Gene Summary

Gene:WNT10B; Wnt family member 10B
Aliases: SHFM6, STHAG8, WNT-12
Summary:The WNT gene family consists of structurally related genes which encode secreted signaling proteins. These proteins have been implicated in oncogenesis and in several developmental processes, including regulation of cell fate and patterning during embryogenesis. This gene is a member of the WNT gene family. It may be involved in breast cancer, and its protein signaling is likely a molecular switch that governs adipogenesis. This protein is 96% identical to the mouse Wnt10b protein at the amino acid level. This gene is clustered with another family member, WNT1, in the chromosome 12q13 region. [provided by RefSeq, Jul 2008]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:protein Wnt-10b
Source:NCBIAccessed: 31 August, 2019


What does this gene/protein do?
Show (46)
Pathways:What pathways are this gene/protein implicaed in?
Show (2)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 31 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 31 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (6)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: WNT10B (cancer-related)

Zhou X, Yan L, Bu XL, et al.
Arotinoid trometamol inhibits arsenic trioxide-stimulated keratinocyte proliferation via the Wnt, Shh, and bone morphogenetic protein signaling pathways.
J Biol Regul Homeost Agents. 2019 May-Jun; 33(3):731-743 [PubMed] Related Publications
Arsenic acts as a human carcinogen and contributes to skin cancer via mechanisms that remain largely unknown. Recent evidence implicates the perturbation of Wnt, Shh and BMP signals as a potential mechanism. We initiated studies to examine gene expression changes in these signaling pathways. Meanwhile, the antagonistic effect of retinoic acid was explored. In this study, HaCaT and NHEK cells were treated with arsenic trioxide (As2O3) alone or in combination with arotinoid trometamol (retinoic acid receptor agonist). Flow cytometric analysis, PCR array and Western blot were used to determine the potential mechanism and signaling pathways associated with arsenic carcinogenesis. The results showed that low concentration As2O3 could stimulate keratinocyte proliferation, and arotinoid trometamol inhibited the process via regulating the expression of about 20 genes. These genes included components of Wnt signaling (CSNK1A1L, CTNNB1, SFRP1, Wnt10B, Wnt11, Wnt16, Wnt5A, Wnt8A), Shh signaling (C6orf138, HHIP, PTCHD1) and BMP signaling pathway (BMP2, BMP7). The changes of some differentially expressed genes of these signaling pathways in As2O3 treatment group were counteracted by the subsequent arotinoid trometamol treatment. Our data suggest that dysregulation and cross-talk of Wnt, Shh and BMP signals play great roles in the process of arsenic-induced carcinogenesis, which could be antagonized by arotinoid trometamol.

Lu H, Ju DD, Yang GD, et al.
Targeting cancer stem cell signature gene SMOC-2 Overcomes chemoresistance and inhibits cell proliferation of endometrial carcinoma.
EBioMedicine. 2019; 40:276-289 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Endometrial cancer is one of the most common gynecological malignancies and has exhibited an increasing incidence rate in recent years. Cancer stem cells (CSCs), which are responsible for tumor growth and chemoresistance, have been confirmed in endometrial cancer. However, it is still challenging to identify endometrial cancer stem cells to then target for therapy.
METHODS: Flow cytometry was used to identify the endometrial cancer stem cells. Sphere formation assay, western blotting, qRT-PCR assay, cell viability assay, xenograft assay and immunohistochemistry staining analysis were utilized to evaluate the effect of SPARC-related modular calcium binding 2 (SMOC-2) on the cells proliferation and drug resistance. Cell viability assay, qRT-PCR assay, immunofluorescence staining, Co-IP assay and luciferase reporter gene assay were performed to explore the possible molecular mechanism by which SMOC-2 activates WNT/β-catenin pathway.
FINDINGS: We found the expression of SPARC-related modular calcium binding 2 (SMOC-2), a member of SPARC family, was higher in endometrial CSCs than that in non-CSCs. SMOC-2 was also more highly expressed in spheres than in monolayer cultures. The silencing of SMOC-2 suppressed cell sphere ability; reduced the expression of the stemness-associated genes SOX2, OCT4 and NANOG; and enhanced chemosensitivity in endometrial cancer cells. By co-culture IP assay, we demonstrated that SMOC-2 directly interacted with WNT receptors (Fzd6 and LRP6), enhanced ligand-receptor interaction with canonical WNT ligands (Wnt3a and Wnt10b), and finally, activated the WNT/β-catenin pathway in endometrial cancer. SMOC-2 expression was closely correlated with CSC markers CD133 and CD44 expression in endometrial cancer tissue.
INTERPRETATION: Taken together, we conclude that SMOC-2 might be a novel endometrial cancer stem cell signature gene and therapeutic target for endometrial cancer. FUND: National Natural Science Foundation of China, Scientific and Technological Innovation Act Program of Shanghai Science and Technology Commission, Scientific and Technological Innovation Act Program of Fengxian Science and Technology Commission, Natural Science Foundation of Shanghai.

Lu HJ, Yan J, Jin PY, et al.
Mechanism of MicroRNA-708 Targeting BAMBI in Cell Proliferation, Migration, and Apoptosis in Mice With Melanoma via the Wnt and TGF-β Signaling Pathways.
Technol Cancer Res Treat. 2018; 17:1533034618756784 [PubMed] Free Access to Full Article Related Publications
OBJECTIVE: The aim of this study was to evaluate the mechanisms involved with miRNA-708 and its targeting of bone morphogenetic protein and activin membrane-bound inhibitor in cell proliferation, migration, and apoptosis in mice with melanoma via the Wnt and transforming growth factor β signaling pathways.
METHODS: Sixty mice were recruited of which 40 were subsequently assigned into the experimental group (22 mice were successfully established as melanoma model and 18 mice used in tumor xenograft), and the normal control group consisted of 20 mice. B16 cells were assigned to the normal, blank, and negative control, miR-708 mimics, miR-708 inhibitors, si-BAMBI, and miR-708 inhibitors + si-bone morphogenetic protein and activin membrane-bound inhibitor groups. Western blotting and reverse transcription quantitative polymerase chain reaction were employed to detect the expression levels within the tissues and cell lines. TCF luciferase reporter (TOP-FLASH) or a control vector (FOP-FLASH) was applied to detect the activity of the Wnt signaling pathway. MTT3-(4,5-Dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide assay, flow cytometry, scratch test, and Transwell assay were conducted, respectively, for cell proliferation, apoptosis, migration, and invasion, while tumor xenograft procedures were performed on the nude mice recruited for the study.
RESULTS: Compared to the normal control group, the model group displayed increased expressions of bone morphogenetic protein and activin membrane-bound inhibitor, Wnt10B, P53, and Bcl-2; TOPflash activity; β-catenin expression; cell proliferation; migration; and invasion capabilities while decreased expressions of miR-708, vascular endothelial growth factor, Fas, Bax, Caspase-3, and cleaved Caspase-3 and apoptosis rate. Compared to the blank and negative control groups, the miR-708 mimics and small-interfering RNA-bone morphogenetic protein and activin membrane-bound inhibitor groups exhibited decreases expressions of bone morphogenetic protein and activin membrane-bound inhibitor, Wnt10B, P53, and Bcl-2 and decreased proliferation, migration, and invasion capabilities, while increases in the apoptosis rate, expressions of vascular endothelial growth factor, Fas, Bax, Caspase-3, and cleaved Caspase-3; however, downregulated levels of TOPflash activity and β-catenin expression were recorded. The miR-708 inhibitors group displayed an opposite trend.
CONCLUSION: Downregulation of miR-708-targeted bone morphogenetic protein and activin membrane-bound inhibitor inhibits the proliferation and migration of melanoma cells through the activation of the transforming growth factor β pathway and the suppression of Wnt pathway.

