Cancer Overview
Research Indicators
Graph generated 29 August 2019 using data from PubMed using criteria.Literature Analysis
Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.
Tag cloud generated 29 August, 2019 using data from PubMed, MeSH and CancerIndex
Specific Cancers (6)
Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.
Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).
Useful Links
SUV39H1
OMIM, Johns Hopkin University
Referenced article focusing on the relationship between phenotype and genotype.
SUV39H1
International Cancer Genome Consortium.
Summary of gene and mutations by cancer type from ICGC
SUV39H1
Cancer Genome Anatomy Project, NCI
Gene Summary
SUV39H1
COSMIC, Sanger Institute
Somatic mutation information and related details
SUV39H1
GEO Profiles, NCBI
Search the gene expression profiles from curated DataSets in the Gene Expression Omnibus (GEO) repository.
Latest Publications: SUV39H1 (cancer-related)
Xie W, Huang P, Wu B, et al.
Clinical significance of LOXL4 expression and features of LOXL4-associated protein-protein interaction network in esophageal squamous cell carcinoma.Amino Acids. 2019; 51(5):813-828 [
PubMed]
Related Publications
Lysyl oxidase-like 4 (LOXL4), a member of the LOX family proteins, catalyzes oxidative deamination of lysine residues in collagen and elastin, which are responsible for maintaining extracellular matrix homeostasis. In this study, the mRNA expression of LOXL4 in seven esophageal squamous cell carcinoma (ESCC) cell lines and 15 ESCC pairs of clinical samples were examined. Furthermore, LOXL4 protein levels in the ESCC cell lines were determined using western blotting. With the use of immunofluorescence, LOXL4 was observed to be localized primarily in the cytoplasm, but was also present in the nucleus. In addition, the results indicated that the upregulated expression of LOXL4 was associated with poor survival in patients with ESCC even following curative resection (P = 0.010). Similar Kaplan-Meier estimator curves for proteins that interact with LOXL4, SUV39H1 (P = 0.014) and COL2A1 (P = 0.011), were plotted. The analyses based on the protein-protein interaction network depicted the expression of LOXL4 and its associated proteins as well as their functions, suggesting that LOXL4 and its associated proteins may serve a significant role in the development and progression of ESCC. In conclusion, the results of the present study suggest that LOXL4 is a potential biomarker for patients with ESCC, as well as SUV39H1 and COL2A1, and high expression levels of these genes are associated with poor prognosis in patients with ESCC.
Blagitko-Dorfs N, Schlosser P, Greve G, et al.
Combination treatment of acute myeloid leukemia cells with DNMT and HDAC inhibitors: predominant synergistic gene downregulation associated with gene body demethylation.Leukemia. 2019; 33(4):945-956 [
PubMed]
Related Publications
DNA methyltransferase inhibitors (DNMTi) approved for older AML patients are clinically tested in combination with histone deacetylase inhibitors (HDACi). The mechanism of action of these drugs is still under debate. In colon cancer cells, 5-aza-2'-deoxycytidine (DAC) can downregulate oncogenes and metabolic genes by reversing gene body DNA methylation, thus implicating gene body methylation as a novel drug target. We asked whether DAC-induced gene body demethylation in AML cells is also associated with gene repression, and whether the latter is enhanced by HDACi.Transcriptome analyses revealed that a combined treatment with DAC and the HDACi panobinostat or valproic acid affected significantly more transcripts than the sum of the genes regulated by either treatment alone, demonstrating a quantitative synergistic effect on genome-wide expression in U937 cells. This effect was particularly striking for downregulated genes. Integrative methylome and transcriptome analyses showed that a massive downregulation of genes, including oncogenes (e.g., MYC) and epigenetic modifiers (e.g., KDM2B, SUV39H1) often overexpressed in cancer, was associated predominantly with gene body DNA demethylation and changes in acH3K9/27. These findings have implications for the mechanism of action of combined epigenetic treatments, and for a better understanding of responses in trials where this approach is clinically tested.
Emerging evidence suggests that microRNAs (miRNAs) serve an important role in tumourigenesis and development. Although the low expression of miR-125a-5p in non-small-cell lung cancer (NSCLC) has been reported, the underlying mechanism remains unknown. In the current study, the low expression of miR-125a-5p in NSCLC was verified in paired cancer tissues and adjacent non-tumour tissues. Furthermore, the CpG island in the miR-125a-5p region was hypermethylated in the tumour tissues, and the hypermethylation was negatively correlated with miR-125a-5p expression. Target gene screening showed that the histone methyltransferase Suv39H1 was one of the potential target genes.
Lung cancer is a malignant tumor with high fatality rate and causes great harm to human economic life. Non-small cell lung cancer (NSCLC) is the most common type of lung cancer. With the rapid development of epigenetic study in the last decade, the understanding of the pathogenesis of lung cancer and the development of personalized treatment of lung cancer are picking up pace. Previous studies showed that
Dutta B, Park JE, Qing ITY, et al.
