Gene Summary

Gene:XIST; X inactive specific transcript
Aliases: SXI1, swd66, DXS1089, DXS399E, LINC00001, NCRNA00001
Summary:X inactivation is an early developmental process in mammalian females that transcriptionally silences one of the pair of X chromosomes, thus providing dosage equivalence between males and females. The process is regulated by several factors, including a region of chromosome X called the X inactivation center (XIC). The XIC comprises several non-coding and protein-coding genes, and this gene was the first non-coding gene identified within the XIC. This gene is expressed exclusively from the XIC of the inactive X chromosome, and is essential for the initiation and spread of X-inactivation. The transcript is a spliced RNA. Alternatively spliced transcript variants have been identified, but their full length sequences have not been determined. Mutations in the XIST promoter cause familial skewed X inactivation. [provided by RefSeq, Apr 2012]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Source:NCBIAccessed: 29 August, 2019

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 29 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 29 August, 2019 using data from PubMed, MeSH and CancerIndex

Latest Publications: XIST (cancer-related)

Yu X, Wang D, Wang X, et al.
CXCL12/CXCR4 promotes inflammation-driven colorectal cancer progression through activation of RhoA signaling by sponging miR-133a-3p.
J Exp Clin Cancer Res. 2019; 38(1):32 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Activation of CXCL12/CXCR4 axis has been found to be associated with invasion and metastasis in many cancers. However, the underlying mechanism remains elusive. Increasing data highlight that non-coding RNAs are linked to CRC progression.
METHODS: The effects of CXCR4 were investigated using villin-CXCR4 transgenic mice model by flow cytometry assay, immunohistochemistry, and Western blot. The mechanism was explored through bioinformatics, luciferase reporter assay and RNA immunoprecipitation assay.
RESULTS: We found that high CXCR4 expression exacerbated colitis-associated cancer in villin-CXCR4 transgenic mice. CXCR4
CONCLUSIONS: Our findings revealed the critical role of CXCR4 in promoting progression of inflammatory colorectal cancer through recruiting immunocytes and enhancing cytoskeletal remodeling by lncRNA XIST/ miR-133a-3p/ RhoA signaling. These results provide novel potential therapeutic targets for hindering CXCL12/CXCR4-induced CRC progression.

Lobo J, Gillis AJM, Jerónimo C, et al.
Human Germ Cell Tumors are Developmental Cancers: Impact of Epigenetics on Pathobiology and Clinic.
Int J Mol Sci. 2019; 20(2) [PubMed] Free Access to Full Article Related Publications
Current (high throughput omics-based) data support the model that human (malignant) germ cell tumors are not initiated by somatic mutations, but, instead through a defined locked epigenetic status, representative of their cell of origin. This elegantly explains the role of both genetic susceptibility as well as environmental factors in the pathogenesis, referred to as 'genvironment'. Moreover, it could also explain various epidemiological findings, including the rising incidence of this type of cancer in Western societies. In addition, it allows for identification of clinically relevant and informative biomarkers both for diagnosis and follow-up of individual patients. The current status of these findings will be discussed, including the use of high throughput DNA methylation profiling for determination of differentially methylated regions (DMRs) as well as chromosomal copy number variation (CNV). Finally, the potential value of methylation-specific tumor DNA fragments (i.e.,

Chen Z, Hu X, Wu Y, et al.
Long non-coding RNA XIST promotes the development of esophageal cancer by sponging miR-494 to regulate CDK6 expression.
Biomed Pharmacother. 2019; 109:2228-2236 [PubMed] Related Publications
OBJECTIVE: Esophageal cancer is one of the deadliest cancers worldwide occurring at upper gastrointestinal tract. This study aimed to explore the possible role of long non-coding RNA X Inactive Specific Transcript (XIST) in the development of esophageal cancer.
MATERIAL AND METHODS: The lncRNA XIST expressions both in esophageal cancer tissues and in cells were investigated. The TE-1 and SKGT-4 cells were transfected with LV-sh-XIST and LV-scramble for the further detection of the effects of XIST expression on cell biological processes, including proliferation, apoptosis and the expression of apoptosis-related proteins, migration, invasion and the expression of epithelial-mesenchymal transition markers. Additionally, the regulatory relationships between lncRNA XIST and miR-494, between miR-494 and CDK6, between miR-494/CDK6 and JAK2/STAT3 pathway were investigated.
RESULTS: LncRNA XIST was overespressed in esophageal cancer tissues and cells. Suppression of XIST significantly inhibited the proliferation, migration and invasion, but induced apoptosis of two kinds of cells, TE-1 and SKGT-4. Moreover, miR-494 was down-regulated in esophageal cancer tissues and cells. XIST could sponge miR-494 and inhibition of miR-494 reversed the effects of XIST suppression on the malignant behaviors of TE-1 cells. Also, CDK6 was a target of miR-494 and CDK6 knockdown reversed the effects of miR-494 inhibition on the malignant behaviors of TE-1 cells. Besides, the expression of p-JAK2 and p-STAT3 was increased after miR-494 inhibition, which was reversed after inhibition of miR-494 and CDK6 at the same time.
CONCLUSIONS: The data presented in this study revealed that XIST abnormal expression may play an oncogenic role in the development of esophageal cancer via miR-494/CDK6 axis through JAK2/STAT3 signal pathway. This study may provide theoretical basis for the molecular mechanism investigation of esophageal cancer.

