle, with a significant reduction following GnRHa therapy (P < 0.05). Western blotting showed a similar trend in Abi-2 protein expression in leiomyoma/myometrial tissue extracts, which was immunolocalized in LSMC and MSMC, connective tissue fibroblasts and arterial walls. The expression of Abi-2 in LSMC and MSMC was increased by TGF-beta1 (2.5 ng/ml) and was inhibited by GnRHa (0.1 microM) in a time- and cell-dependent manner, and pretreatment with Smad3 SiRNA and U0126, an MEK-1/2 inhibitor, respectively, reversed their actions.
CONCLUSION: Based on the menstrual cycle-dependent expression, the influence of GnRHa therapy, and regulation by TGF-beta in LSMC/MSMC, we conclude that Abi-2 may have a key regulatory function in leiomyomas cellular/tissue structural organization during growth and regression.

Subramanian L, Crabb JW, Cox J, et al.
Ca2+ binding to EF hands 1 and 3 is essential for the interaction of apoptosis-linked gene-2 with Alix/AIP1 in ocular melanoma.
Biochemistry. 2004; 43(35):11175-86 [PubMed] Free Access to Full Article Related Publications
Apoptosis-linked gene-2 (ALG-2) encodes a 22 kDa Ca(2+)-binding protein of the penta EF-hand family that is required for programmed cell death in response to various apoptotic agents. Here, we demonstrate that ALG-2 mRNA and protein are down-regulated in human uveal melanoma cells compared to their progenitor cells, normal melanocytes. The down regulation of ALG-2 may provide melanoma cells with a selective advantage. ALG-2 and its putative target molecule, Alix/AIP1, are localized primarily in the cytoplasm of melanocytes and melanoma cells independent of the intracellular Ca(2+) concentration or the activation of apoptosis. Cross-linking and analytical centrifugation studies support a single-species dimer conformation of ALG-2, also independent of Ca(2+) concentration. However, binding of Ca(2+) to both EF-1 and EF-3 is necessary for ALG-2 interaction with Alix/AIP1 as demonstrated using surface plasmon resonance spectroscopy. Mutations in EF-5 result in reduced target interaction without alteration in Ca(2+) affinity. The addition of N-terminal ALG-2 peptides, residues 1-22 or residues 7-17, does not alter the interaction of ALG-2 or an N-terminal deletion mutant of ALG-2 with Alix/AIP1, as might be expected from a model derived from the crystal structure of ALG-2. Fluorescence studies of ALG-2 demonstrate that an increase in surface hydrophobicity is primarily due to Ca(2+) binding to EF-3, while Ca(2+) binding to EF-1 has little effect on surface exposure of hydrophobic residues. Together, these data indicate that gross surface hydrophobicity changes are insufficient for target recognition.

Dai Z, Quackenbush RC, Courtney KD, et al.
Oncogenic Abl and Src tyrosine kinases elicit the ubiquitin-dependent degradation of target proteins through a Ras-independent pathway.
Genes Dev. 1998; 12(10):1415-24 [PubMed] Free Access to Full Article Related Publications
Oncogenic forms of the Abl and Src tyrosine kinases trigger the destruction of the Abi proteins, a family of Abl-interacting proteins that antagonize the oncogenic potential of Abl after overexpression in fibroblasts. The destruction of the Abi proteins requires tyrosine kinase activity and is dependent on the ubiquitin-proteasome pathway. We show that degradation of the Abi proteins occurs through a Ras-independent pathway. Significantly, expression of the Abi proteins is lost in cell lines and bone marrow cells isolated from patients with aggressive Bcr-Abl-positive leukemias. These findings suggest that loss of Abi proteins may be a component in the progression of Bcr-Abl-positive leukemias and identify a novel pathway linking activated nonreceptor protein tyrosine kinases to the destruction of specific target proteins through the ubiquitin-proteasome pathway.

Dai Z, Pendergast AM
Abi-2, a novel SH3-containing protein interacts with the c-Abl tyrosine kinase and modulates c-Abl transforming activity.
Genes Dev. 1995; 9(21):2569-82 [PubMed] Related Publications
A protein has been identified that interacts specifically with both the Src homologous 3 (SH3) domain and carboxy-terminal sequences of the c-Abl tyrosine kinase. The cDNA encoding the Abl interactor protein (Abi-2), was isolated from a human lymphocyte library using the yeast two-hybrid system with the Abl SH3 domain as bait. Abi-2 binds to c-Abl in vitro and in vivo. Abi-2 is a novel protein that contains an SH3 domain and proline-rich sequences critical for binding to c-Abl. A basic region in the amino terminus of Abi-2 is homologous to the DNA-binding sequence of homeo-domain proteins. We show that Abi-2 is a substrate for the c-Abl tyrosine kinase. Expression of an Abi-2 mutant protein that lacks sequences required for binding to the Abl SH3 domain but retains binding to the Abl carboxyl terminus activates the transforming capacity of c-Abl. The properties of Abi-2 are consistent with a dual role as regulator and potential effector of the c-Abl protein and suggest that Abi-2 may function as a tumor suppressor in mammalian cells.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. ABI2, Cancer Genetics Web: http://www.cancer-genetics.org/ABI2.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 01 September, 2019     Cancer Genetics Web, Established 1999