Soy-Derived Phytochemical Genistein Modifies Chromatome Topology to Restrict Cancer Cell Proliferation.Proteomics. 2018; 18(16):e1700474 [
PubMed]
Related Publications
Epidemiological data indicate that human cancer risk is significantly reduced by the consumption of soy-based foods containing the "phytoestrogen" genistein, which can signal via host cell estrogen receptors. While additional chemoprotective effects of genistein induced by epigenetic factors have also been reported, the key molecules and mechanisms involved are poorly defined. We therefore investigated genistein effects on chromatin-bound proteins in the estrogen receptor-deficient cell line MDA-MB-231 which is insensitive to phytoestrogen signaling. After exposure to low-dose genistein for >1 month, MDA-MB-231 cells exhibited stable epigenetic alterations that are analyzed via partial MNase digestion and TMT-based quantitative proteomics. 3177 chromatin-bound proteins are identified with high confidence, including 882 molecules that displayed altered binding topology after cell conditioning with genistein. Prolonged phytochemical exposure conferred heritable changes in the binding topology of key epigenetic regulators including ATRX, SUV39H1/H2, and HP1BP3 that are preserved in untreated progeny, resulting in sustained downregulation of proliferation genes and reduced cell growth. These data indicate that soy derivative genistein exerts complex estrogen receptor-independent effects on the epigenome likely to influence tumorigenesis by restricting cell growth.
Kim G, Kim JY, Lim SC, et al.
SUV39H1/DNMT3A-dependent methylation of the RB1 promoter stimulates PIN1 expression and melanoma development.FASEB J. 2018; 32(10):5647-5660 [
PubMed]
Related Publications
Melanoma is among the most aggressive and treatment-resistant human cancers. Aberrant histone H3 methylation at Lys 9 (H3K9) correlates with carcinogenic gene silencing, but the significance of suppressor of variegation 3-9 homolog 1 (SUV39H1), an H3K9-specific methyltransferase, in melanoma initiation and progression remains unclear. Here, we show that SUV39H1-mediated H3K9 trimethylation facilitates retinoblastoma ( RB) 1 promoter CpG island methylation by interacting with DNA methyltransferase 3A and decreasing RB mRNA and protein in melanoma cells. Reduced RB abundance, in turn, impairs E2F1 transcriptional inhibition, leading to increased peptidyl-prolyl cis-trans isomerase never-in-mitosis A (NIMA)-interacting 1 (PIN1) levels, human keratinocyte neoplastic cell transformation, and melanoma tumorigenesis via enhanced rapidly accelerated fibrosarcoma 1(RAF1)-MEK-ERK signaling pathway activation. In a synergistic model with B16-F1 murine melanoma cells, SUV39H1 and PIN1 overexpression increased melanoma growth, which was abrogated by their inhibition in SUV39H1-overexpressing B16-F1 mice. SUV39H1 also positively correlated with PIN1 expression in human melanoma. Our studies establish SUV39H1 as an oncogene in melanoma and underscore the role of chromatin factors in regulating tumorigenesis.-Kim, G., Kim, J.-Y., Lim, S.-C., Lee, K. Y., Kim, O., Choi, H. S. SUV39H1/DNMT3A-dependent methylation of the RB1 promoter stimulates PIN1 expression and melanoma development.
RAS proteins are major human oncogenes, and most of the studies are focused on enzymatic RAS effectors. Recently, nonenzymatic RAS effectors (RASSF, RAS association domain family) have garnered special attention because of their tumor-suppressive properties in contrast to the oncogenic potential of the classical enzymatic RAS effectors. Whereas most members of RASSF family are deregulated by promoter hypermethylation, RASSF8 promoter remains unmethylated in many cancers but the mechanism(s) of its down-regulation remains unknown. Here, we unveil E4BP4 as a critical transcriptional modulator repressing RASSF8 expression through histone methyltransferases, G9a and SUV39H1. In line with these observations, we noticed a negative correlation of RASSF8 and E4BP4 expression in primary breast tumor samples. In addition, our data provide evidence that E4BP4 attenuates RASSF8-mediated anti-proliferation and apoptosis, shedding mechanistic insights into RASSF8 down-regulation in breast cancers. Collectively, our study provides a better understanding on the epigenetic regulation of RASSF8 function and implicates the development of better treatment strategies.
Magnani E, Macchi F, Mancini M, et al.
UHRF1 regulates CDH1 via promoter associated non-coding RNAs in prostate cancer cells.Biochim Biophys Acta Gene Regul Mech. 2018; 1861(3):258-270 [
PubMed]
Related Publications
Non-coding RNAs (ncRNAs) transcribed from the promoter and the downstream region can affect the expression of the corresponding coding genes. It has been shown that sense-directed ncRNAs arising from the promoter region of the E-cadherin gene (CDH1) mediate its repression. Here, we show that an antisense-directed ncRNA (paRCDH1-AS) transcribed from the CDH1 promoter is necessary for its expression. paRCDH1-AS acts as a hooking scaffold by recruiting the epigenetic regulators, UHRF1, DNMT3A, SUV39H1 and SUZ12, involved in CDH1 repression. The binding of epigenetic regulators to paCRDH1-AS, indeed, prevents their localization to the chromatin on CDH1 promoter. Moreover, paRCDH1-AS silencing induces CDH1 repression and a switch of the epigenetic profile on the promoter towards a more closed chromatin. Using bioinformatic and experimental approaches we defined that the promoter of the paRCDH1-AS is shared with the E-cadherin gene, showing a bidirectional promoter activity. We found that UHRF1 controls both CDH1 and paRCDH1-AS by directly binding this bidirectional promoter region. Our study provides evidences, for the first time, that UHRF1 recruitment can be affected by promoter-associated non-coding RNAs, opening new perspective regarding the role of UHRF1 in these complex regulatory networks.