Jiang L, Yu X, Ma X, et al.
Identification of transcription factor-miRNA-lncRNA feed-forward loops in breast cancer subtypes.
Comput Biol Chem. 2019; 78:1-7 [PubMed] Related Publications
Previous studies have demonstrated that transcription factor-miRNA-gene feed-forward loops (FFLs) played important roles in tumorigenesis. However, the lncRNA-involved FFLs have not been explored very well. Understanding the characteristics of lncRNA-involved FFLs in breast cancer subtypes may be a key question with clinical implications. In this study, we firstly constructed an integrated background regulatory network. Then, based on mRNA, miRNA, and lncRNA differential expression, we identified 147, 140, 284, 1031 dysregulated FFLs for luminal A, luminal B, HER2+ and basal-like subtype of breast cancer, respectively. Importantly, the known breast cancer-associated lncRNAs and miRNAs were enriched in the identified dysregulated FFLs. Through merging the dysregulated FFLs, we constructed the regulatory sub-network for each subtype. We found that all sub-networks were enriched in the well-known cancer-related pathways, such as cell cycle, pathways in cancer. Next, we also identified potential prognostic FFLs for subtypes of breast cancer, such as the hsa-miR-182-5p_JUN_XIST in basal-like subtype. Finally, we also discussed the potential application of inferring the candidate drugs for breast cancer treatment through modulating the lncRNA expression in the dysregulated FFLs. Collectively, this study elucidated the roles of lncRNA-involved FFLs in breast cancer subtypes, which could contribute to understanding breast cancer pathogenesis and improving the treatment.

Aalijahan H, Ghorbian S
Long non-coding RNAs and cervical cancer.
Exp Mol Pathol. 2019; 106:7-16 [PubMed] Related Publications
Cervical cancer is determined as the second highest number of deaths factor in female cancers. Here is a need to find new biomarkers for detection and preliminary prognosis, metastasis. To find new treatment to enhance the survival of cervical cancer patients, pivotal actions are necessitated to be implemented. Long non-coding RNAs (lncRNAs) appear to be the crucial modulators in various processes and critically influence the oncogenesis. The commencement and general review actions of the following lncRNAs HOTAIR, H19, XIST, CCHE1, EBIC, MALAT1, ANRIL, LET, NEAT1, BLACAT1, UFC1, SNHG16 and SNHG20 are focused in this review article. Roles of the lncRNAs in cervical cancer in terms of prognosis and tumor progression, invasion and metastasis, apoptosis, and radio-resistance are pointed out. In this review the utilization of lncRNAs as biomarkers in cervical cancer prognosis for metastasis is discussed. An overview of this review will be useful for selection of biomarkers in diagnosis, prognosis, and targeted therapy of cervical cancer in the future.

Zhu J, Zhang R, Yang D, et al.
Knockdown of Long Non-Coding RNA XIST Inhibited Doxorubicin Resistance in Colorectal Cancer by Upregulation of miR-124 and Downregulation of SGK1.
Cell Physiol Biochem. 2018; 51(1):113-128 [PubMed] Related Publications
BACKGROUND/AIMS: Doxorubicin (DOX) is a widely used chemotherapeutic agent for colorectal cancer (CRC). However, the acquirement of DOX resistance limits its clinical application for cancer therapy. Mounting evidence has suggested that aberrantly expressed lncRNAs contribute to drug resistance of various tumors. Our study aimed to explore the role and molecular mechanisms of lncRNA X-inactive specific transcript (XIST) in chemoresistance of CRC to DOX.
METHODS: The expressions of XIST, miR-124, serum and glucocorticoid-inducible kinase 1 (SGK1) mRNA in DOX-resistant CRC tissues and cells were detected by qRT-PCR or western blot analysis. DOX sensitivity was assessed by detecting IC50 value of DOX, the protein levels of P-glycoprotein (P-gp) and glutathione S-transferase-π (GST-π) and apoptosis. The interactions between XIST, miR-124 and SGK1 were confirmed by luciferase reporter assay, qRT-PCR and western blot. Xenograft tumor assay was used to verify the role of XIST in DOX resistance in CRC in vivo.
RESULTS: XIST expression was upregulated and miR-124 expression was downregulated in DOX-resistant CRC tissues and cells. Knockdown of XIST inhibited DOX resistance of CRC cells, as evidenced by the reduced IC50 value of DOX, decreased P-gp and GST-π levels and enhanced apoptosis in XIST-silenced DOX-resistant CRC cells. Additionally, XIST positively regulated SGK1 expression by interacting with miR-124 in DOX-resistant CRC cells. miR-124 suppression strikingly reversed XIST-knockdown-mediated repression on DOX resistance in DOX-resistant CRC cells. Moreover, SGK1-depletion-elicited decrease of DOX resistance was greatly restored by XIST overexpression or miR-124 inhibition in DOX-resistant CRC cells. Furthermore, XIST knockdown enhanced the anti-tumor effect of DOX in CRC in vivo.
CONCLUSION: XIST exerted regulatory function in resistance of DOX possibly through miR-124/SGK1 axis, shedding new light on developing promising therapeutic strategy to overcome chemoresistance in CRC patients.

Wang C, Qi S, Xie C, et al.
Upregulation of long non-coding RNA XIST has anticancer effects on epithelial ovarian cancer cells through inverse downregulation of hsa-miR-214-3p.
J Gynecol Oncol. 2018; 29(6):e99 [PubMed] Free Access to Full Article Related Publications
OBJECTIVE: The present study is to evaluate the biological functions of long non-coding RNA (lncRNA), X-inactive specific transcript, X-inactive specific transcript (XIST) in human epithelial ovarian cancer (EOC).
METHODS: XIST was upregulated in EOC cell lines, CAOV3 and OVCAR3 cells by lentiviral transduction. The effects of XIST overexpression on cancer cell proliferation, invasion, chemosensitivity and in vivo tumor growth were investigated, respectively. Possible sponging interaction between XIST and human microRNA hsa-miR-214-3p was further evaluated. Furthermore, hsa-miR-214-3p was overexpressed in XIST-upregulated CAOV3 and OVCAR3 cells to evaluate its effect on XIST-mediated EOC regulation.
RESULTS: Lentivirus-mediated XIST upregulation had significant anticancer effects in CAOV3 and OVCAR3 cells by suppressing cancer cell proliferation, invasion, increasing cisplatin chemosensitivity and inhibiting in vivo tumor growth. Hsa-miR-214-3p was confirmed to directly bind XIST, and inversely downregulated in XIST-upregulated EOC cells. In EOC cells with XIST upregulation, secondary lentiviral transduction successfully upregulated hsa-miR-214-3p expression. Subsequently, hsa-miR-214-3p upregulation functionally reversed the anticancer effects of XIST-upregulation in EOC.
CONCLUSION: Upregulation of lncRNA XIST may suppress EOC development, possibly through sponging effect to induce hsa-miR-214-3p downregulation.

