Gene Summary

Gene:SMAD6; SMAD family member 6
Aliases: AOVD2, MADH6, MADH7, HsT17432
Summary:The protein encoded by this gene belongs to the SMAD family of proteins, which are related to Drosophila 'mothers against decapentaplegic' (Mad) and C. elegans Sma. SMAD proteins are signal transducers and transcriptional modulators that mediate multiple signaling pathways. This protein functions in the negative regulation of BMP and TGF-beta/activin-signalling. Multiple transcript variants have been found for this gene.[provided by RefSeq, Sep 2014]
Databases:OMIM, HGNC, GeneCard, Gene
Protein:mothers against decapentaplegic homolog 6
Source:NCBIAccessed: 21 August, 2015


What does this gene/protein do?
Show (31)
Pathways:What pathways are this gene/protein implicaed in?
Show (2)

Cancer Overview

Research Indicators

Publications Per Year (1990-2015)
Graph generated 21 August 2015 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 21 August, 2015 using data from PubMed, MeSH and CancerIndex

Specific Cancers (8)

Latest Publications: SMAD6 (cancer-related)

Zhu Z, Xu Y, Zhao J, et al.
miR-367 promotes epithelial-to-mesenchymal transition and invasion of pancreatic ductal adenocarcinoma cells by targeting the Smad7-TGF-β signalling pathway.
Br J Cancer. 2015; 112(8):1367-75 [PubMed] Article available free on PMC after 14/04/2016 Related Publications
BACKGROUND: Aberrant Smad7 expression contributes to the invasion and metastasis of pancreatic cancer cells. However, the potential mechanism underlying aberrant Smad7 expression in human pancreatic ductal adenocarcinoma (PDAC) remains largely unknown.
METHODS: Bioinformatic prediction programmes and luciferase reporter assay were used to identify microRNAs regulating Smad7. The association between miR-367 expression and the overall survival of PDAC patients was evaluated by Kaplan-Meier analysis. The effects of miR-367 and Smad7 on the invasion and metastasis of pancreatic cancer cells were investigated both in vitro and in vivo.
RESULTS: We found that miR-367 downregulated Smad7 expression by directly targeting its 3'-UTR in human pancreatic cancer cells. High level of miR-367 expression correlated with poor prognosis of PDAC patients. Functional studies showed that miR-367 promoted pancreatic cancer invasion in vitro and metastasis in vivo through downregulating Smad7. In addition, we showed that miR-367 promoted epithelial-to-mesenchymal transition by increasing transforming growth factor-β (TGF-β)-induced transcriptional activity.
CONCLUSIONS: The present study identified and characterised a signalling pathway, the miR-367/Smad7-TGF-β pathway, which is involved in the invasion and metastasis of pancreatic cancer cells. Our results suggest that miR-367 may be a promising therapeutic target for the treatment of human pancreatic cancer.

Zhao YG, Shi BY, Qian YY, et al.
Dynamic expression changes between non-muscle-invasive bladder cancer and muscle-invasive bladder cancer.
Tumori. 2014 Nov-Dec; 100(6):e273-81 [PubMed] Related Publications
AIMS AND BACKGROUND: Despite elaborate characterization of the risk factors, bladder cancer is still a major epidemiological problem whose incidence continues to rise each year. We aim to investigate the dynamic expression changes between non-muscle-invasive bladder cancer (NMIBC) and muscle-invasive bladder cancer (MIBC).
METHODS: The gene expression profile GSE13507 was obtained from the Gene Expression Omnibus, and the R package was used to identify gene expression signatures (GESs) between NMIBC and MIBC. Gene ontology enrichment analysis was performed for GES function analysis. We used miRTarBase and TargetScan to identify the differentially regulated microRNAs, and TfactS to identify transcription factors between NMIBC and MIBC. Bionet was used to identify the differentially expressed subnetwork.
RESULTS: A total of 802 upregulated NMIBC GESs and 668 downregulated MIBC GESs were identified. Functional enrichment analysis revealed that the MIBC GESs were majorly involved in cell cycle and inflammatory response. miR-29c and miR-9 were regarded as key microRNAs in MIBC. SMAD3 in MIBC and SMAD5 and SMAD7 in NMIBC were potential activated transcription factors. In addition, a subnetwork that was considered to capture the differences between MIBC and NMIBC was identified, of which GRB2 and UBC were the hub nodes.
CONCLUSIONS: Some key microRNAs, activated transcription factors and hub nodes have been identified in this study, which may be used as potential biomarkers or targets for the diagnosis, treatment and detection of bladder cancer at different stages.