Shuai W, Wu J, Chen S, et al.
SUV39H2 promotes colorectal cancer proliferation and metastasis via tri-methylation of the SLIT1 promoter.Cancer Lett. 2018; 422:56-69 [
PubMed]
Related Publications
Suppressor of variegation 3-9 homolog 2 (SUV39H2) is a member of the SUV39H subfamily of lysine methyltransferases. Its role in colorectal cancer (CRC) proliferation and metastasis has remained unexplored. Here, we determined that SUV39H2 was upregulated in CRC tissues compared with that in adjacent non-neoplastic tissues. Further statistical analysis revealed that high SUV39H2 expression was strongly associated with distant metastasis (P = 0.016) and TNM stage (P = 0.038) and predicted a shorter overall survival (OS; P = 0.018) and progression-free survival (PFS; P = 0.018) time for CRC patients. Both in vitro and in vivo assays demonstrated that ectopically expressed SUV39H2 enhanced CRC proliferation and metastasis, while SUV39H2 knockdown inhibited CRC proliferation and metastasis. A molecular screen of SUV39H2 targets found that SUV39H2 negatively regulated the expression of SLIT guidance ligand 1 (SLIT1). Moreover, rescue assays suggested that SLIT1 could antagonize the function of SUV39H2 in CRC. Mechanistic studies indicated that SUV39H2 can directly bind to the SLIT1 promoter, suppressing SLIT1 transcription by catalyzing histone H3 lysine 9 (H3K9) tri-methylation. In summary, we propose that SUV39H2 can predict CRC patient prognosis and stimulate CRC malignant phenotypes via SLIT1 promoter tri-methylation.
Non-alcoholic steatohepatitis (NASH) is commonly associated with obesity, type 2 diabetes, and/or hypertriglyceridemia, while alcoholic steatohepatitis (ASH) is associated with alcohol abuse. Both NASH and ASH patients can develop cirrhosis and hepatocellular carcinoma (HCC) if left untreated. However, the rate of tumorigenesis in NASH and ASH appears to be different. Individuals with NASH progress to HCC at a rate of 0.5% annually (Lindenmeyer and McCullough, 2018), when individuals with ASH progress to HCC at a rate of 3-10% annually (Schwartz and Reinus, 2012). Thus, the objective of our study is to determine if there are differences in NASH versus ASH in the levels of different proteins expressed involved in cancer development. The method used was measuring the proteins expressed in liver biopsied sections from NASH and ASH patients using immunohistochemical staining with fluorescent antibodies and then quantitating the fluorescence intensity morphometrically. The 20 proteins tested are parts of the Ingenuity Canonical Pathway of Molecular Mechanisms of Cancer and include: RAP2B, NAIP, FYN, PAK6, SUV39H1, GNAI1, BAX, E2F3, CKDN2B, BAK1, BCL2, DIABLO, RASGRF2, GNA15, PIK3CB, BRCA1, MAP2K1, BIRC3, CDK2, and ATM. In ASH, the proteins that showed upregulated levels of expression were SUV39H1, E2F3, BCL2, BAK1, BIRC3, and GNAI1. In NASH, the proteins that showed upregulated levels of expression were BAK1 and GNAI1 and the protein that showed downregulated level of expression was BCL2. Additionally, levels of expression for SUV39H1, E2F3, BCL2, BAK1, BIRC3, and GNAI1 were significant upregulated in ASH compared to NASH. These results showed significant differences in ASH compared to normal liver, and significant differences in ASH compared to NASH. Thus, we conclude that there are more proteins involved in tumorigenesis in ASH compared to NASH and in ASH compared to normal liver, which is consistent with the known tumor development rate in ASH and NASH.
Lai X, Deng Z, Guo H, et al.
HP1α is highly expressed in glioma cells and facilitates cell proliferation and survival.Cancer Biomark. 2017; 20(4):453-460 [
PubMed]
Related Publications
Epigenetic alteration plays critical roles in gliomagenesis by regulating gene expression through modifications of Histones and DNA. Trimethylation of H3K9, an essential repressed transcription mark, and one of its methyltransferase, SUV39H1, are implicated in glioma pathogenesis and progression. We find that the protein level of HP1α, a reader of H3K9me3 is elevated in GOS3 and 1321N1 glioma cell lines. H3K9me3 and SUV39H1 level are also upregulated. Depletion of HP1α and SUV39H1 weakens GOS3 and 1321N1 cell proliferation capacity and results in apoptosis of cells. Furthermore, we find that HP1α and H3K9me3 are enriched in the FAS and PUMA promoters, which suggests that upregulated HP1α and H3K9me3 prevent apoptosis by suppressing apoptotic activators. These data indicates that up-regulated HP1α, SUV39H1, and H3K9me3 in glioma cells are functionally associated with glioma pathogenesis and progression, and may serve as novel biomarkers for future diagnostic and therapeutic targeting of brain tumors.