Yang Z, Jiang X, Jiang X, Zhao H
X-inactive-specific transcript: A long noncoding RNA with complex roles in human cancers.
Gene. 2018; 679:28-35 [PubMed] Related Publications
The X-inactive-specific transcript (XIST/Xist) is one of the first long non-coding RNAs discovered in mammals and plays an essential role in X chromosome inactivation. XIST is dysregulated and acts as an oncogene or a tumor suppressor in different human malignancies. XIST is implicated in many aspects of carcinogenesis including tumor initiation, invasion, metastasis, apoptosis, cell cycle, stemness, autophagy, and drug resistance. This review focuses on research progress on the roles of XIST in tumor development. The multiple pathological functions of XIST in various cancers are systematically reviewed to elucidate the molecular basis of its biological roles and to provide new directions for future research.

Hu C, Liu S, Han M, et al.
Knockdown of lncRNA XIST inhibits retinoblastoma progression by modulating the miR-124/STAT3 axis.
Biomed Pharmacother. 2018; 107:547-554 [PubMed] Related Publications
Long non-coding RNA (lncRNA) X-inactive specific transcript (XIST) was reportedly to be tightly associated with tumorigenesis and progression of multiple cancers. However, the expression, biological function, and action mechanisms of XIST in retinoblastoma (RB) are still unknown. Here, we found that XIST expression was upregulated in RB tissues and cell lines, and that increased XIST expression was positively associated with advanced cTNM stage (III-V) and late differentiation status. We also revealed that knockdown of XIST inhibited RB cell proliferation, promoted cell cycle at G1/G0 phase, and induced cell apoptosis. Mechanistically, XIST directly bound to microRNA (miR)-124 in RB cells. XIST mRNA expression was inversely correlated with miR-124 in RB tissues. Importantly, miR-124 inhibition partially reversed the effect on cell proliferation, cycle arrest and apoptosis by XIST knockdown mediated. In addition, XIST could regulate expression of signal transducer and activator of transcription 3(STAT3), a directly target of miR-124 in RB. These findings implied that XIST promoted RB progression partially by modulating the miR-124/STAT3 axis.

Lin XQ, Huang ZM, Chen X, et al.
XIST Induced by JPX Suppresses Hepatocellular Carcinoma by Sponging miR-155-5p.
Yonsei Med J. 2018; 59(7):816-826 [PubMed] Free Access to Full Article Related Publications
PURPOSE: The influence of X-inactive specific transcript (XIST) and X-chromosome inactivation associated long non-coding RNAs (lncRNAs) just proximal to XIST (JPX) on hepatocellular carcinoma (HCC) remains controversial in light of previous reports, which the present study aimed to verify.
MATERIALS AND METHODS: The DIANA lncRNA-microRNA (miRNA) interaction database was used to explore miRNA interactions with JPX or XIST. JPX, XIST, and miR-155-5p expression levels in paired HCC specimens and adjacent normal tissue were analyzed by RT-qPCR. Interaction between XIST and miR-155-5p was verified by dual luciferase reporter assay. Expression levels of miR-155-5p and its known target genes, SOX6 and PTEN, were verified by RT-qPCR and Western blot in HepG2 cells with or without XIST knock-in. The potential suppressive role of XIST and JPX on HCC was verified by cell functional assays and tumor formation assay using a xenograft model.
RESULTS: JPX and XIST expression was significantly decreased in HCC pathologic specimens, compared to adjacent tissue, which correlated with HCC progression and increased miR-155-5p expression. Dual luciferase reporter assay revealed XIST as a direct target of miR-155-5p. XIST knock-in significantly reduced miR-155-5p expression level and increased that of SOX6 and PTEN, while significantly inhibiting HepG2 cell growth in vitro, which was partially reversed by miR-155-5p mimic transfection. JPX knock-in significantly increased XIST expression and inhibited HepG2 cell growth in vitro or tumor formation in vivo in a XIST dependent manner.
CONCLUSION: JPX and XIST play a suppressive role in HCC. JPX increases expression levels of XIST in HCC cells, which suppresses HCC development by sponging the cancer promoting miR-155-5p.

Xing F, Liu Y, Wu SY, et al.
Loss of XIST in Breast Cancer Activates MSN-c-Met and Reprograms Microglia via Exosomal miRNA to Promote Brain Metastasis.
Cancer Res. 2018; 78(15):4316-4330 [PubMed] Free Access to Full Article Related Publications
Up to 30% of patients with metastatic breast cancer eventually develop brain metastasis, yet the pathologic mechanism behind this development remains poorly understood. Here, we profiled long noncoding RNAs in brain metastatic tumors from patients with breast cancer and found that the X-inactive-specific transcript (XIST) was significantly downregulated in these tissues. XIST expression levels inversely correlated with brain metastasis, but not with bone metastasis in patients. Silencing of XIST preferentially promoted brain metastatic growth of XIST