Fatima I, El-Ayachi I, Taotao L, et al.
The natural compound Jatrophone interferes with Wnt/β-catenin signaling and inhibits proliferation and EMT in human triple-negative breast cancer.
PLoS One. 2017; 12(12):e0189864 [PubMed] Free Access to Full Article Related Publications
Metastatic breast cancer is the leading cause of worldwide cancer-related deaths among women. Triple negative breast cancers (TNBC) are highly metastatic and are devoid of estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2) amplification. TNBCs are unresponsive to Herceptin and/or anti-estrogen therapies and too often become highly chemoresistant when exposed to standard chemotherapy. TNBCs frequently metastasize to the lung and brain. We have previously shown that TNBCs are active for oncogenic Wnt10b/β-catenin signaling and that WNT10B ligand and its downstream target HMGA2 are predictive of poorer outcomes and are strongly associated with chemoresistant TNBC metastatic disease. In search of new chemicals to target the oncogenic WNT10B/β-CATENIN/HMGA2 signaling axis, the anti-proliferative activity of the diterpene Jatrophone (JA), derived from the plant Jatropha isabelli, was tested on TNBC cells. JA interfered with the WNT TOPFLASH reporter at the level between receptor complex and β-catenin activation. JA efficacy was determined in various subtypes of TNBC conventional cell lines or in TNBC cell lines derived from TNBC PDX tumors. The differential IC50 (DCI50) responsiveness was compared among the TNBC models based on etiological-subtype and their cellular chemoresistance status. Elevated WNT10B expression also coincided with increased resistance to JA exposure in several metastatic cell lines. JA interfered with cell cycle progression, and induced loss of expression of the canonical Wnt-direct targets genes AXIN2, HMGA2, MYC, PCNA and CCND1. Mechanistically, JA reduced steady-state, non-phosphorylated (activated) β-catenin protein levels, but not total β-catenin levels. JA also caused the loss of expression of key EMT markers and significantly impaired wound healing in scratch assays, suggesting a direct role for JA inhibiting migration of TNBC cells. These results indicate that Jatrophone could be a powerful new chemotherapeutic agent against highly chemoresistant triple negative breast cancers by targeting the oncogenic Wnt10b/β-catenin signaling pathway.

Peng L, Liu Z, Xiao J, et al.
MicroRNA-148a suppresses epithelial-mesenchymal transition and invasion of pancreatic cancer cells by targeting Wnt10b and inhibiting the Wnt/β-catenin signaling pathway.
Oncol Rep. 2017; 38(1):301-308 [PubMed] Related Publications
Epithelial-mesenchymal transition (EMT) plays a critical role in the process of cancer invasion and metastasis. The Wnt/β-catenin signaling pathway is known as a stimulative factor, which may trigger EMT and metastasis of cancer cells. In addition, several microRNAs (miRNAs) have been proven to regulate the EMT process. Recent research revealed that miR‑148a is downregulated in pancreatic cancer. However, the definite role of miR-148a in EMT and invasion of pancreatic cancer is still unknown. The present study attempted to demonstrate the underlying mechanism of miR-148a in the regulation of EMT and invasion of pancreatic cancer cells. Our data revealed that the expression of miR-148a was markedly downregulated in human pancreatic ductal adenocarcinoma (PDAC) cell lines and tissues. In addition, the downregulation of miR-148a was associated with poor prognosis and EMT phenotype. Furthermore, restoration of miR-148a expression inhibited the EMT process, as well as the migration and invasion of BxPC-3 pancreatic cancer cells. Wnt10b, a promoting molecule of the Wnt/β-catenin signaling pathway, was demonstrated by dual‑luciferase reporter assay to be a direct target of miR‑148a. Subsequently, we found that miR‑148a negatively regulated the protein expression of β-catenin, cyclin D1 and MMP-9, which were important components of the Wnt/β-catenin signaling pathway. In conclusion, these findings revealed that miR-148a suppresses EMT and invasion of pancreatic cancer cells by targeting Wnt10b and inhibiting the Wnt/β-catenin signaling pathway, and thus, miR-148a may serve as a novel therapeutic target for pancreatic cancer.

Lazzaroni F, Del Giacco L, Biasci D, et al.
Intronless WNT10B-short variant underlies new recurrent allele-specific rearrangement in acute myeloid leukaemia.
Sci Rep. 2016; 6:37201 [PubMed] Free Access to Full Article Related Publications
Defects in the control of Wnt signaling have emerged as a recurrent mechanism involved in cancer pathogenesis and acute myeloid leukaemia (AML), including the hematopoietic regeneration-associated WNT10B in AC133