Carvalho Alves-Silva J, do Amaral Rabello D, Oliveira Bravo M, et al.
Aberrant levels of SUV39H1 and SUV39H2 methyltransferase are associated with genomic instability in chronic lymphocytic leukemia.Environ Mol Mutagen. 2017; 58(9):654-661 [
PubMed]
Related Publications
Chromosomal alterations are commonly detected in patients with chronic lymphocytic leukemia (CLL) and impact disease pathogenesis, prognosis, and progression. Telomerase expression (hTERT), its activity and the telomere length are other important predictors of survival and multiple outcomes in CLL. SUV39H and SUV420H enzymes are histone methyltransferases (HMTases) involved in several cellular processes, including regulation of telomere length, heterochromatin organization, and genome stability. Here, we investigated whether SUV39H1, SUV39H2, SUV420H1, SUV420H2, and hTERT are associated with genomic instability of CLL. SUV39H (1/2), SUV420H (1/2), and hTERT expression was determined in 59 CLL samples by real time PCR. In addition, ZAP-70 protein expression was evaluated by Flow Cytometry and patients' karyotype was defined by Cytogenetic Analysis. Low expression of SUV39H1 was associated with the acquisition of altered and complex karyotypes. Conversely, high expression of SUV39H2 correlated with cytogenetic abnormalities in CLL patients. The pattern of karyotypic alterations differed in samples with detectable or undetectable hTERT expression. Furthermore, hTERT expression in CLL showed a correlation with transcript levels of SUV39H2, which, in part, can explain the association between SUV39H2 expression and cytogenetic abnormalities. Moreover, SUV39H1 correlated with SUV420H1 expression while SUV420H2 was associated with all other investigated HMTases. Our data show that the differential expression of SUV39H1 and SUV39H2 is associated with genomic instability and that the modulation of these HMTases can be an attractive approach to prevent CLL evolution. Environ. Mol. Mutagen. 58:654-661, 2017. © 2017 Wiley Periodicals, Inc.
There is a trend of increasing prevalence of neuroendocrine tumors (NETs), and the inherited multiple endocrine neoplasia type 1 (MEN1) syndrome serves as a genetic model to investigate how NETs develop and the underlying mechanisms. Menin, encoded by the
Yang Z, He L, Lin K, et al.
The KMT1A-GATA3-STAT3 Circuit Is a Novel Self-Renewal Signaling of Human Bladder Cancer Stem Cells.Clin Cancer Res. 2017; 23(21):6673-6685 [
PubMed]
Related Publications
Nakajima NI, Niimi A, Isono M, et al.
Inhibition of the HDAC/Suv39/G9a pathway restores the expression of DNA damage-dependent major histocompatibility complex class I-related chain A and B in cancer cells.Oncol Rep. 2017; 38(2):693-702 [
PubMed]
Free Access to Full Article Related Publications
Immunotherapy is expected to be promising as a next generation cancer therapy. Immunoreceptors are often activated constitutively in cancer cells, however, such levels of ligand expression are not effectively recognized by the native immune system due to tumor microenvironmental adaptation. Studies have demonstrated that natural-killer group 2, member D (NKG2D), a major activating immunoreceptor, responds to DNA damage. The upregulation of major histocompatibility complex class I-related chain A and B (MICA/B) (members of NKG2D ligands) expression after DNA damage is associated with NK cell-mediated killing of cancer cells. However, the regulation of DNA damage-induced MICA/B expression has not been fully elucidated in the context of the types of cancer cell lines. In the present study, we found that MICA/B expression varied between cancer cell lines after DNA damage. Screening in terms of chromatin remodeling identified that inhibitors related to chromatin relaxation via post-translational modification on histone H3K9, i.e. HDAC, Suv39 or G9a inhibition, restored DNA damage-dependent MICA/B expression in insensitive cells. In addition, we revealed that the restored MICA/B expression was dependent on ATR as well as E2F1, a transcription factor. We further revealed that low‑dose treatment of an HDAC inhibitor was sufficient to restore MICA/B expression in insensitive cells. Finally, we demonstrated that HDAC inhibition restored DNA damage‑dependent cytotoxic NK activity against insensitive cells. Thus, the present study revealed that DNA damage‑dependent MICA/B expression in insensitive cancer cells can be restored by chromatin relaxation via the HDAC/Suv39/G9a pathway. Collectively, manipulation of chromatin status by therapeutic cancer drugs may potentiate the antitumor effect by enhancing immune activation following radiotherapy and DNA damage-associated chemotherapy.
Lai X, Deng Z, Guo H, et al.