Feng T, Dzieran J, Gu X, et al.
Smad7 regulates compensatory hepatocyte proliferation in damaged mouse liver and positively relates to better clinical outcome in human hepatocellular carcinoma.
Clin Sci (Lond). 2015; 128(11):761-74 [PubMed] Related Publications
Transforming growth factor β (TGF-β) is cytostatic towards damage-induced compensatory hepatocyte proliferation. This function is frequently lost during hepatocarcinogenesis, thereby switching the TGF-β role from tumour suppressor to tumour promoter. In the present study, we investigate Smad7 overexpression as a pathophysiological mechanism for cytostatic TGF-β inhibition in liver damage and hepatocellular carcinoma (HCC). Transgenic hepatocyte-specific Smad7 overexpression in damaged liver of fumarylacetoacetate hydrolase (FAH)-deficient mice increased compensatory proliferation of hepatocytes. Similarly, modulation of Smad7 expression changed the sensitivity of Huh7, FLC-4, HLE and HLF HCC cell lines for cytostatic TGF-β effects. In our cohort of 140 HCC patients, Smad7 transcripts were elevated in 41.4% of HCC samples as compared with adjacent tissue, with significant positive correlation to tumour size, whereas low Smad7 expression levels were significantly associated with worse clinical outcome. Univariate and multivariate analyses indicate Smad7 levels as an independent predictor for overall (P<0.001) and disease-free survival (P=0.0123). Delineating a mechanism for Smad7 transcriptional regulation in HCC, we identified cold-shock Y-box protein-1 (YB-1), a multifunctional transcription factor. YB-1 RNAi reduced TGF-β-induced and endogenous Smad7 expression in Huh7 and FLC-4 cells respectively. YB-1 and Smad7 mRNA expression levels correlated positively (P<0.0001). Furthermore, nuclear co-localization of Smad7 and YB-1 proteins was present in cancer cells of those patients. In summary, the present study provides a YB-1/Smad7-mediated mechanism that interferes with anti-proliferative/tumour-suppressive TGF-β actions in a subgroup of HCC cells that may facilitate aspects of tumour progression.

Boye A, Kan H, Wu C, et al.
MAPK inhibitors differently modulate TGF-β/Smad signaling in HepG2 cells.
Tumour Biol. 2015; 36(5):3643-51 [PubMed] Related Publications
The aim of this study was to investigate the mitogen-activated protein kinase (MAPK) pathway, which crosstalk with TGF-β/Smad signaling via linker phosphorylation of Smad2/3 to promote hepatocarcinogenesis. After DEN-induced hepatocellular carcinoma (HCC) in rats showed increased phosphorylation of JNK1/2, p38, and ERK1/2, we next antagonized TGF-β1-induced phosphorylation of JNK1/2, p38, ERK1/2, Smad2/3 signaling in HepG2 cells using SP600125, SB203580, and PD98059, respectively. Cell proliferation and invasion were assessed by MTT assay and transwell invasion chambers, respectively. Smad2/3, Smad4, and Smad7 expressions and PAI-1 messenger RNA (mRNA) transcription were measured by using immuno-precipitation/immuno-blotting and real-time RT-PCR, respectively. All the MAPK-specific inhibitors suppressed cell invasion, while all but PD98059 suppressed cell proliferation. Both SP600125 and SB203580 blocked pSmad2C/L and oncogenic pSmad3L. PD98059 blocked pSmad2L but had no effect on elevated pSmad2C and oncogenic pSmad3L. All but PD98059 blocked Smad2/3/4 complex formation and restored Smad7 expression, while all the three MAPK-Specific inhibitors repressed PAI-1 mRNA transcription. Both SP600125 and SB203580 inhibited HepG2 cells' proliferation and invasion by blocking oncogenic pSmad3L and Smad2/3/4 complex formation. PD98059 repressed PAI-1 mRNA by an unknown mechanism.