Cheong A, Zhang X, Cheung YY, et al.
DNA methylome changes by estradiol benzoate and bisphenol A links early-life environmental exposures to prostate cancer risk.
Epigenetics. 2016; 11(9):674-689 [PubMed] Free Access to Full Article Related Publications
Developmental exposure to endocrine-disrupting chemicals (EDCs), 17β-estradiol-3-benzoate (EB) and bisphenol A (BPA), increases susceptibility to prostate cancer (PCa) in rodent models. Here, we used the methylated-CpG island recovery assay (MIRA)-assisted genomic tiling and CpG island arrays to identify treatment-associated methylome changes in the postnatal day (PND)90 dorsal prostate tissues of Sprague-Dawley rats neonatally (PND1, 3, and 5) treated with 25 µg/pup or 2,500 µg EB/kg body weight (BW) or 0.1 µg BPA/pup or 10 µg BPA/kg BW. We identified 111 EB-associated and 86 BPA-associated genes, with 20 in common, that have significant differentially methylated regions. Pathway analysis revealed cancer as the top common disease pathway. Bisulfite sequencing validated the differential methylation patterns observed by array analysis in 15 identified candidate genes. The methylation status of 7 (Pitx3, Wnt10b, Paqr4, Sox2, Chst14, Tpd52, Creb3l4) of these 15 genes exhibited an inverse correlation with gene expression in tissue samples. Cell-based assays, using 5-aza-cytidine-treated normal (NbE-1) and cancerous (AIT) rat prostate cells, added evidence of DNA methylation-mediated gene expression of 6 genes (exception: Paqr4). Functional connectivity of these genes was linked to embryonic stem cell pluripotency. Furthermore, clustering analyses using the dataset from The Cancer Genome Atlas revealed that expression of this set of 7 genes was associated with recurrence-free survival of PCa patients. In conclusion, our study reveals that gene-specific promoter methylation changes, resulting from early-life EDC exposure in the rat, may serve as predictive epigenetic biomarkers of PCa recurrence, and raises the possibility that such exposure may impact human disease.

Zhou Y, Zhao XL, Guo RX, et al.
Flow cytometer analysis of cell apoptosis of endometrial carcinoma with Wnt10b.
J Biol Regul Homeost Agents. 2016 Apr-Jun; 30(2):547-52 [PubMed] Related Publications
The aim of this study is to analyze the cell apoptosis of endometrial carcinoma (EC) with Wnt10b by Fluorescence Activated Cell Sorting (FACS) technology. AN3CA cell lines and Ishikawa-H-12 cell lines were taken as the in-vitro cell models to observe the influence of Wnt10b on key factors of Wnt signal pathway. Methyl thiazolyl tetrazolium (MTT) was applied for the detection of cell proliferation while FACS was used for the detection of cell apoptosis. Data were analyzed using statistical software SPSS14.0. After the overexpression of Wntl0b in AN3CA cells, the apoptosis rate dropped significantly compared with the two control groups (p < 0.05); while the apoptosis rate increased significantly compared with the control groups (p < 0.01) after Wntl0b knock-off in Ishikawa3-H-12 cells. In normal endometrium, Wnt10b gene expression was negative, while that in EC cells was positive. It can be concluded that Wnt10b gene can promote EC cell proliferation and inhibit its apoptosis.

Linke F, Zaunig S, Nietert MM, et al.
WNT5A: a motility-promoting factor in Hodgkin lymphoma.
Oncogene. 2017; 36(1):13-23 [PubMed] Related Publications
Classical Hodgkin lymphoma (cHL) has a typical clinical manifestation, with dissemination involving functionally neighboring lymph nodes. The factors involved in the spread of lymphoma cells are poorly understood. Here we show that cHL cell lines migrate with higher rates compared with non-Hodgkin lymphoma cell lines. cHL cell migration, invasion and adhesion depend on autocrine WNT signaling as revealed by the inhibition of WNT secretion with the porcupine inhibitors Wnt-C59/IWP-2, but did not affect cell proliferation. While application of recombinant WNT5A or WNT5A overexpression stimulates HL cell migration, neither WNT10A, WNT10B nor WNT16 did so. Time-lapse studies revealed an amoeboid type of cell migration modulated by WNT5A. Reduced migration distances and velocity of cHL cells, as well as altered movement patterns, were observed using porcupine inhibitor or WNT5A antagonist. Knockdown of Frizzled5 and Dishevelled3 disrupted the WNT5A-mediated RHOA activation and cell migration. Overexpression of DVL3-K435M or inhibition of ROCK (Rho-associated protein kinase) by Y-27632/H1152P disrupted cHL cell migration. In addition to these mechanistic insights into the role of WNT5A in vitro, global gene expression data revealed an increased WNT5A expression in primary HL cells in comparison with normal B-cell subsets and other lymphomas. Furthermore, the activity of both porcupine and WNT5A in cHL cells had an impact on lymphoma development in the chick chorionallantoic membrane assay. Massive bleeding of these lymphomas was significantly reduced after inhibition of WNT secretion by Wnt-C59. Therefore, a model is proposed where WNT signaling has an important role in regulating tumor-promoting processes.

Lei M, Lai X, Bai X, et al.
Prolonged overexpression of Wnt10b induces epidermal keratinocyte transformation through activating EGF pathway.
Histochem Cell Biol. 2015; 144(3):209-21 [PubMed] Free Access to Full Article Related Publications
Wnt10b is a signaling protein regulating skin development and homeostasis, and the expression of Wnt10b is restricted to epidermal keratinocytes in embryonic and postnatal skin. Recent studies indicate an elevated expression of Wnt10b in skin tumors. However, how Wnt10b regulates skin tumorigenesis remains largely unknown. Here we report that continuous expression of Wnt10b mediates transformation of epidermal keratinocytes through activating genes involved in EGF/MAPK signaling pathways. We first established a prolonged Wnt10b overexpression system in JB6P- cells to represent the elevated Wnt10b expression level in skin keratinocytes. Through expression assays and observations under phase-contrast microscopy, prolonged expression of Wnt10b activated Wnt/β-catenin pathway and induced morphological changes of cells showing longer protrusions and multilayer growth, indicating early-stage cell transformation. Wnt10b also increased cellular proliferation and migration according to BrdU incorporation and cell mobility assays. Furthermore, multi-doses of AdWnt10b treatment to JB6P- cells induced colony formation, stronger invasive ability in transwell system, and anchorage-independent growth in agar gel. In molecular level, AdWnt10b treatment induced increased transcriptional expressions of Egf, downstream Mapk pathway factors, and MMPs. Administration of Wnt antagonist DKK1 blocked the tumor promotion process induced by Wnt10b. Taken together, these findings clearly demonstrate that Wnt10b promotes epidermal keratinocyte transformation through induced Egf pathway.