HP1α is highly expressed in glioma cells and facilitates cell proliferation and survival.Biochem Biophys Res Commun. 2017; 490(2):415-422 [
PubMed]
Related Publications
Epigenetic alteration plays critical roles in gliomagenesis by regulating gene expression through modifications of Histones and DNA. Trimethylation of H3K9, an essential repressed transcription mark, and one of its methyltransferase, SUV39H1, are implicated in glioma pathogenesis and progression. We find that the protein level of HP1α, a reader of H3K9me3 is elevated in cultured glioma cell lines and glioma tissues. H3K9me3 is also upregulated. Depletion of HP1α and SUV39H1 weakens glioma cell proliferation capacity and results in apoptosis of cells. Furthermore, we find that HP1α and H3K9me3 are enriched in the FAS and PUMA promoters, which suggests that upregulated HP1α and H3K9me3 contribute to cell survival by suppressing apoptotic activators. These data suggests that up-regulated HP1α and H3K9me3 in glioma cells are functionally associated with glioma pathogenesis and progression and may serve as novel biomarkers for diagnostic and therapeutic targeting of brain tumors.
Parfett CL, Desaulniers D
A Tox21 Approach to Altered Epigenetic Landscapes: Assessing Epigenetic Toxicity Pathways Leading to Altered Gene Expression and Oncogenic Transformation In Vitro.Int J Mol Sci. 2017; 18(6) [
PubMed]
Free Access to Full Article Related Publications
An emerging vision for toxicity testing in the 21st century foresees in vitro assays assuming the leading role in testing for chemical hazards, including testing for carcinogenicity. Toxicity will be determined by monitoring key steps in functionally validated molecular pathways, using tests designed to reveal chemically-induced perturbations that lead to adverse phenotypic endpoints in cultured human cells. Risk assessments would subsequently be derived from the causal in vitro endpoints and concentration vs. effect data extrapolated to human in vivo concentrations. Much direct experimental evidence now shows that disruption of epigenetic processes by chemicals is a carcinogenic mode of action that leads to altered gene functions playing causal roles in cancer initiation and progression. In assessing chemical safety, it would therefore be advantageous to consider an emerging class of carcinogens, the epigenotoxicants, with the ability to change chromatin and/or DNA marks by direct or indirect effects on the activities of enzymes (writers, erasers/editors, remodelers and readers) that convey the epigenetic information. Evidence is reviewed supporting a strategy for in vitro hazard identification of carcinogens that induce toxicity through disturbance of functional epigenetic pathways in human somatic cells, leading to inactivated tumour suppressor genes and carcinogenesis. In the context of human cell transformation models, these in vitro pathway measurements ensure high biological relevance to the apical endpoint of cancer. Four causal mechanisms participating in pathways to persistent epigenetic gene silencing were considered: covalent histone modification, nucleosome remodeling, non-coding RNA interaction and DNA methylation. Within these four interacting mechanisms, 25 epigenetic toxicity pathway components (SET1, MLL1, KDM5, G9A, SUV39H1, SETDB1, EZH2, JMJD3, CBX7, CBX8, BMI, SUZ12, HP1, MPP8, DNMT1, DNMT3A, DNMT3B, TET1, MeCP2, SETDB2, BAZ2A, UHRF1, CTCF, HOTAIR and ANRIL) were found to have experimental evidence showing that functional perturbations played "driver" roles in human cellular transformation. Measurement of epigenotoxicants presents challenges for short-term carcinogenicity testing, especially in the high-throughput modes emphasized in the Tox21 chemicals testing approach. There is need to develop and validate in vitro tests to detect both, locus-specific, and genome-wide, epigenetic alterations with causal links to oncogenic cellular phenotypes. Some recent examples of cell-based high throughput chemical screening assays are presented that have been applied or have shown potential for application to epigenetic endpoints.
Estrogen receptor α (ERα) is a crucial transcriptional regulator in breast cancer, but estrogens mediate their effects through two estrogen receptors, ERα and ERβ, subtypes that have contrasting regulatory actions on gene expression and the survival and growth of breast cancer cells. Here, we examine the impact of ERβ on the ERα-p53 loop in breast cancer. We found that ERβ attenuates ERα-induced cell proliferation, increases apoptosis, and reverses transcriptional activation and repression by ERα. Further, ERβ physically interacts with p53, reduces ERα-p53 binding, and antagonizes ERα-p53-mediated transcriptional regulation. ERα directs SUV39H1/H2 and histone H3 lys9 trimethylation (H3K9me3) heterochromatin assembly at estrogen-repressed genes to silence p53-activated transcription. The copresence of ERβ in ERα-positive cells abrogates the H3K9me3 repressive heterochromatin conformation by downregulating SUV39H1 and SUV39H2, thereby releasing the ERα-induced transcriptional block. Furthermore, the presence of ERβ stimulates accumulation of histone H3 lys4 trimethylation (H3K4me3) and RNA polymerase II (RNA Pol II) on ERα-repressed genes, inducing H3K4me3-associated epigenetic activation of the transcription of these repressed genes that can promote p53-based tumor suppression. ERβ also reduced corepressor N-CoR and SMRT recruitment by ERα that could attenuate the crosstalk between ERα and p53. Overall, our data reveal a novel mechanism for ERβ's anti-proliferative and pro-apoptotic effects in breast cancer cells involving p53 and epigenetic changes in histone methylation that underlie gene regulation of these cellular activities.