Sherman SK, Maxwell JE, Qian Q, et al.
Esophageal cancer in a family with hamartomatous tumors and germline PTEN frameshift and SMAD7 missense mutations.
Cancer Genet. 2015 Jan-Feb; 208(1-2):41-6 [PubMed] Article available free on PMC after 01/01/2016 Related Publications
Germline mutations in the PTEN tumor-suppressor gene cause autosomal-dominant conditions such as Cowden and Bannayan-Riley-Ruvalcaba syndromes with variable presentations, including hamartomatous gastrointestinal tumors, dermatologic abnormalities, neurologic symptoms, and elevated cancer risk. We describe a father and son with extensive hamartomatous gastrointestinal polyposis who both developed early-onset esophageal cancer. Exome sequencing identified a novel germline PTEN frameshift mutation (c.568_569insC, p.V191Sfs*11). In addition, a missense mutation of SMAD7 (c.115G>A, p.G39R) with an allele frequency of 0.3% in the Exome Variant Server was detected in both affected individuals. Fluorescence in situ hybridization for PTEN in the resected esophageal cancer specimen demonstrated no PTEN copy loss in malignant cells; however, results of an immunohistochemical analysis demonstrated a loss of PTEN protein expression. While the risks of many cancers are elevated in the PTEN hamartoma tumor syndromes, association between esophageal adenocarcinoma and these syndromes has not been previously reported. Esophageal adenocarcinoma and extensive polyposis/ganglioneuromatosis could represent less common features of these syndromes, potentially correlating with this novel PTEN frameshift and early protein termination genotype. Alternatively, because simultaneous disruption of both the PTEN and TGF-β/SMAD4 pathways is associated with development of esophageal cancer in a mouse model and because SMAD4 mutations cause gastrointestinal hamartomas in juvenile polyposis syndrome, the SMAD7 mutation may represent an additional modifier of these individuals' PTEN-mutant phenotype.

Thakur N, Gudey SK, Marcusson A, et al.
TGFβ-induced invasion of prostate cancer cells is promoted by c-Jun-dependent transcriptional activation of Snail1.
Cell Cycle. 2014; 13(15):2400-14 [PubMed] Article available free on PMC after 01/01/2016 Related Publications
High levels of transforming growth factor-β (TGFβ) correlate with poor prognosis for patients with prostate cancer and other cancers. TGFβ is a multifunctional cytokine and crucial regulator of cell fate, such as epithelial to mesenchymal transition (EMT), which is implicated in cancer invasion and progression. TGFβ conveys its signals upon binding to type I and type II serine/threonine kinase receptors (TβRI/II); phosphorylation of Smad2 and Smad3 promotes their association with Smad4, which regulates expression of targets genes, such as Smad7, p21, and c-Jun. TGFβ also activates the ubiquitin ligase tumor necrosis factor receptor-associated factor 6 (TRAF6), which associates with TβRI and activates the p38 mitogen-activated protein kinase (MAPK) pathway. Snail1 is a key transcription factor, induced by TGFβ that promotes migration and invasion of cancer cells. In this study, we have identified a novel binding site for c-Jun in the promoter of the Snail1 gene and report that the activation of the TGFβ-TRAF6-p38 MAPK pathway promotes both c-Jun expression and its activation via p38α-dependent phosphorylation of c-Jun at Ser63. The TRAF6-dependent activation of p38 also leads to increased stability of c-Jun, due to p38-dependent inactivation of glycogen synthase kinase (GSK) 3β by phosphorylation at Ser9. Thus, our findings elucidate a novel role for the p38 MAPK pathway in stimulated cells, leading to activation of c-Jun and its binding to the promoter of Snail1, thereby triggering motility and invasiveness of aggressive human prostate cancer cells.

Fortini BK, Tring S, Plummer SJ, et al.
Multiple functional risk variants in a SMAD7 enhancer implicate a colorectal cancer risk haplotype.
PLoS One. 2014; 9(11):e111914 [PubMed] Article available free on PMC after 01/01/2016 Related Publications
Genome-wide association studies (GWAS) of colorectal cancer (CRC) have led to the identification of a number of common variants associated with modest risk. Several risk variants map within the vicinity of TGFβ/BMP signaling pathway genes, including rs4939827 within an intron of SMAD7 at 18q21.1. A previous study implicated a novel SNP (novel 1 or rs58920878) as a functional variant within an enhancer element in SMAD7 intron 4. In this study, we show that four SNPs including novel 1 (rs6507874, rs6507875, rs8085824, and rs58920878) in linkage disequilibrium (LD) with the index SNP rs4939827 demonstrate allele-specific enhancer effects in a large, multi-component enhancer of SMAD7. All four SNPs demonstrate allele-specific protein binding to nuclear extracts of CRC cell lines. Furthermore, some of the risk-associated alleles correlate with increased expression of SMAD7 in normal colon tissues. Finally, we show that the enhancer is responsive to BMP4 stimulation. Taken together, we propose that the associated CRC risk at 18q21.1 is due to four functional variants that regulate SMAD7 expression and potentially perturb a BMP negative feedback loop in TGFβ/BMP signaling pathways.