Muff R, Rath P, Ram Kumar RM, et al.
Genomic instability of osteosarcoma cell lines in culture: impact on the prediction of metastasis relevant genes.
PLoS One. 2015; 10(5):e0125611 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Osteosarcoma is a rare but highly malignant cancer of the bone. As a consequence, the number of established cell lines used for experimental in vitro and in vivo osteosarcoma research is limited and the value of these cell lines relies on their stability during culture. Here we investigated the stability in gene expression by microarray analysis and array genomic hybridization of three low metastatic cell lines and derivatives thereof with increased metastatic potential using cells of different passages.
PRINCIPAL FINDINGS: The osteosarcoma cell lines showed altered gene expression during in vitro culture, and it was more pronounced in two metastatic cell lines compared to the respective parental cells. Chromosomal instability contributed in part to the altered gene expression in SAOS and LM5 cells with low and high metastatic potential. To identify metastasis-relevant genes in a background of passage-dependent altered gene expression, genes involved in "Pathways in cancer" that were consistently regulated under all passage comparisons were evaluated. Genes belonging to "Hedgehog signaling pathway" and "Wnt signaling pathway" were significantly up-regulated, and IHH, WNT10B and TCF7 were found up-regulated in all three metastatic compared to the parental cell lines.
CONCLUSIONS: Considerable instability during culture in terms of gene expression and chromosomal aberrations was observed in osteosarcoma cell lines. The use of cells from different passages and a search for genes consistently regulated in early and late passages allows the analysis of metastasis-relevant genes despite the observed instability in gene expression in osteosarcoma cell lines during culture.

Dakhova O, Rowley D, Ittmann M
Genes upregulated in prostate cancer reactive stroma promote prostate cancer progression in vivo.
Clin Cancer Res. 2014; 20(1):100-9 [PubMed] Free Access to Full Article Related Publications
PURPOSE: Marked reactive stroma formation is associated with poor outcome in clinically localized prostate cancer. We have previously identified genes with diverse functions that are upregulated in reactive stroma. This study tests the hypothesis that expression of these genes in stromal cells enhances prostate cancer growth in vivo.
EXPERIMENTAL DESIGN: The expression of reactive stroma genes in prostate stromal cell lines was evaluated by reverse transcriptase (RT)-PCR and qRT-PCR. Genes were knocked down using stable expression of short-hairpin RNAs (shRNA) and the impact on tumorigenesis assessed using the differential reactive stroma (DRS) system, in which prostate stromal cell lines are mixed with LNCaP prostate cancer cells and growth as subcutaneous xenografts assessed.
RESULTS: Nine of 10 reactive stroma genes tested were expressed in one or more prostate stromal cell lines. Gene knockdown of c-Kit, Wnt10B, Bmi1, Gli2, or COMP all resulted in decreased tumorigenesis in the DRS model. In all tumors analyzed, angiogenesis was decreased and there were variable effects on proliferation and apoptosis in the LNCaP cells. Wnt10B has been associated with stem/progenitor cell phenotype in other tissue types. Using a RT-PCR array, we detected downregulation of multiple genes involved in stem/progenitor cell biology such as OCT4 and LIF as well as cytokines such as VEGFA, BDNF, and CSF2 in cells with Wnt10B knockdown.
CONCLUSIONS: These findings show that genes upregulated in prostate cancer-reactive stroma promote progression when expressed in prostate stromal cells. Moreover, these data indicate that the DRS model recapitulates key aspects of cancer cell/reactive stroma interactions in prostate cancer.

Brun J, Dieudonné FX, Marty C, et al.
FHL2 silencing reduces Wnt signaling and osteosarcoma tumorigenesis in vitro and in vivo.
PLoS One. 2013; 8(1):e55034 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The molecular mechanisms that are involved in the growth and invasiveness of osteosarcoma, an aggressive and invasive primary bone tumor, are not fully understood. The transcriptional co-factor FHL2 (four and a half LIM domains protein 2) acts as an oncoprotein or as a tumor suppressor depending on the tissue context. In this study, we investigated the role of FHL2 in tumorigenesis in osteosarcoma model.
METHODOLOGY/PRINCIPAL FINDINGS: Western blot analyses showed that FHL2 is expressed above normal in most human and murine osteosarcoma cells. Tissue microarray analysis revealed that FHL2 protein expression is high in human osteosarcoma and correlates with osteosarcoma aggressiveness. In murine osteosarcoma cells, FHL2 silencing using shRNA decreased canonical Wnt/β-catenin signaling and reduced the expression of Wnt responsive genes as well as of the key Wnt molecules Wnt5a and Wnt10b. This effect resulted in inhibition of osteosarcoma cell proliferation, invasion and migration in vitro. Using xenograft experiments, we showed that FHL2 silencing markedly reduced tumor growth and lung metastasis occurence in mice. The anti-oncogenic effect of FHL2 silencing in vivo was associated with reduced cell proliferation and decreased Wnt signaling in the tumors.
CONCLUSION/SIGNIFICANCE: Our findings demonstrate that FHL2 acts as an oncogene in osteosarcoma cells and contributes to tumorigenesis through Wnt signaling. More importantly, FHL2 depletion greatly reduces tumor cell growth and metastasis, which raises the potential therapeutic interest of targeting FHL2 to efficiently impact primary bone tumors.

Beghini A, Corlazzoli F, Del Giacco L, et al.
Regeneration-associated WNT signaling is activated in long-term reconstituting AC133bright acute myeloid leukemia cells.
Neoplasia. 2012; 14(12):1236-48 [PubMed] Free Access to Full Article Related Publications
Acute myeloid leukemia (AML) is a genetically heterogeneous clonal disorder characterized by two molecularly distinct self-renewing leukemic stem cell (LSC) populations most closely related to normal progenitors and organized as a hierarchy. A requirement for WNT/β-catenin signaling in the pathogenesis of AML has recently been suggested by a mouse model. However, its relationship to a specific molecular function promoting retention of self-renewing leukemia-initiating cells (LICs) in human remains elusive. To identify transcriptional programs involved in the maintenance of a self-renewing state in LICs, we performed the expression profiling in normal (n = 10) and leukemic (n = 33) human long-term reconstituting AC133(+) cells, which represent an expanded cell population in most AML patients. This study reveals the ligand-dependent WNT pathway activation in AC133(bright) AML cells and shows a diffuse expression and release of WNT10B, a hematopoietic stem cell regenerative-associated molecule. The establishment of a primary AC133(+) AML cell culture (A46) demonstrated that leukemia cells synthesize and secrete WNT ligands, increasing the levels of dephosphorylated β-catenin in vivo. We tested the LSC functional activity in AC133(+) cells and found significant levels of engraftment upon transplantation of A46 cells into irradiated Rag2(-/-)γc(-/-) mice. Owing to the link between hematopoietic regeneration and developmental signaling, we transplanted A46 cells into developing zebrafish. This system revealed the formation of ectopic structures by activating dorsal organizer markers that act downstream of the WNT pathway. In conclusion, our findings suggest that AC133(bright) LSCs are promoted by misappropriating homeostatic WNT programs that control hematopoietic regeneration.