Long noncoding RNAs are emerging players in the epigenetic machinery with key roles in development and diseases. Here we uncover a complex network comprising a promoter-associated noncoding RNA (paRNA), microRNA and epigenetic regulators that controls transcription of the tumour suppressor E-cadherin in epithelial cancers. E-cadherin silencing relies on the formation of a complex between the paRNA and microRNA-guided Argonaute 1 that, together, recruit SUV39H1 and induce repressive chromatin modifications in the gene promoter. A single nucleotide polymorphism (rs16260) linked to increased cancer risk alters the secondary structure of the paRNA, with the risk allele facilitating the assembly of the microRNA-guided Argonaute 1 complex and gene silencing. Collectively, these data demonstrate the role of a paRNA in E-cadherin regulation and the impact of a noncoding genetic variant on its function. Deregulation of paRNA-based epigenetic networks may contribute to cancer and other diseases making them promising targets for drug discovery.
The gastrokine 1 (GKN1) protein is important for maintaining the physiological function of the gastric mucosa. GKN1 is down-regulated in gastric tumor tissues and derived cell lines and its over-expression in gastric cancer cells induces apoptosis, suggesting a possible role for the protein as a tumor suppressor. However, the mechanism by which GKN1 is inactivated in gastric cancer remains unknown. Here, we investigated the causes of GKN1 silencing to determine if epigenetic mechanisms such as histonic modification could contribute to its down-regulation. To this end, chromatin immunoprecipitation assays for the trimethylation of histone 3 at lysine 9 (H3K9triMe) and its specific histone-lysine N-methyltransferase (SUV39H1) were performed on biopsies of normal and cancerous human gastric tissues. GKN1 down-regulation in gastric cancer tissues was shown to be associated with high levels of H3K9triMe and with the recruitment of SUV39H1 to the GKN1 promoter, suggesting the presence of an epigenetic transcriptional complex that negatively regulates GKN1 expression in gastric tumors. The inhibition of histone deacetylases with trichostatin A was also shown to increase GKN1 mRNA levels. Collectively, our results indicate that complex epigenetic machinery regulates GKN1 expression at the transcriptional level, and likely at the translational level.
Progression of cells through distinct phases of the cell cycle, and transition into out-of-cycling states, such as terminal differentiation and senescence, is accompanied by specific patterns of gene expression. These cell fate decisions are mediated not only by distinct transcription factors, but also chromatin modifiers that establish heritable epigenetic patterns. Lysine methyltransferases (KMTs) that mediate methylation marks on histone and non-histone proteins are now recognized as important regulators of gene expression in cycling and non-cycling cells. Among these, the SUV39 sub-family of KMTs, which includes SUV39H1, SUV39H2, G9a, GLP, SETDB1, and SETDB2, play a prominent role. In this review, we discuss their biochemical properties, sub-cellular localization and function in cell cycle, differentiation programs, and cellular senescence. We also discuss their aberrant expression in cancers, which exhibit de-regulation of cell cycle and differentiation.
Zhang E, Han L, Yin D, et al.
H3K27 acetylation activated-long non-coding RNA CCAT1 affects cell proliferation and migration by regulating SPRY4 and HOXB13 expression in esophageal squamous cell carcinoma.Nucleic Acids Res. 2017; 45(6):3086-3101 [
PubMed]
Free Access to Full Article Related Publications
Recently, long non-coding RNAs (lncRNAs) have been shown to have important regulatory roles in human cancer biology. In our study, we found that lncRNA CCAT1, whose expression is significantly increased and is correlated with outcomes in Esophageal Squamous Cell Carcinoma (ESCC). Consecutive experiments confirmed that H3K27-acetylation could activate expression of colon cancer associated transcript-1 (CCAT1). Further experiments revealed that CCAT1 knockdown significantly repressed the proliferation and migration both in vitro and in vivo. RNA-seq analysis revealed that CCAT1 knockdown preferentially affected genes that are linked to cell proliferation, cell migration and cell adhesion. Mechanistic investigations found that CCAT1 could serve as a scaffold for two distinct epigenetic modification complexes (5΄ domain of CCAT1 binding Polycomb Repressive Complex 2 (PRC2) while 3΄ domain of CCAT1 binding SUV39H1) and modulate the histone methylation of promoter of SPRY4 (sprouty RTK signaling antagonist 4) in nucleus. In cytoplasm, CCAT1 regulates HOXB13 as a molecular decoy for miR-7, a microRNA that targets both CCAT1 and HOXB13, thus facilitating cell growth and migration. Together, our data demonstrated the important roles of CCAT1 in ESCC oncogenesis and might serve as targets for ESCC diagnosis and therapy.