Tang Q, Zou Z, Zou C, et al.
MicroRNA-93 suppress colorectal cancer development via Wnt/β-catenin pathway downregulating.
Tumour Biol. 2015; 36(3):1701-10 [PubMed] Related Publications
MicroRNA-93 (miR-93) is involved in several carcinoma progressions. It has been reported that miR-93 acts as a promoter or suppressor in different tumors. However, till now, the role of miR-93 in colon cancer is unclear. Herein, we have found that expression of miR-93 was lower in human colon cancer tissue and colorectal carcinoma cell lines compared with normal colon mucosa. Forced expression of miR-93 in colon cancer cells inhibits colon cancer invasion, migration, and proliferation. Furthermore, miR-93 may downregulate the Wnt/β-catenin pathway, which was confirmed by measuring the expression level of the β-catenin, axin, c-Myc, and cyclin-D1 in this pathway. Mothers against decapentaplegic homolog 7 (Smad7), as an essential molecular protein for nuclear accumulation of β-catenin in the canonical Wnt signaling pathway, is predicted as a putative target gene of miR-93 by the silico method and demonstrated that it may be suppressed by targeting its 3'UTR. These findings showed that miR-93 suppresses colorectal cancer development via downregulating Wnt/β-catenin, at least in part, by targeting Smad7. This study revealed that miR-93 is an important negative regulator in colon cancer and suggested that miR-93 may serve as a novel therapeutic agent that offers benefits for colon cancer treatment.

Li Y, Gong W, Ma X, et al.
Smad7 maintains epithelial phenotype of ovarian cancer stem-like cells and supports tumor colonization by mesenchymal-epithelial transition.
Mol Med Rep. 2015; 11(1):309-16 [PubMed] Related Publications
Epithelial ovarian carcinoma (EOC) is a lethal gynecological malignancy. Epithelial-mesenchymal transition (EMT) has an important role in the tumorigenesis and progression of EOC. During the process of EMT, the transforming growth factor-β (TGF-β)-Smad signaling pathway has been indicated to regulate cell motility and tumor development. Among numerous EMT-associated transcripts, Smad7 is considered to be an inhibitor, however its involvement together with TGF-β1 in the progression of ovarian cancer remains to be elucidated. The present study demonstrated that Smad7 was overexpressed in SK-OV-3 and stem-like side populations of EOC cells, both of which grow in an epithelial pattern. The transformation of cells from an epithelial to a mesenchymal phenotype was stimulated by TGF-β1 with a corresponding increase in Smad7 expression in SK-OV-3 cells. These results indicate that Smad7 is a regulator in the maintenance of the epithelial phenotype in EOC cells, and may serve as an inhibitory element which targets TGF-β-stimulated EMT. Furthermore, inhibition of Smad7 resulted in cellular mesenchymal transformation, with an increased expression of N-cadherin and a decreased expression of E-cadherin. The invasiveness and migratory capabilities of Smad7 small hairpin RNA transduced EOC cells was also reduced. The findings of the present study have identified Smad7 as a fundamental factor in the maintenance of epithelial growth of EOC cells. Reversal of EMT results in a mesenchymal-epithelial transition, which is necessary for EOC cell colonization at metastatic sites.

Chen B, Chen X, Wu X, et al.
Disruption of microRNA-21 by TALEN leads to diminished cell transformation and increased expression of cell-environment interaction genes.
Cancer Lett. 2015; 356(2 Pt B):506-16 [PubMed] Related Publications
MicroRNA-21 is dysregulated in many cancers and fibrotic diseases. Since miR-21 suppresses several tumor suppressor and anti-apoptotic genes, it is considered a cancer therapeutic target. Antisense oligonucleotides are commonly used to inhibit a miRNA; however, blocking miRNA function via an antagomir is temporary, often only achieves a partial knock-down, and may be complicated by off-target effects. Here, we used transcription activator-like effector nucleases (TALENs) to disrupt miR-21 in cancerous cells. Individual deletion clones were screened and isolated without drug selection. Sequencing and quantitative RT-PCR identified clones with no miR-21 expression. The loss of miR-21 led to subtle but global increases of mRNAs containing miR-21 target sequences. Cells without miR-21 became more sensitive to cisplatin and less transformed in culture and in mouse xenografts. In addition to the increase of PDCD4 and PTEN protein, mRNAs for COL4A1, JAG1, SERPINB5/Maspin, SMAD7, and TGFBI - all are miR-21 targets and involved in TGFβ and fibrosis regulation - were significantly upregulated in miR-21 knockout cells. Gene ontology and pathway analysis suggested that cell-environment interactions involving extracellular matrix can be an important miR-21 pathogenic mechanism. The study also demonstrates the value of using TALEN-mediated microRNA gene disruption in human pathobiological studies.