Wend P, Runke S, Wend K, et al.
WNT10B/β-catenin signalling induces HMGA2 and proliferation in metastatic triple-negative breast cancer.
EMBO Mol Med. 2013; 5(2):264-79 [PubMed] Free Access to Full Article Related Publications
Wnt/β-catenin signalling has been suggested to be active in basal-like breast cancer. However, in highly aggressive metastatic triple-negative breast cancers (TNBC) the role of β-catenin and the underlying mechanism(s) for the aggressiveness of TNBC remain unknown. We illustrate that WNT10B induces transcriptionally active β-catenin in human TNBC and predicts survival-outcome of patients with both TNBC and basal-like tumours. We provide evidence that transgenic murine Wnt10b-driven tumours are devoid of ERα, PR and HER2 expression and can model human TNBC. Importantly, HMGA2 is specifically expressed during early stages of embryonic mammogenesis and absent when WNT10B expression is lost, suggesting a developmentally conserved mode of action. Mechanistically, ChIP analysis uncovered that WNT10B activates canonical β-catenin signalling leading to up-regulation of HMGA2. Treatment of mouse and human triple-negative tumour cells with two Wnt/β-catenin pathway modulators or siRNA to HMGA2 decreases HMGA2 levels and proliferation. We demonstrate that WNT10B has epistatic activity on HMGA2, which is necessary and sufficient for proliferation of TNBC cells. Furthermore, HMGA2 expression predicts relapse-free-survival and metastasis in TNBC patients.

Chen H, Wang Y, Xue F
Expression and the clinical significance of Wnt10a and Wnt10b in endometrial cancer are associated with the Wnt/β-catenin pathway.
Oncol Rep. 2013; 29(2):507-14 [PubMed] Related Publications
To determine the role played by the Wnt/β-catenin signaling pathway in the development of endometrial cancer (EC), we examined the expression of Wnt10a and Wnt10b in EC tissues and the correlation between their expression. Furthermore, the associations between these two proteins and the clinicopathological characteristics and prognosis of EC were also evaluated. In our search of alternative mechanisms, we investigated the impact of Wnt10b on proliferation and apoptosis of EC cells. Western blotting, 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and flow cytometry were used to evaluate the expression of Wnt10b and some key proteins of the Wnt/β-catenin pathway, proliferation and apoptosis in EC. Our results showed that Wnt10b expression in EC tissues was significantly higher compared to that in hyperplastic and normal samples. The expression of Wnt10a in endometrioid cancer tissues was higher compared to that in other types of cancerous samples. The difference in Wnt10b levels was significant among subgroups for histological type, grade of differentiation, FIGO phase and lymphovascular metastasis. Furthermore, no correlation was observed between the expression of Wnt10a and Wnt10b. In the follow-up, Wnt10b gene expression was frequently upregulated in EC and associated with better prognostic clinicopathological markers in EC patients. Collectively, the in vitro data showed that the upregulated expression of Wnt10b in Ishikawa cells promoted proliferation and inhibited apoptosis through β-catenin and c-myc activation and adenomatous polyposis coli (APC) inhibition, which suggests that Wnt10b activates EC via the Wnt/β-catenin pathway. These results suggest that Wnt10b likely plays an important role in the development of EC. Furthermore, these results identify a role for Wnt10b in EC cells through promoting proliferation and inhibiting apoptosis, primarily through the activation of the Wnt/β-catenin pathway. The role played by Wnt10a in EC, however, still requires further investigation.

An F, Yamanaka S, Allen S, et al.
Silencing of miR-370 in human cholangiocarcinoma by allelic loss and interleukin-6 induced maternal to paternal epigenotype switch.
PLoS One. 2012; 7(10):e45606 [PubMed] Free Access to Full Article Related Publications
Cholangiocarcinoma (CCA) is a highly lethal malignant tumor arising from the biliary tract epithelium. Interleukin-6 (IL-6) is a major mediator of inflammation and contributor to carcinogenesis within the biliary tree. Previous studies suggested that enforced IL-6 contributes to cholangiocarcinogenesis through hypermethylation of several genes implicated in CCA. However, the precise mechanisms of IL-6 effects in CCA remain unclear. We now demonstrate that microRNA (miR)-370 is underexpressed in a large cohort of human CCA vs. normal liver tissues. In addition, we show that IL-6 induces a time-dependent silencing of miR-370. In addition, demethylation of CCA cells results in upregulation of miR-370. Furthermore, we demonstrate that miR-370 is imprinted, and that the Intergenic Differentially Methylated Region (IG-DMR) responsible for imprinting regulation of this genomic locus is hypermethylated in response to IL-6 treatment. In addition, the IG-DMR is hypermethylated in human CCA specimens compared to normal matched controls, in the same location as the IL-6 induced hypermethylation. Finally, miR-370 was found to regulate WNT10B in luciferase as well as western blotting experiments. Our data indicate that the paternal allele of miR-370 is normally silenced through genomic imprinting and that the overexpression of IL-6 in CCA effectively suppresses the expression of miR-370 from the maternal allele, lending support to the theory that miR-370 silencing in human CCA follows a classic two-hit mechanism.

Lee WJ, Cha HW, Lim HJ, et al.
The effect of sebocytes cultured from nevus sebaceus on hair growth.
Exp Dermatol. 2012; 21(10):796-8 [PubMed] Related Publications
Sebaceous glands are known to affect hair growth. Nevus sebaceus, a sebaceous gland hamartomas, presents as hairless patches. In this study, cultures of nevus sebaceus sebocytes (NSS) and normal scalp hair follicle sebocytes (NS) were used in performance of microarray, RT-PCR, western blot assay and immunofluorescence staining. NSS- and NS-conditioned media were also added to the culture of outer root sheath cells (ORSCs), dermal papilla cells (DPCs) or normal scalp hair follicle sebocytes. Results of this study showed a decrease in the survival rate of ORSCs and DPCs and hair growth in the NSS-conditioned medium-treated group, compared with the control and NS-conditioned medium-treated groups. An increase in expression of fibroblast growth factor (FGF)-5, Dickkopf-1 and inflammatory cytokines and a decrease in expression of Wnt10b and Lef1 were observed. In conclusion, NSS showed an increase in expression of hair growth-suppressing bioactive factors, including FGF-5, and a decrease in expression of hair growth-stimulating factors.