Yang Y, Zhang J, Chen X, et al.
LncRNA FTX sponges miR-215 and inhibits phosphorylation of vimentin for promoting colorectal cancer progression.
Gene Ther. 2018; 25(5):321-330 [PubMed] Related Publications
Recent researches have reported that long noncoding RNA (lncRNA) five prime to Xist (FTX) plays a crucial role in the initiation and progression of cancers. In the current study, the clinical significance and functional roles of lncRNA FTX in colorectal cancer (CRC) progression were investigated. A significant increase of lncRNA FTX expression in CRC tissue and cell lines was observed. Overexpression of lncRNA FTX was significantly associated with the bigger tumor diameter, the advanced TNM stage, the lymph node, and distant metastasis, and also predicted poor prognosis of patients with CRC. Functional analyses demonstrated that knockdown of lncRNA FTX markedly inhibited CRC cell proliferation, migration, and invasion in vitro. Mechanistically, FTX directly interacted with miR-215 and suppressed miR-215 expression. FTX also bind to vimentin and reduced its phosphorylation level on Ser83 in CRC cells. Finally, using siRNAs against lncRNA FTX could dramatically inhibit CRC growth and distant metastasis in vivo. Taken together, our data demonstrated an oncogenic role of lncRNA FTX in CRC tumorigenesis and progression via interaction with miR-215 and vimentin. Then, a promising therapeutic target for CRC was provided.

Wang X, Zhang G, Cheng Z, et al.
Knockdown of LncRNA-XIST Suppresses Proliferation and TGF-β1-Induced EMT in NSCLC Through the Notch-1 Pathway by Regulation of miR-137.
Genet Test Mol Biomarkers. 2018; 22(6):333-342 [PubMed] Related Publications
BACKGROUND: Noncoding RNAs (ncRNAs), primarily microRNAs and long ncRNAs, play important roles in lung cancer. However, the role of long ncRNA (lncRNA)-X-inactive specific transcript (XIST) in non-small-cell lung cancer (NSCLC) is unclear. The purpose of this study was to explore the biologic function and potential mechanism of XIST in NSCLC progression.
MATERIALS AND METHODS: XIST, miR-137, and Notch-1 expression were detected by quantitative real-time PCR (qRT-PCR). Levels of proliferation- and epithelial-mesenchymal transition (EMT)-related proteins were assessed by Western blot. The correlations between XIST and miR-137, as well as miR-137 and Notch-1, were evaluated by bioinformatic analysis and luciferase reporter assays.
RESULTS: We confirmed that XIST is aberrantly upregulated in NSCLC tissues and cell lines. XIST depletion inhibited cell proliferation and TGF-β1-induced EMT in A549 and H1299 cells. Spearman's correlation analysis showed an inverse correlation between miR-137 and XIST in NSCLC tissues, and miR-137 levels were found to be aberrantly reduced in A549 and H1299 cells. Furthermore, XIST could act as an endogenous sponge by directly binding to miR-137, negatively regulating its expression. miR-137 overexpression inhibited proliferation and TGF-β1-induced EMT in A549 and H1299 cells, whereas XIST could reverse the inhibitory effect of miR-137 on proliferation and TGF-β1-induced EMT. In addition, Notch-1 was identified as a direct target gene of miR-137, with the XIST-miR-137 axis regulating activation of the Notch-1 pathway.
CONCLUSION: We identified a branch of the XIST/miR-137/Notch-1 pathway that regulates proliferation and TGF-β1-induced EMT in NSCLC, which could be involved in NSCLC progression.

Achour C, Aguilo F
Long non-coding RNA and Polycomb: an intricate partnership in cancer biology.
Front Biosci (Landmark Ed). 2018; 23:2106-2132 [PubMed] Related Publications
High-throughput analyses have revealed that the vast majority of the transcriptome does not code for proteins. These non-translated transcripts, when larger than 200 nucleotides, are termed long non-coding RNAs (lncRNAs), and play fundamental roles in diverse cellular processes. LncRNAs are subject to dynamic chemical modification, adding another layer of complexity to our understanding of the potential roles that lncRNAs play in health and disease. Many lncRNAs regulate transcriptional programs by influencing the epigenetic state through direct interactions with chromatin-modifying proteins. Among these proteins, Polycomb repressive complexes 1 and 2 (PRC1 and PRC2) have been shown to be recruited by lncRNAs to silence target genes. Aberrant expression, deficiency or mutation of both lncRNA and Polycomb have been associated with numerous human diseases, including cancer. In this review, we have highlighted recent findings regarding the concerted mechanism of action of Polycomb group proteins (PcG), acting together with some classically defined lncRNAs including

Liu X, Ming X, Jing W, et al.
Long non-coding RNA XIST predicts worse prognosis in digestive system tumors: a systemic review and meta-analysis.
Biosci Rep. 2018; 38(3) [PubMed] Free Access to Full Article Related Publications
Increasing studies are indicating that long non-coding RNA (lncRNA) X-inactive specific transcript (XIST) is associated with the prognosis of cancer patients. However, the results have been disputed. Therefore, we aimed to further explore the prognostic value and clinical significance of XIST in various types of cancers. Then, we focussed our research on the comparison of the predictive value of XIST between digestive system tumors and non-digestive system tumors. We performed a systematic search by looking up PubMed, Embase, Cochrane Library, Web of Science, and Medline (up to 3 January 2018). Fifteen studies which matched our inclusion criteria with a total of 920 patients for overall survival and 867 patients for clinicopathological characteristics were included in this meta-analysis. Pooled hazard ratios (HR) and odds ratios (ORs) with their corresponding 95% confidence intervals (95% CIs) were calculated to summarize the effects. Our results suggested that high expression levels of XIST were associated with unfavorable overall survival in cancer patients (pooled HR = 1.81, 95% CI: 1.45-2.26). Additionally, we found that XIST was more valuable in digestive system tumors (pooled HR = 2.24, 95% CI: 1.73-2.92) than in non-digestive system tumors (pooled HR = 1.22, 95% CI: 0.60-2.45). Furthermore, elevated expression levels of XIST were connected with distant metastasis and tumor stage. XIST was correlated with poor prognosis, which suggested that XIST might serve as a novel predictive biomarker for cancer patients, especially for patients of digestive system tumors.