Neuroendocrine tumors (NET) often harbor loss-of-function mutations in the MEN1 and DAXX tumor suppressor genes. Here, we report that the products of these genes, menin and Daxx, interact directly with each other to suppress the proliferation of NET cells, to a large degree by inhibiting expression of the membrane metallo-endopeptidase (MME). Menin and Daxx were required to enhance histone H3 lysine9 trimethylation (H3K9me3) at the MME promoter, as mediated partly by the histone H3 methyltransferase SUV39H1. Notably, the menin T429K mutation associated with a NET syndrome reduced Daxx binding, MME repression, and proliferation of NET cells. Conversely, inhibition of MME in NET cells repressed proliferation and tumor growth in vivo Our findings reveal a previously unappreciated cross-talk between two crucial tumor suppressor genes thought to work by independent pathways, focusing on MME as a common target of menin/Daxx to treat NET. Cancer Res; 77(2); 401-11. ©2016 AACR.
Epigenetic silencing of tumor suppressor genes (TSGs) through DNA methylation and histone changes is a main hallmark of cancer. Ubiquitin-like with PHD and RING Finger domains 1 (UHRF1) is a potent oncogene overexpressed in various solid and haematological tumors and its high expression levels are associated with decreased expression of several TSGs including p16
Inflammatory cytokines and lncRNAs are closely associated with tumorigenesis. Herein, we reveal inflammatory cytokines IL6 cooperates with long noncoding RNA CUDR to trigger the malignant transformation of human embryonic stem cells-derived hepatocyte-like stem cells. Mechanistically, IL6 cooperates with CUDR to cause MELLT3 to interact with SUV39h1 mRNA3'UTR and promote SUV39h1 expression. Moreover, the excessive SUV39h1 also increases tri-methylation of histone H3 on nineth lysine (H3K9me3). Intriguingly, under inflammatory conditions, H3K9me3 promotes the excessive expression and phosphorylation of NF-κB, and in turn, phorsphorylated NF-κB promotes the expression and phosphorylation of Stat3. Furthermore, that the phosphorylated Stat3 loads onto the promoter region of miRs and lncRNAs. Ultimately, the abnormal expression of miRs and lncRNAs increased telomerase activity, telomere length and microsatellite instability (MSI), leading to malignant transformation of hepatocyte-like stem cells.
Liao HF, Lee CC, Hsiao PC, et al.
TCH1036, a indeno[1,2-c]quinoline derivative, potentially inhibited the growth of human brain malignant glioma (GBM) 8401 cells via suppression of the expression of Suv39h1 and PARP.Biomed Pharmacother. 2016; 82:649-59 [
PubMed]
Related Publications
A newly synthesized Indeno[1,2-c]quinoline derivative, which has previously been found to potentially trap DNA-topoisomerase cleavage complexes more effectively than camptothecin, could effectively inhibit the proliferation of a variety of cancers, such as breast cancer treated with TCH1030. In this study, we further explore the activity of the TCH1036, TCH1259 and TCH1030 compounds in suppressing the growth of human brain malignant glioma (GBM) 8401 cells, in addition to elucidating the related mechanisms. According to tests of cytotoxicity, the GBM cells were more sensitive to the inhibitory effects of the TCH1036 compound than to those of the other two compounds. Moreover, the accumulation of GBM cells in the sub-G1 and G2/M phases was clearly induced by the TCH1036 compound in a dose-dependent manner. A screening of the majority of histone-modifier enzymes indicated that the expression of Suv39h1 in the GBM cells was attenuated by treatment with each of the TCH compounds, an observation which was further confirmed by Western blotting. The increase in active-form caspase 3 in the GBM cells treated with TCH compounds caused a high degree of poly (ADP-ribose) polymerase (PARP) cleavage and also enhanced the high ratio of hypodiploid GBM cells in the sub-G1 phase. In molecular docking simulations, it was observed that the stable forms of the TCH compounds could successfully insert into the catalytic pocket of PARP, with the highest affinity being between PARP and the TCH1036 compound. These findings suggested that the TCH1036 compound would be a promising compound in the treatment of brain malignant glioma.
Maintenance of proper chromatin states and genomic stability is vital for normal development and health across a range of organisms. Here, we report on the role of KLLN in maintenance of pericentric H3K9 trimethylation (H3K9me3) and genomic stability. Germline hypermethylation of KLLN, a gene uncovered well after the human genome project, has been linked to Cowden cancer-predisposition syndrome (CS) in PTEN wild-type cases. KLLN first identified as a p53-dependent tumor suppressor gene, was believed to bind randomly to DNA and cause S-phase arrest. Using chromatin immunoprecipitation-based sequencing (ChIP-seq), we demonstrated that KLLN binds to DNA regions enriched with H3K9me3. KLLN overexpression correlated with increased H3K9 methyltransferase activity and increased global H3K9me3, while knockdown of KLLN had an opposite effect. We also found KLLN to localize to pericentric regions, with loss of KLLN resulting in dysregulation of pericentric heterochromatin, with consequent chromosomal instability manifested by increased micronuclei formation and numerical chromosomal aberrations. Interestingly, we show that KLLN interacts with DBC1, with consequent abrogation of DBC1 inhibition of SUV39H1, a H3K9 methyltransferase, suggesting the mode of KLLN regulating H3K9me3. These results suggest a critical role for KLLN as a potential regulator of pericentric heterochromatin formation, genomic stability and gene expression.