Jiang YX, Ma Y, Cheng Y
Transcriptome and coexpression network analysis of the human glioma cell line Hs683 exposed to candoxin.
J Int Med Res. 2012; 40(3):887-98 [PubMed] Related Publications
OBJECTIVE: Gliomas are the most common primary tumours of the central nervous system. Snake venom, such as candoxin (CDX) isolated from Bungarus candidus, inhibits glioma cell proliferation. This study explored the gene regulation profile of CDX-treated human glioma Hs683 cells.
METHODS: Using microarray technology and bioinformatics analyses the underlying molecular mechanism of action of CDX was evaluated by constructing gene regulation and protein-protein interaction co expression networks.
RESULTS: CDX treatment induced a large number of related genes at the transcriptional level. The MYC gene (v-myc myelocytomatosis viral oncogene homologue [avian]) had a key role in the response of Hs683 cells to CDX treatment. Activation of MYC upregulated NDRG1 (N-myc downstream regulated 1), WNT10B (wingless-type mouse mammary tumour virus integration site family, member 10B), CASP9 (caspase 9, apoptosis-related cysteine peptidase) and CDKN2A (cyclin-dependent kinase inhibitor 2A), and downregulated ID3 (inhibitor of DNA binding 3, dominant negative helix-loop-helix protein) and SLC1A4 (solute carrier family 1 [glutamate/neutral amino acid transporter], member 4). In addition, a subnetwork was constructed among SPP1 (secreted phosphoprotein 1), SDC1 (syndecan 1) and CD44 based on protein-protein interactions, and these genes were predicted to be involved in glioma cell invasion.
CONCLUSION: These findings might provide novel therapeutic targets for glioma chemotherapy.

Aprelikova O, Palla J, Hibler B, et al.
Silencing of miR-148a in cancer-associated fibroblasts results in WNT10B-mediated stimulation of tumor cell motility.
Oncogene. 2013; 32(27):3246-53 [PubMed] Free Access to Full Article Related Publications
The tumor microenvironment has an important role in cancer progression. Here we show that miR-148a is downregulated in 15 out of 16 samples (94%) of cancer-associated fibroblasts (CAFs) compared with matched normal tissue fibroblasts (NFs) established from patients with endometrial cancer. Laser-capture microdissection of stromal cells from normal tissue and endometrial cancer confirmed this observation. Treatment of cells with 5-aza-deoxycytidine stimulated the expression of miR-148a in the majority of CAFs implicating DNA methylation in the regulation of miR-148a expression. Investigation of miR-148a function in fibroblasts demonstrated that conditioned media (CM) from CAFs overexpressing miR-148a significantly impaired the migration of five endometrial cancer cell lines without affecting their growth rates in co-culture experiments. Among predicted miR-148a target genes are two WNT family members, WNT1 and WNT10B. Activation of the WNT/β-catenin pathway in CAFs was confirmed by microarray analysis of gene expression and increased activity of the SuperTOPFlash luciferase reporter. We found elevated levels of WNT10B protein in CAFs and its level decreased when miR-148a was re-introduced by lentiviral infection. The 3'-UTR of WNT10B, cloned downstream of luciferase cDNA, suppressed luciferase activity when co-expressed with miR-148a indicating that WNT10B is a direct target of miR-148a. In contrast to the effect of miR-148a, WNT10B stimulated migration of endometrial cancer cell lines. Our findings have defined a molecular mechanism in the tumor microenvironment that is a novel target for cancer therapy.

Siar CH, Nagatsuka H, Han PP, et al.
Differential expression of canonical and non-canonical Wnt ligands in ameloblastoma.
J Oral Pathol Med. 2012; 41(4):332-9 [PubMed] Related Publications
BACKGROUND: Canonical and non-canonical Wnt signaling pathways modulate diverse cellular processes during embryogenesis and post-natally. Their deregulations have been implicated in cancer development and progression. Wnt signaling is essential for odontogenesis. The ameloblastoma is an odontogenic epithelial neoplasm of enamel organ origin. Altered expressions of Wnts-1, -2, -5a, and -10a are detected in this tumor. The activity of other Wnt members remains unclarified.
MATERIALS AND METHODS: Canonical (Wnts-1, -2, -3, -8a, -8b, -10a, and -10b), non-canonical (Wnts-4, -5a, -5b, -6, 7a, -7b, and -11), and indeterminate groups (Wnts-2b and -9b) were examined immunohistochemically in 72 cases of ameloblastoma (19 unicystic [UA], 35 solid/multicystic [SMA], eight desmoplastic [DA], and 10 recurrent [RA]).
RESULTS: Canonical Wnt proteins (except Wnt-10b) were heterogeneously expressed in ameloblastoma. Their distribution patterns were distinctive with some overlap. Protein localization was mainly membranous and/or cytoplasmic. Overexpression of Wnt-1 in most subsets (UA = 19/19; SMA = 35/35; DA = 5/8; RA = 7/10) (P < 0.05), Wnt-3 in granular cell variant (n = 3/3), and Wnt-8b in DA (n = 8/8) was key observations. Wnts-8a and -10a demonstrated enhanced expression in tumoral buddings and acanthomatous areas. Non-canonical and indeterminate Wnts were absent except for limited Wnt-7b immunoreactivity in UA (n = 1/19) and SMA (n = 1/35). Stromal components expressed variable Wnt positivity.
CONCLUSION: Differential expression of Wnt ligands in different ameloblastoma subtypes suggests that the canonical and non-canonical Wnt pathways are selectively activated or repressed depending on the tumor cell differentiation status. Canonical Wnt pathway is most likely the main transduction pathway while Wnt-1 might be the key signaling molecule involved in ameloblastoma tumorigenesis.

Thiele S, Rauner M, Goettsch C, et al.
Expression profile of WNT molecules in prostate cancer and its regulation by aminobisphosphonates.
J Cell Biochem. 2011; 112(6):1593-600 [PubMed] Related Publications
Skeletal metastases represent a frequent complication in patients with advanced prostate cancer (PCa) and often require bisphosphonate treatment to limit skeletal-related events. Metastasized PCa cells disturb bone remodeling. Since the WNT signaling pathway regulates bone remodeling and has been implicated in tumor progression and osteomimicry, we analyzed the WNT profile of primary PCa tissues and PCa cell lines and assessed its regulation by bisphosphonates. Prostate tissue (n = 18) was obtained from patients with benign prostate hyperplasia (BPH) and PCa patients with different disease stages. Serum samples were collected from 62 patients. Skeletal metastases were present in 17 patients of whom 6 had been treated with zoledronic acid. The WNT profile and its regulation by bisphoshonates were analyzed in tissue RNA extracts and serum samples as well as in osteotropic (PC3) and non-osteotropic (DU145, LNCaP) PCa cell lines. Several members of the WNT pathway, including WNT5A, FZD5, and DKK1 were highly up-regulated in PCa tissue from patients with advanced PCa. Interestingly, osteotropic cells showed a distinct WNT profile compared to non-osteotropic cells. While WNT5A, FZD5, and DKK1 were highly expressed in PC3 cells, WNT1 and SFRP1 mRNA levels were higher in DU145 cells. Moreover, zoledronic acid down-regulated mRNA levels of WNT5A (-34%), FZD5 (-60%), and DKK1 (-46%) in PC3 cells. Interestingly, patients with skeletal metastases who received zoledronic acid had twofold higher DKK1 serum levels compared to bisphosphonate-naive patients. The WNT signaling pathway is up-regulated in advanced PCa, differentially expressed in osteotropic versus non-osteotropic cells, and is regulated by zoledronic acid.