Wang Y, Wu J, Lin B, et al.
Galangin suppresses HepG2 cell proliferation by activating the TGF-β receptor/Smad pathway.
Toxicology. 2014; 326:9-17 [PubMed] Related Publications
Galangin can suppress hepatocellular carcinoma (HCC) cell proliferation. In this study, we demonstrated that galangin induced autophagy by activating the transforming growth factor (TGF)-β receptor/Smad pathway and increased TGF-β receptor I (RI), TGF-βRII, Smad1, Smad2, Smad3 and Smad4 levels but decreased Smad6 and Smad7 levels. Autophagy induced by galangin appears to depend on the TGF-β receptor/Smad signalling pathway because the down-regulation of Smad4 by siRNA or inhibition of TGF-β receptor activation by LY2109761 blocked galangin-induced autophagy. The down-regulation of Beclin1, autophagy-related gene (ATG) 16L, ATG12 and ATG3 restored HepG2 cell proliferation and prevented galangin-induced apoptosis. Our findings indicate a novel mechanism for galangin-induced autophagy via activation of the TGF-β receptor/Smad pathway. The induction of autophagy thus reflects the anti-proliferation effect of galangin on HCC cells.

Kharma B, Baba T, Matsumura N, et al.
STAT1 drives tumor progression in serous papillary endometrial cancer.
Cancer Res. 2014; 74(22):6519-30 [PubMed] Related Publications
Recent studies of the interferon-induced transcription factor STAT1 have associated its dysregulation with poor prognosis in some cancers, but its mechanistic contributions are not well defined. In this study, we report that the STAT1 pathway is constitutively upregulated in type II endometrial cancers. STAT1 pathway alteration was especially prominent in serous papillary endometrial cancers (SPEC) that are refractive to therapy. Our results defined a "SPEC signature" as a molecular definition of its malignant features and poor prognosis. Specifically, we found that STAT1 regulated MYC as well as ICAM1, PD-L1, and SMAD7, as well as the capacity for proliferation, adhesion, migration, invasion, and in vivo tumorigenecity in cells with a high SPEC signature. Together, our results define STAT1 as a driver oncogene in SPEC that modulates disease progression. We propose that STAT1 functions as a prosurvival gene in SPEC, in a manner important to tumor progression, and that STAT1 may be a novel target for molecular therapy in this disease.

Li Y, Li W, Ying Z, et al.
Metastatic heterogeneity of breast cancer cells is associated with expression of a heterogeneous TGFβ-activating miR424-503 gene cluster.
Cancer Res. 2014; 74(21):6107-18 [PubMed] Related Publications
TGFβ signaling is known to drive metastasis in human cancer. Under physiologic conditions, the level of TGFβ activity is tightly controlled by a regulatory network involving multiple negative regulators. At metastasis, however, these inhibitory mechanisms are usually overridden so that oncogenic TGFβ signaling can be overactivated and sustained. To better understand how the TGFβ inhibitors are suppressed in metastatic breast cancer cells, we compared miRNA expression profiles between breast cancers with or without metastasis and found that the miR424-503 cluster was markedly overexpressed in metastatic breast cancer. Mechanistic studies revealed that miR424 and miR503 simultaneously suppressed Smad7 and Smurf2, two key inhibitory factors of TGFβ signaling, leading to enhanced TGFβ signaling and metastatic capability of breast cancer cells. Moreover, antagonizing miR424-503 in breast cancer cells suppressed metastasis in vivo and increased overall host survival. Interestingly, our study also found that heterogeneous expression of the miR424-503 cluster contributed to the heterogeneity of TGFβ activity levels in, and metastatic potential of, breast cancer cell subsets. Overall, our findings demonstrate a novel mechanism, mediated by elevated expression of the miR424-503 cluster, underlying TGFβ activation and metastasis of human breast cancer.