Wang YC, Wang SA, Chen PH, et al.
Variants of ubiquitin-specific peptidase 24 play a crucial role in lung cancer malignancy.Oncogene. 2016; 35(28):3669-80 [
PubMed]
Related Publications
Ubiquitin is a critical modifier regulating the degradation and function of its target proteins during posttranslational modification. Here we found that ubiquitin-specific peptidase 24 (USP24) is highly expressed in cell lines with enhanced malignancy and in late-stage lung cancer clinical samples. Studying single-nucleotide polymorphisms (SNPs) of USP24 using genomic DNA of lung cancer patients revealed an increase in SNP 7656C/T. When using RNA specimens instead of the genomic DNA of lung cancer patients, we found significant increases in the ratios of variants 930C/T and 7656T/C, suggesting that variants at these two sites are not only caused by the SNP of DNA but also by the RNA editing. USP24-930T and USP24-7656C increase USP24 expression levels by increasing RNA stability. Knocking down USP24 increased Suv39h1 level through a decrease in mouse double-minute 2 homolog levels, thus enhancing lysine-9 methylation of histone H3, and resulting in the prevention of lung cancer malignancy. In conclusion, as USP24 variant analysis revealed a higher ratio of variants in blood specimens of lung cancer patients than that in normal individuals, USP24-930T and USP24-7656C might be useful as diagnostic markers for cancer detection.
Mutations in genes encoding chromatin-remodeling proteins are often identified in a variety of cancers. For example, the histone demethylase JARID1C is frequently inactivated in patients with clear cell renal cell carcinoma (ccRCC); however, it is largely unknown how JARID1C dysfunction promotes cancer. Here, we determined that JARID1C binds broadly to chromatin domains characterized by the trimethylation of lysine 9 (H3K9me3), which is a histone mark enriched in heterochromatin. Moreover, we found that JARID1C localizes on heterochromatin, is required for heterochromatin replication, and forms a complex with established players of heterochromatin assembly, including SUV39H1 and HP1α, as well as with proteins not previously associated with heterochromatin assembly, such as the cullin 4 (CUL4) complex adaptor protein DDB1. Transcription on heterochromatin is tightly suppressed to safeguard the genome, and in ccRCC cells, JARID1C inactivation led to the unrestrained expression of heterochromatic noncoding RNAs (ncRNAs) that in turn triggered genomic instability. Moreover, ccRCC patients harboring JARID1C mutations exhibited aberrant ncRNA expression and increased genomic rearrangements compared with ccRCC patients with tumors endowed with other genetic lesions. Together, these data suggest that inactivation of JARID1C in renal cancer leads to heterochromatin disruption, genomic rearrangement, and aggressive ccRCCs. Moreover, our results shed light on a mechanism that underlies genomic instability in sporadic cancers.
Mo W, Liu Q, Lin CC, et al.
mTOR Inhibitors Suppress Homologous Recombination Repair and Synergize with PARP Inhibitors via Regulating SUV39H1 in BRCA-Proficient Triple-Negative Breast Cancer.Clin Cancer Res. 2016; 22(7):1699-712 [
PubMed]
Free Access to Full Article Related Publications
PURPOSE: Triple-negative breast cancer (TNBC) is a highly heterogeneous disease and has the worst outcome among all subtypes of breast cancers. Although PARP inhibitors represent a promising treatment in TNBC with BRCA1/BRCA2 mutations, there is great interest in identifying drug combinations that can extend the use of PARP inhibitors to a majority of TNBC patients with wild-type BRCA1/BRCA2 Here we explored whether mTOR inhibitors, through modulating homologous recombination (HR) repair, would provide therapeutic benefit in combination with PARP inhibitors in preclinical models of BRCA-proficient TNBC.
EXPERIMENTAL DESIGN: We have studied the effects of mTOR inhibitors on HR repair following DNA double-strand breaks (DSB). We further demonstrated the in vitro and in vivo activities of combined treatment of mTOR inhibitors with PARP inhibitors in BRCA-proficient TNBC. Moreover, microarray analysis and rescue experiments were used to investigate the molecular mechanisms of action.
RESULTS: We found that mTOR inhibitors significantly suppressed HR repair in two BRCA-proficient TNBC cell lines. mTOR inhibitors and PARP inhibitors in combination exhibited strong synergism against these TNBC cell lines. In TNBC xenografts, we observed enhanced efficacy of everolimus in combination with talazoparib (BMN673) compared with either drug alone. We further identified through microarray analysis and by rescue assays that mTOR inhibitors suppressed HR repair and synergized with PARP inhibitors through regulating the expression of SUV39H1 in BRCA-proficient TNBCs.
CONCLUSIONS: Collectively, these findings strongly suggest that combining mTOR inhibitors and PARP inhibitors would be an effective therapeutic approach to treat BRCA-proficient TNBC patients.