Mödder UI, Oursler MJ, Khosla S, Monroe DG
Wnt10b activates the Wnt, notch, and NFκB pathways in U2OS osteosarcoma cells.
J Cell Biochem. 2011; 112(5):1392-402 [PubMed] Free Access to Full Article Related Publications
Although osteosarcoma represents the most common bone malignancy, the molecular and cellular mechanisms influencing its pathogenesis have remained elusive. Recent evidence has suggested that the Wnt signaling pathway may play a crucial role in osteosarcoma. This study employed a microarray approach to discover novel genes and pathways involved in Wnt signaling in osteosarcoma. We developed a Wnt10b-expressing cell line using the human U2OS osteosarcoma model (U2OS-Wnt10b) and performed microarray and pathway analyses using parental U2OS cells as control. Differential expression of 1,003 genes encompassing 28 pathways was noted. The Wnt, NFκB, and Notch pathways were chosen for further study based on their known importance in bone biology. Known Wnt-responsive genes Axin-2 (4.9-fold), CD44 (2.1-fold), endothelin-1 (4.2-fold) and sclerostin domain containing-1 (43-fold) were regulated by Wnt10b. The proinflammatory cytokines interleukin-1α and tumor necrosis factor-α, known inducers of NFκB, were upregulated both at the transcript and protein level, and NFκB reporter activity was stimulated 3.8-fold, confirming NFκB activation. Interestingly, genes involved in Notch signaling [Notch-1 (2.4-fold) and Jagged-1 (3.1-fold)] were upregulated, whereas the Notch inhibitor, lunatic fringe, was downregulated (8.2-fold). This resulted in the activation of the classic Notch-responsive genes, hairy and enhancer of split-1 (Hes-1; 2.2-fold) and hairy/enhancer-of-split related with YRPW motif-1 (Hey-1; 2.5-fold). A Hey-1 reporter construct was regulated 9.1-fold in U2OS-Wnt10b cells, confirming Notch activation. Interestingly, Wnt3a failed to induce the Notch and NFκB pathways, demonstrating Wnt-specificity. In conclusion, our data demonstrate that Wnt10b, but not Wnt3a, stimulates the NFκB and Notch pathways in U2OS osteosarcoma cells.

Ren TN, Wang JS, He YM, et al.
Effects of SMYD3 over-expression on cell cycle acceleration and cell proliferation in MDA-MB-231 human breast cancer cells.
Med Oncol. 2011; 28 Suppl 1:S91-8 [PubMed] Related Publications
SET and MYND domain-containing protein 3 (SMYD3) is a histone methyltransferase that plays an important role in transcriptional regulation in human carcinogenesis. It can specifically methylate histone H3 at lysine 4 and activate the transcription of a set of downstream genes, including several oncogenes (e.g., N-myc, CrkL, Wnt10b, RIZ and hTERT) and genes involved in the control of cell cycle (e.g., CyclinG1 and CDK2) and signal transduction (e.g., STAT1, MAP3K11 and PIK3CB). To determine the effects of SMYD3 over-expression on cell proliferation, we transfected SMYD3 into MDA-MB-231 cells and found that these cells showed several transformed phenotypes as demonstrated by colony growth in soft agar. Besides, we show here that down-regulation of SMYD3 could induce G1-phase cell cycle arrest, indicating the potent induction of apoptosis by SMYD3 knockdown. These results suggest the regulatory mechanisms of SMYD3 on the acceleration of cell cycle and facilitate the development of strategies that may inhibit the progression of cell cycle in breast cancer cells.

Yuan F, Zhou W, Zou C, et al.
Expression of Oct4 in HCC and modulation to wnt/β-catenin and TGF-β signal pathways.
Mol Cell Biochem. 2010; 343(1-2):155-62 [PubMed] Related Publications
Hepatocellular carcinoma (HCC) is considered as a disease of dysfunction of the stem cells. Studies on stem cells have demonstrated that Oct4 plays a pivotal role in embryo regulation. In order to understand the role of Oct4 in HCC and the relationship among Oct4 and wnt/β-catenin and TGF-β signal pathways, we have detected the expression of Oct4, Nanog, Sox2, STAT3 as well as the genes in wnt/β-catenin, and TGF-β families in HCC cell lines and in tumor specimens from HCC patients. The authors found that Oct4 was expressed in all of the four HCC cell lines and the tumor specimens from HCC patients. Some other genes were also expressed in them with different level including Nanog, Sox2, STAT3 and TCF3, wnt10b, β-catenin, ELF, Smad3 and Smad4. The ability of the clone formation and migration of the HepG2 decreased after Oct4 was knockdowned. Silencing of Oct4 and TCF3 in HCC cell line HepG2 revealed that there were complicated relationships among Oct4, wnt/β-catenin family and TGF-β family genes. Knockdowning Oct4 reduced the expression of TGF-β family genes ELF, Smad3, Smad4 and wnt/β-catenin family genes, wnt10b, and β-catenin but increased TCF3. In reverse, knockdowning TCF3 led to the increased expression of Oct4 and TGF-β family genes. In conclusion, the expression of Oct4 in HCC may play an important role as in stem cell. Because Oct4 improves not only the function of wnt/β-catenin, but also the TGF-β signal pathways, the significance of its expression in HCC might be more complicated than we evinced before.