Sun N, Zhang G, Liu Y
Long non-coding RNA XIST sponges miR-34a to promotes colon cancer progression via Wnt/β-catenin signaling pathway.
Gene. 2018; 665:141-148 [PubMed] Related Publications
Little is known about the role of long non-coding RNA XIST in the development of colon cancer. The aim of the present study was to investigate the levels of XIST in colon cancer, and explore its underlying mechanism. In this study, we found XIST expression level was upregulated in colon cancer tissues and cell lines. In addition, the growth rate of cells transfected with si-XIST was significantly decreased compared to that with si-NC, which was reversed by miR-34a targeted with 3'-UTR. Moreover, miR-34a suppressed the expression of WNT1 by binding with the 3'-UTR, which interact with WNT1 to inhibit the proliferation of cells. Furthermore, miR-34a inhibitor rescued the dysregulation of WNT1, β-catenin, cyclinD1, c-Myc and MMP-7 by si-XIST. Besides, XIST knockdown inhibited tumor growth in vivo. In short, the current study suggests XIST plays as an important role in colon cancer progression targeted by miR-34a via Wnt/β-catenin signaling pathway, providing a novel insight for the pathogenesis and underlying therapeutic target for colon cancer.

Zhou Q, Hu W, Zhu W, et al.
Long non coding RNA XIST as a prognostic cancer marker - A meta-analysis.
Clin Chim Acta. 2018; 482:1-7 [PubMed] Related Publications
BACKGROUND: The X inactivate-specific transcript (XIST), derived from XIST gene, is aberrantly expressed in various cancers. High-expression of XIST is related to poor clinical outcome. This meta-analysis evaluated the potential role of XIST as novel predictor of prognosis in human cancer.
MATERIALS AND METHODS: This meta-analysis collected eligible studies about XIST and tumor prognosis through retrieving keywords in Web of Science, PubMed, Embase and the CNKI database, from 1993 to August 21, 2017. The quantitative meta-analysis was carried out with Stata SE12.0 and RevMan3.23 software. The aim was to determine whether XIST expression is associated with cancer prognosis and clinicopathology.
RESULTS: A total of 858 patients from 10 eligible studies were included in the final meta-analysis. Overall, a significant negative association between XIST and overall survival (OS) time (HR = 2.62, 95% CI: 2.18-3.14) was observed. Statistical significance was also showed in subgroup meta-analysis stratified by the country, sample size, follow-up and publication year. It was reported that increased XIST was positively related to advanced clinical TNM stage (OR = 4.03, 95% CI: 2.22-7.30), lymph node metastasis (LNM) (OR = 2.70, 95% CI: 1.73-4.21), distant metastasis (DM) (OR = 2.61, 95% CI: 1.57-4.33) and tumor size (OR = 3.10, 95% CI: 2.24-4.30).
CONCLUSIONS: LncRNA XIST may serve as a potential biomarker to predict solid tumor prognosis. This molecule can be effectively used to predict the clinical and pathological features of cancers.

Zheng R, Lin S, Guan L, et al.
Long non-coding RNA XIST inhibited breast cancer cell growth, migration, and invasion via miR-155/CDX1 axis.
Biochem Biophys Res Commun. 2018; 498(4):1002-1008 [PubMed] Related Publications
Long non-coding RNA (lncRNA) is an important member of non-coding RNA family and emerging evidence has indicated that it plays a pivotal role in many physiological and pathological processes. The lncRNA X inactive specific transcript (XIST) is a potential tumour suppressor in some types of cancers. However, the expression and function of XIST in breast cancer remain largely unclear. The objective of this study was to evaluate the expression and biological role of XIST in breast cancer. The results showed that XIST was significantly down-regulated in breast cancer tissues and cell lines. Further functional analysis indicated that overexpression of XIST remarkably inhibited breast cancer cell growth, migration, and invasion. The results of luciferase reporter assays verified that miR-155 was a direct target of XIST in breast cancer. Moreover, caudal-type homeobox 1 (CDX1) was identified as a direct target of miR-155 and miR-155/CDX1 rescued the effects of XIST in breast cancer cells. Taken together, our results suggest that XIST is down-regulated in breast cancer and suppresses breast cancer cell growth, migration, and invasion via the miR-155/CDX1 axis.

Zhang H, Yang X, Feng X, et al.
Chromosome-wide gene dosage rebalance may benefit tumor progression.
Mol Genet Genomics. 2018; 293(4):895-906 [PubMed] Related Publications
The high-risk of tumor initiation in patients with Turner syndrome (TS) characterized by X chromosome monosomy in women has been well established and aneuploidy, defined as an abnormal number of chromosomes, is a common feature in human cancer. However, the underlying mechanisms of X chromosome aneuploidy promoting tumorigenesis remain obscure. We propose that chromosome-wide gene dosage imbalance (CDI) may serve as an important mechanism. Here, we assess the relative expression ratios of X chromosome and autosomes (expression ratios of X:AA) between tumor samples and adjacent normal samples across 16 tumor types using expression datasets from The Cancer Genome Atlas (TCGA) project. Our results show that the expression ratios of X:AA in tumor samples are frequently rebalanced to a lower level compared to those in adjacent normal samples, which is termed chromosome-wide gene dosage rebalance (CDR) thereafter. Gene ontology (GO) analysis of differentially expression genes from X chromosome reveals that downregulation of multicellularity-related genes and upregulation of unicellularity-related genes in tumors form a distinctive feature and enrichment analysis shows that downregulated genes are enriched in tumor suppressor genes, which indicate that CDR benefits tumor progression. Further experimental results prove that disturbance of X chromosome expression by knocking down of XIST in breast cancer cells, which functions in initiation phase of X chromosome inactivation (XCI), inhibits tumor progression. Our results demonstrate that the prevalent CDRs across tumor types serve as an important mechanism in promoting tumor progression, which partially explains the high risk of tumor in patients with TS and also provides a new cancer therapy from the CDR perspective.