Lamora A, Talbot J, Bougras G, et al.
Overexpression of smad7 blocks primary tumor growth and lung metastasis development in osteosarcoma.
Clin Cancer Res. 2014; 20(19):5097-112 [PubMed] Related Publications
PURPOSE: Osteosarcoma is the main malignant primary bone tumor in children and adolescents for whom the prognosis remains poor, especially when metastasis is present at diagnosis. Because transforming growth factor-β (TGFβ) has been shown to promote metastasis in many solid tumors, we investigated the effect of the natural TGFβ/Smad signaling inhibitor Smad7 and the TβRI inhibitor SD-208 on osteosarcoma behavior.
EXPERIMENTAL DESIGN: By using a mouse model of osteosarcoma induced by paratibial injection of cells, we assessed the impact of Smad7 overexpression or SD-208 on tumor growth, tumor microenvironment, bone remodeling, and metastasis development.
RESULTS: First, we demonstrated that TGFβ levels are higher in serum samples from patients with osteosarcoma compared with healthy volunteers and that TGFβ/Smad3 signaling pathway is activated in clinical samples. Second, we showed that Smad7 slows the growth of the primary tumor and increases mice survival. We furthermore demonstrated that Smad7 expression does not affect in vitro osteosarcoma cell proliferation but affects the microarchitectural parameters of bone. In addition, Smad7-osteosarcoma bone tumors expressed lower levels of osteolytic factors such as RANKL, suggesting that Smad7 overexpression affects the "vicious cycle" established between tumor cells and bone cells by its ability to decrease osteoclast activity. Finally, we showed that Smad7 overexpression in osteosarcoma cells and the treatment of mice with SD208 inhibit the development of lung metastasis.
CONCLUSION: Taken together, these results demonstrate that the inhibition of the TGFβ/Smad signaling pathway may be a promising therapeutic strategy against tumor progression of osteosarcoma, specifically against the development of lung metastasis.

Gong C, Nie Y, Qu S, et al.
miR-21 induces myofibroblast differentiation and promotes the malignant progression of breast phyllodes tumors.
Cancer Res. 2014; 74(16):4341-52 [PubMed] Related Publications
Phyllodes tumors of breast, even histologically diagnosed as benign, can recur locally and have metastatic potential. Histologic markers only have limited value in predicting the clinical behavior of phyllodes tumors. It remains unknown what drives the malignant progression of phyllodes tumors. We found that the expression of myofibroblast markers, α-smooth muscle actin (α-SMA), fibroblast activation protein (FAP), and stromal cell-derived factor-1 (SDF-1), is progressively increased in the malignant progression of phyllodes tumors. Microarray showed that miR-21 was one of the most significantly upregulated microRNAs in malignant phyllodes tumors compared with benign phyllodes tumors. In addition, increased miR-21 expression was primarily localized to α-SMA-positive myofibroblasts. More importantly, α-SMA and miR-21 are independent predictors of recurrence and metastasis, with their predictive value of recurrence better than histologic grading. Furthermore, miR-21 mimics promoted, whereas miR-21 antisense oligos inhibited, the expression of α-SMA, FAP, and SDF-1, as well as the proliferation and invasion of primary stromal cells of phyllodes tumors. The ability of miR-21 to induce myofibroblast differentiation was mediated by its regulation on Smad7 and PTEN, which regulate the migration and proliferation, respectively. In breast phyllodes tumor xenografts, miR-21 accelerated tumor growth, induced myofibroblast differentiation, and promoted metastasis. This study suggests an important role of myofibroblast differentiation in the malignant progression of phyllodes tumors that is driven by increased miR-21.