Bellodi-Privato M, Kubrusly MS, Stefano JT, et al.
Differential gene expression profiles of hepatocellular carcinomas associated or not with viral infection.
Braz J Med Biol Res. 2009; 42(12):119-1127 [PubMed] Related Publications
Chronic hepatitis B (HBV) and C (HCV) virus infections are the most important factors associated with hepatocellular carcinoma (HCC), but tumor prognosis remains poor due to the lack of diagnostic biomarkers. In order to identify novel diagnostic markers and therapeutic targets, the gene expression profile associated with viral and non-viral HCC was assessed in 9 tumor samples by oligo-microarrays. The differentially expressed genes were examined using a z-score and KEGG pathway for the search of ontological biological processes. We selected a non-redundant set of 15 genes with the lowest P value for clustering samples into three groups using the non-supervised algorithm k-means. Fisher's linear discriminant analysis was then applied in an exhaustive search of trios of genes that could be used to build classifiers for class distinction. Different transcriptional levels of genes were identified in HCC of different etiologies and from different HCC samples. When comparing HBV-HCC vs HCV-HCC, HBV-HCC/HCV-HCC vs non-viral (NV)-HCC, HBC-HCC vs NV-HCC, and HCV-HCC vs NV-HCC of the 58 non-redundant differentially expressed genes, only 6 genes (IKBKbeta, CREBBP, WNT10B, PRDX6, ITGAV, and IFNAR1) were found to be associated with hepatic carcinogenesis. By combining trios, classifiers could be generated, which correctly classified 100% of the samples. This expression profiling may provide a useful tool for research into the pathophysiology of HCC. A detailed understanding of how these distinct genes are involved in molecular pathways is of fundamental importance to the development of effective HCC chemoprevention and treatment.

Luo XG, Xi T, Guo S, et al.
Effects of SMYD3 overexpression on transformation, serum dependence, and apoptosis sensitivity in NIH3T3 cells.
IUBMB Life. 2009; 61(6):679-84 [PubMed] Related Publications
The SET and MYND domain-containing protein 3 (SMYD3) gene was found to encode a novel histone methyltransferase involved in human cancer cells. It could specifically methylate histone H3 at lysine 4 and activate the transcription of a set of downstream genes, including of several oncogenes (e.g., N-Myc, CrkL, Wnt10b, RIZ, and hTERT) and genes involved in the control of cell cycle (e.g., Cyclin G1 and CDK2) and signal transduction (e.g., STAT1, MAP3K11, and PIK3CB). To determine the effects of SMYD3 overexpression on cell transformation, serum dependence and apoptosis sensitivity, we expressed SMYD3 in NIH3T3 cells, and these cells showed several transformed phenotypes as demonstrated by foci formation and colony growth in soft agar. Besides, these transfectants also showed increased serum dependence and depression of sensitivity to apoptosis induced by dexamethasone. These findings lend further understanding to the role of SMYD3 in the genesis of human cancers and might throw light on the development of novel therapeutic approaches to human cancers.

Miranda-Carboni GA, Krum SA, Yee K, et al.
A functional link between Wnt signaling and SKP2-independent p27 turnover in mammary tumors.
Genes Dev. 2008; 22(22):3121-34 [PubMed] Free Access to Full Article Related Publications
Loss of the CDK inhibitor p27(KIP1) is widely linked with poor prognosis in human cancer. In Wnt10b-expressing mammary tumors, levels of p27(KIP1) were extremely low; conversely, Wnt10b-null mammary cells expressed high levels of this protein, suggesting Wnt-dependent regulation of p27(KIP1). Interestingly we found that Wnt-induced turnover of p27(KIP1) was independent from classical SCF(SKP2)-mediated degradation in both mouse and human cells. Instead, turnover required Cullin 4A and Cullin 4B, components of an alternative E3 ubiquitin ligase induced in response to active Wnt signaling. We found that CUL4A was a novel Wnt target gene in both mouse and human cells and that CUL4A physically interacted with p27(KIP1) in Wnt-responding cells. We further demonstrated that both Cul4A and Cul4B were required for Wnt-induced p27(KIP1) degradation and S-phase progression. CUL4A and CUL4B are therefore components of a conserved Wnt-induced proteasome targeting (WIPT) complex that regulates p27(KIP1) levels and cell cycle progression in mammalian cells.

Jones KA, Kemp CR
Wnt-induced proteolytic targeting.
Genes Dev. 2008; 22(22):3077-81 [PubMed] Free Access to Full Article Related Publications
Misregulation of the Wnt pathway is a common route to cancer, including primary breast cancers. In this issue of Genes & Development, Miranda-Carboni and colleagues (3121-3134) demonstrate that the cyclin-dependent kinase inhibitor p27(Kip1) is ubiquitylated for proteasomal degradation in Wnt10b-induced mammary tumors exclusively by the Cul4A E3 ligase, which is strongly induced by Wnt signaling. The discovery of a new Wnt-induced proteolytic targeting system has important implications for the mechanism of Wnt-initiated tumorigenesis.

Katoh M
Networking of WNT, FGF, Notch, BMP, and Hedgehog signaling pathways during carcinogenesis.
Stem Cell Rev. 2007; 3(1):30-8 [PubMed] Related Publications
The biological functions of some orthologs within the human genome and model-animal genomes are evolutionarily conserved, but those of others are divergent due to protein evolution and promoter evolution. Because WNT signaling molecules play key roles during embryogenesis, tissue regeneration and carcinogenesis, the author's group has carried out a human WNT-ome project for the comprehensive characterization of human genes encoding WNT signaling molecules. From 1996 to 2002, we cloned and characterized WNT2B/WNT13, WNT3, WNT3A, WNT5B, WNT6, WNT7B, WNT8A, WNT8B, WNT9A/WNT14, WNT9B/WNT14B, WNT10A, WNT10B, WNT11, FZD1, FZD2, FZD3, FZD4, FZD5, FZD6, FZD7, FZD8, FZD10, FRAT1, FRAT2, NKD1, NKD2, VANGL1, RHOU/ARHU, RHOV/ARHV, GIPC2, GIPC3, FBXW11/betaTRCP2, SOX17, TCF7L1/TCF3, and established a cDNA-PCR system for snap-shot and dynamic analyses on the WNT-transcriptome. In 2003, we identified and characterized PRICKLE1, PRICKLE2, DACT1/DAPPER1, DACT2/DAPPER2, DAAM2, and BCL9L. After completion of the human WNT-ome project, we have been working on the stem cell signaling network. WNT signals are transduced to beta-catenin, NLK, NFAT, PKC, JNK and RhoA signaling cascades. FGF20, JAG1 and DKK1 are target genes of the WNT-beta-catenin signaling cascade. Cross-talk of WNT and FGF signaling pathways potentiates beta-catenin and NFAT signaling cascades. BMP signals induce IHH upregulation in co-operation with RUNX. Hedgehog signals induce upregulation of SFRP1, JAG2 and FOXL1, and then FOXL1 induces BMP4 upregulation. The balance between WNT-FGF-Notch and BMP-Hedgehog signaling networks is important for the maintenance of homoestasis among stem and progenitor cells. Disruption of the stem cell signaling network results in pathological conditions, such as congenital diseases and cancer.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. WNT10B, Cancer Genetics Web: http://www.cancer-genetics.org/WNT10B.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 31 August, 2019     Cancer Genetics Web, Established 1999