Liu X, Cui L, Hua D
Long Noncoding RNA XIST Regulates miR-137-EZH2 Axis to Promote Tumor Metastasis in Colorectal Cancer.
Oncol Res. 2018; 27(1):99-106 [PubMed] Related Publications
We aimed to investigate the significant role of long noncoding RNA X inactive specific transcript (XIST) in regulating tumor metastasis in colorectal cancer (CRC), as well as its possible mechanism. Expression of lncRNA XIST in CRC tissues and CRC cells was detected. CRC cells were transfected with pc-XIST, blank control si-XIST, or si-control, and then the effects of lncRNA XIST on CRC cell migration and invasion were investigated, along with the interaction between lncRNA XIST and miR-137. lncRNA XIST was upregulated in CRC tissues. Compared with HT29 cells that had low metastatic potential, XIST was markedly more highly expressed in LoVo cells that had a higher metastatic potential. Overexpression of XIST promoted the migratory and invasive potential of HT29 cells, while knockdown of XIST inhibited the migratory and invasive potential of LoVo cells. Moreover, epithelial-mesenchymal transition (EMT) markers, including E-cadherin, N-cadherin, and vimentin, exhibited corresponding expression changes. In addition, miR-137 was inhibited by XIST, and inhibition of miR-137 could reverse the effects of knockdown of XIST on the migratory and invasive potential of LoVo cells. Furthermore, enhancer of zeste homolog 2 (EZH2) was confirmed as a target of miR-137. Our data reveal that lncRNA XIST may promote tumor metastasis in CRC possibly through regulating the miR-137-EZH2 axis. lncRNA XIST may serve as a prognostic indicator for CRC progression.

Bai B, Xie B, Pan Z, et al.
Identification of candidate genes and long non-coding RNAs associated with the effect of ATP5J in colorectal cancer.
Int J Oncol. 2018; 52(4):1129-1138 [PubMed] Free Access to Full Article Related Publications
The incidence and development of colorectal cancer (CRC) is a process with multiple gene interactions. We have previously demonstrated that ATP synthase-coupling factor 6, mitochondrial (ATP5J) is associated with CRC migration and 5-fluorouracil resistance; nevertheless, the exact molecular mechanism remains unclear. The following study uses microarray and bioinformatics methods to identify candidate genes and long non-coding RNAs (lncRNAs) in CRC cells (two pairs) with upregulated and downregulated ATP5J. Briefly, a total of 2,190 differentially expressed mRNAs (DEmRNAs) were sorted. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was performed for 4 DEmRNAs to validate the results of microarray analysis. Functional annotation and pathway enrichment were analyzed for DEmRNAs using the Database for Annotation, Visualization and Integrated Discovery. Significantly enriched pathways included the regulation of gene expression and cell growth. The protein‑protein interaction network was constructed, and AKT serine/threonine kinase 2 (AKT2) was considered as one of the hub genes. For further analysis, 51 DEmRNAs and 30 DElncRNAs were selected that were positively or negatively associated with the expression of ATP5J in the two cell pairs. X-inactive specific transcript (XIST), premature ovarian failure 1B (POF1B) and calmin (CLMN) were identified in the DEmRNA-DElncRNA co-expression network. The expression of AKT2 and XIST in CRC cells was confirmed by RT-qPCR. To sum up, the candidate genes and lncRNAs, as well as potential signaling pathways, which were identified using integrated bioinformatics analysis, could improve the understanding of molecular events involved in the function of ATP5J in CRC.

Sun Z, Zhang B, Cui T
Long non-coding RNA XIST exerts oncogenic functions in pancreatic cancer via miR-34a-5p.
Oncol Rep. 2018; 39(4):1591-1600 [PubMed] Free Access to Full Article Related Publications
Long non-coding RNAs (lncRNAs) have been implicated in the occurrence and progression of multiple cancers. In the present study, we investigated the role of lncRNA X inactive-specific transcript (XIST) in the development and progression of pancreatic cancer (PC). Firstly, we found that lncRNA XIST was markedly upregulated in PC tissues and PC cell lines, respectively. Overexpression of XIST significantly promoted the proliferation, migration and invasion, and suppressed cell apoptosis of BxPC-3 cells; knockdown of XIST significantly inhibited the proliferation, migration and invasion, and accelerated cell apoptosis of PANC-1 cells. Furthermore, BxPC-3 and PANC-1 cells transfected with different vectors were injected subcutaneously into nude mice to explore tumor formation. We found that XIST promoted tumor formation in vivo. Subsequently, we found that microRNA-34a-5p (miR‑34a-5p) was downregulated in PC tissues, and predicted a poor prognosis in PC patients. In addition, the results indicated that miR-34a-5p is a target gene of XIST and was significantly negatively correlated with XIST. More importantly, we found that miR-34a-5p rescued the facilitation of malignant behavior mediated by XIST. These results indicated that XIST and miR-34a-5p may be potential effective therapeutic targets for PC.

Yang C, Wu K, Wang S, Wei G
Long non-coding RNA XIST promotes osteosarcoma progression by targeting YAP via miR-195-5p.
J Cell Biochem. 2018; 119(7):5646-5656 [PubMed] Related Publications
The lncRNA XIST (X inactive-specific transcript) is an oncogenic lncRNA that is present in various malignant tumors; however, its role and molecular mechanisms in osteosarcoma (OS) progression remain unclear. In the current study, 40 pairs of OS tissues and matched adjacent non-tumor tissues were collected. qRT-PCR was conducted to investigate the differences in XIST expression in tissues and OS cell lines. The proliferation, invasion, and EMT status of OS cells after transfection were assessed with WST-1 assays, Transwell assays, and Western blot analysis, respectively. Whether miR-195-5p was a direct downstream target of XIST was verified by both bioinformatics target gene prediction and dual-luciferase report analysis. A mouse model was established to evaluate tumor proliferation in vivo. Our results demonstrated that XIST expression was significantly upregulated in OS tissues and cell lines and negatively correlated with clinical prognosis. XIST knockdown inhibited cancer cell proliferation and invasion in vitro, inhibited the EMT of OS cells in vitro, and suppressed subcutaneous tumor growth in vivo. Further analysis demonstrated that XIST regulated YAP expression by functioning as a competing endogenous RNA that sponged miR-195-5p in OS cells. XIST directly interacted with miR-195-5p and decreased the binding of miR-195-5p to the YAP 3'UTR, which suppressed the degradation of YAP mRNA by miR-195-5p. In conclusion, this work demonstrates that lncRNA XIST enhances OS cancer cell proliferation and invasion in part through the miR-195-5p/YAP pathway. Therefore, lncRNA XIST might be a promising therapeutic target for OS.

Li C, Wan L, Liu Z, et al.
Long non-coding RNA XIST promotes TGF-β-induced epithelial-mesenchymal transition by regulating miR-367/141-ZEB2 axis in non-small-cell lung cancer.
Cancer Lett. 2018; 418:185-195 [PubMed] Related Publications
Growing evidence shows that lncRNA XIST functions as an oncogene accelerating tumor progression. Transforming growth factor β (TGF-β)-induced epithelial-mesenchymal transition (EMT) plays a key role in tumor metastasis. However, it is still unclear whether lncRNA XIST is implicated in TGF-β-induced EMT and influences cell invasion and metastasis in non-small-cell lung cancer (NSCLC). Here, we observed increased expression of lncRNA XIST and ZEB2 mRNA in metastatic NSCLC tissues. Knockdown of lncRNA XIST inhibited ZEB2 expression, and repressed TGF-β-induced EMT and NSCLC cell migration and invasion. Being in consistent with the in vitro findings, the in vivo experiment of metastasis showed that knockdown of lncRNA XIST inhibited pulmonary metastasis of NSCLC cells in mice. In addition, knockdown of ZEB2 expression can inhibit TGF-β-induced EMT and NSCLC cell migration and invasion. Mechanistically, lncRNA XIST and ZEB2 were targets of miR-367 and miR-141. Furthermore, both miR-367 and miR-141 expression can be upregulated by knockdown of lncRNA XIST. Taken together, our study reveals that lncRNA XIST can promote TGF-β-induced EMT and cell invasion and metastasis by regulating miR-367/miR-141-ZEB2 axis in NSCLC.

Jiang H, Zhang H, Hu X, Li W
Knockdown of long non-coding RNA XIST inhibits cell viability and invasion by regulating miR-137/PXN axis in non-small cell lung cancer.
Int J Biol Macromol. 2018; 111:623-631 [PubMed] Related Publications
Long non-coding RNAs (lncRNAs) may serve as miRNA sponges to modulate the expressions of miRNA target genes. LncRNA X-inactive specific transcript (XIST) has been demonstrated to be upregulated and act as an oncogene in non-small cell lung cancer (NSCLC). However, the sponge role of XIST in NSCLC progression remains largely unknown. In this study, we demonstrated that XIST was substantially upregulated and miR-137 was aberrantly downregulated in NSCLC tissues and cells. XIST was identified to function as a competitive endogenous RNA (ceRNA) for miR-137 to promote NSCLC cell viability and invasion. Additionally, our results suggested that miR-137 targeted the 3'UTR of paxillin (PXN) to suppress NSCLC cell viability and invasion. Meanwhile, miR-137 was negatively correlated with PXN expression while XIST was positively correlated with PXN expression. More importantly, XIST positively regulated PXN levels by sponging miR-137 in vitro and in vivo. Collectively, our study provided the evidence for the cross-talk between XIST, miR-137, and PXN, shedding light on the therapy for NSCLC.

Kong Q, Zhang S, Liang C, et al.
LncRNA XIST functions as a molecular sponge of miR-194-5p to regulate MAPK1 expression in hepatocellular carcinoma cell.
J Cell Biochem. 2018; 119(6):4458-4468 [PubMed] Related Publications
Increasing evidence highlights the important role of XIST, a long non-coding RNA (lncRNA), in the regulation of multiple cancers. However, the underlying mechanism of XIST in human hepatocellular carcinoma (HCC) still remains to be explored. Herein, intended to investigate the functional role of XIST in HCC initiation and progression. We first detected that XIST was significantly upregulated in HCC tissues and associated with tumor size and vascular invasion. Gain- and loss-of-function of XIST further presented that XIST promoted the progression of HCC cells, including proliferation, migration, and invasion. Moreover, silencing of XIST could inhibit tumor growth in vivo. We also found that XIST could target miR-194-5p and thus decrease miR-194-5p expression. Besides that, restoring XIST could reverse the inhibitory effect of miR-194-5p on the proliferation and invasion of HCC cells. We further elucidated such rescue role might through derepressing MAPK1 expression, the target of miR-194-5p. In brief, the above results elucidate the important role of XIST in HCC tumorigenesis, suggesting that XIST might be a candidate prognostic biomarker and a novel therapeutic target for treating HCC.

Cheng Q, Xu X, Jiang H, et al.
Knockdown of long non-coding RNA XIST suppresses nasopharyngeal carcinoma progression by activating miR-491-5p.
J Cell Biochem. 2018; 119(5):3936-3944 [PubMed] Related Publications
Dysregulated long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) play key roles in the development and progression of human cancers. X-inactive specific transcript (XIST), an lncRNA, is known as an oncogene in multiple tumors. However, the roles of XIST and its related miRNAs in nasopharyngeal carcinoma (NPC) are poorly understood. In this study, we found that XIST expression was significantly upregulated in NPC tissues and cell lines. Knockdown of XIST inhibited NPC cell proliferation and invasion and induced apoptosis in vitro, as well as suppressed NPC tumor growth in vivo. Further analysis revealed that XIST and miR-491-5p interact with and repress each other. XIST may function as an endogenous miR-491-5p sponge to regulate the target gene of miR-491-5p. Taken together, these results provide a comprehensive view of the XIST/miR-491-5p axis in human NPC cells and may provide a new therapeutic target for treating NPC.

Sun W, Zu Y, Fu X, Deng Y
Knockdown of lncRNA-XIST enhances the chemosensitivity of NSCLC cells via suppression of autophagy.
Oncol Rep. 2017; 38(6):3347-3354 [PubMed] Free Access to Full Article Related Publications
Drug resistance is the major factor contributing to the failure of chemotherapy in non-small cell lung cancer (NSCLC) patients. Emerging evidence suggests that autophagy plays a vital role in the chemoresistance of many types of tumors. However, the exact mechanism underlying the chemoresistance of NSCLC is still elusive, and it is unclear whether lncRNA-XIST is involved in autophagy and chemoresistance of NSCLC. In the present study, we demonstrated that lncRNA-XIST was overexpressed in NSCLC tumor samples, and knockdown of lncRNA-XIST significantly decreased autophagy by regulation of ATG7 as determined by qPCR and by western blotting. Furthermore, we found that miR-17 was upregulated following knockdown of lncRNA-XIST, and miR-17 mimics decreased the protein levels of ATG7 by directly targeting the 3'-untranslated region of ATG7 mRNA as determined by RT-qPCR and by western blotting. Furthermore, we found that the expression level of lncRNA-XIST was markedly increased in cisplatin-resistant A549 cells as determined by q-PCR. Knockdown of lncRNA-XIST restored the chemosensitivity of cisplatin-resistant A549 cells to cisplatin, which was reversed by miR-17 inhibitor and overexpression of ATG7 as determined by CCK8 assays. This study provides evidence that lncRNA-XIST may be a potential marker of poor response to cisplatin chemotherapy in NSCLC patients and the pathway 'lncRNA-XIST/miR-17/autophagy' may be a promising target for patients with chemoresistant NSCLC.

Zhang Q, Chen B, Liu P, Yang J
XIST promotes gastric cancer (GC) progression through TGF-β1 via targeting miR-185.
J Cell Biochem. 2018; 119(3):2787-2796 [PubMed] Related Publications
LncRNAs and microRNAs can play significant roles in various cancers, including gastric cancer (GC). In our study, we investigated the role of lncRNA XIST in GC. We observed that XIST was increased in MGC803 and BGC823 cells compared to human normal gastric epithelial GES-1 cells. It was also shown that miR-185 was decreased in GC cell lines. Silencing XIST can inhibit the growth of GC cells and bioinformatics analysis was performed to confirm the correlation between XIST and miR-185. Interestingly, a negative correlation was indicated between XIST and miR-185 in GC cells. In addition, TGF-β1 was predicted as a target gene of miR-185. miR-185 can modulate TGF-β1 expression negatively in vitro. Moreover, we found that sh-XIST inhibited GC development via decreasing TGF-β1 by upregulating miR-185 in vitro. Therefore, we speculated that XIST can act as a competing endogenous lncRNA (ceRNA) to regulate TGF-β1 by sponging miR-185 in GC. Taken these together, it was indicated that XIST/miR-185/TGF-β1 axis participated in the development of GC. XIST could act as a potential prognostic biomarker in GC development.

Zhang R, Xia T
Long non-coding RNA XIST regulates PDCD4 expression by interacting with miR-21-5p and inhibits osteosarcoma cell growth and metastasis.
Int J Oncol. 2017; 51(5):1460-1470 [PubMed] Free Access to Full Article Related Publications
lncRNA-X-inactive specific transcript (lncRNA XIST) has been demonstrated to be a tumor suppressor involved in the pathogenesis and development of various cancers. However, the function of XIST and its working mechanism in osteosarcoma (OS) remain enigmatic. Firstly, we determined the expression of XIST in OS tissues and cell lines by quantitative reverse transcription-PCR (qRT-PCR) and explored whether aberrant XIST expression was associated with recurrence and short overall survival. Furthermore, the effects of XIST on osteosarcoma cells were studied by lentivirus mediated overexpression approach in vitro and in vivo. Detection of a set of epithelial-mesenchymal transition (EMT) markers was performed to explore whether XIST is involved in EMT. Finally, we investigated the regulatory mechanism of XIST acting as a competitive endogenous RNA (ceRNA) of miR-21-5p in OS progression and metastasis. lncRNA XIST was significantly downregulated in osteosarcoma tissues and osteosarcoma cells, and associated with recurrence and short overall survival in OS patients. XIST overexpression remarkably inhibited the proliferation of OS cells as well as the xenograft tumor formation in vivo. Both cell invasion and migration were inhibited by XIST overexpression via suppressing the EMT process. These results indicated that XIST functioned as a tumor suppressor in OS. Moreover, we found that miR-21-5p interacted with XIST by directly targeting the miRNA-binding site in the XIST sequence, and qRT-PCR results showed XIST and miR-21-5p could affect each other's expression, respectively. The following assays verified that the tumor suppressor, PDCD4 was a functional target of miR-21-5p in OS cells. Finally, we affirmed that XIST regulated PDCD4 expression by competitively binding to miR-21-5p. XIST inhibited cell proliferation and cell mobility by competitively binding to miR-21-5p and upregulating PDCD4 in OS. Our study demonstrated that lncRNA-XIST, which acts as a miRNA sponge, impedes miR-21-5p to maintain the expression of PDCD4, which contributes to the progression of OS. Our findings suggest that the newly identified XIST/miR-21-5p/PDCD4 axis could be a potential biomarker or therapeutic target for OS.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. XIST, Cancer Genetics Web: http://www.cancer-genetics.org/XIST.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 29 August, 2019     Cancer Genetics Web, Established 1999