Akbari Z, Safari-Alighiarloo N, Haghighi MM, et al.
Lack of influence of the SMAD7 gene rs2337107 polymorphism on risk of colorectal cancer in an Iranian population.
Asian Pac J Cancer Prev. 2014; 15(11):4437-41 [PubMed] Related Publications
SMAD7 has been identified as a functional candidate gene for colorectal cancer (CRC). SMAD7 protein is a known antagonist of the transforming growth factor beta (TGF-β) signaling pathway which is involved in tumorigenesis. Polymorphisms in SMAD7 may thus alter cancer risk. The aim of this study was to investigate the influence of a SMAD7 gene polymorphism (rs2337107) on risk of CRC and clinicopathological features in an Iranian population. In total, 210 subjects including 105 patients with colorectal cancer and 105 healthy controls were recruited in our study. All samples were genotyped by TaqMan assay via an ABI 7500 Real Time PCR System (Applied Biosystems) with DNA from peripheral blood. The polymorphism was statistically analyzed to investigate the relationship with the risk of colorectal cancer and clinicopathological properties. Logistic regression analysis revealed that there was no significant association between rs2337107 and the risk of colorectal cancer. In addition, no significant association between genotypes and clinicopathological features was observed (p value>0.05). Although there was not any association between genotypes and disorder, CT was the most common genotype in this population. This genotype prevalence was also higher in the patients with well grade (54.9%) and colon (72.0%) tumors. Our results provide the first evidence that this polymorphism is not a potential contributor to the risk of colorectal cancer and clinicopathological features in an Iranian population, and suggests the need of a large-scale case-control study to validate our results.

Kupfer SS, Skol AD, Hong E, et al.
Shared and independent colorectal cancer risk alleles in TGFβ-related genes in African and European Americans.
Carcinogenesis. 2014; 35(9):2025-30 [PubMed] Article available free on PMC after 01/09/2015 Related Publications
Genome-wide association studies (GWAS) in colorectal cancer (CRC) identified five regions near transforming growth factor β-related genes BMP4, GREM1, CDH1, SMAD7 and RPHN2. The true risk alleles remain to be identified in these regions, and their role in CRC risk in non-European populations has been understudied. Our previous work noted significant genetic heterogeneity between African Americans (AAs) and European Americans (EAs) for single nucleotide polymorphisms (SNPs) identified in GWAS. We hypothesized that associations may not have been replicated in AAs due to differential or independent genetic structures. In order to test this hypothesis, we genotyped 195 tagging SNPs across these five gene regions in 1194 CRC cases (795 AAs and 399 EAs) and 1352 controls (985 AAs and 367 EAs). Imputation was performed, and association testing of genotyped and imputed SNPs included ancestry, age and sex as covariates. In two of the five genes originally associated with CRC, we found evidence for association in AAs including rs1862748 in CDH1 (OR(Add) = 0.82, P = 0.02) and in GREM1 the SNPs rs10318 (OR(Rec) = 60.1, P = 0.01), rs11632715 (OR(Rec) = 2.36; P = 0.004) and rs12902616 (OR(Rec) = 1.28, P = 0.005), the latter which is in linkage disequilibrium with the previously identified SNP rs4779584. Testing more broadly for associations in these gene regions in AAs, we noted three statistically significant association peaks in GREM1 and RHPN2 that were not identified in EAs. We conclude that some CRC risk alleles are shared between EAs and AAs and others are population specific.

Zhang Y, Yu Z, Xiao Q, et al.
Expression of BAMBI and its combination with Smad7 correlates with tumor invasion and poor prognosis in gastric cancer.
Tumour Biol. 2014; 35(7):7047-56 [PubMed] Related Publications
Bone morphogenetic proteins and activin membrane-bound inhibitor (BAMBI) and drosophila mothers against decapentaplegic protein 7 (Smad7) are known to negatively regulate the transforming growth factor-β (TGF-β) signaling and play an important role in the progression of many malignant tumors. However, it remains unclear whether expression of BAMBI alone or in combination with Smad7 is associated with the progression of gastric cancer. In the present study, we investigated the expression of BAMBI and Smad7 in 276 cancer tissues and 263 tumor-adjacent tissues from gastric cancer patients, using tissue-microarray-based immunohistochemistry. The expression of BAMBI and Smad7 was significantly higher in cancer tissues than in tumor-adjacent tissues. The expression of BAMBI was significantly correlated with increased depth of invasion (P = 0.010), lymphatic invasion (P < 0.001), lymph node metastasis (P = 0.001), TNM stage (P = 0.008), and decreased differentiation (P = 0.046). The expression of BAMBI was associated with a significantly shorter overall survival (OS) (P = 0.006) and disease-free survival (DFS) (P = 0.011). The combined expression of BAMBI and Smad7 was associated with more invasion and metastasis as well as less survival time in gastric cancer patients. The univariate analysis showed that the expression of BAMBI alone or in combination with Smad7 was significantly associated with the OS and DFS. These findings suggest that BAMBI and Smad7 may cooperatively inhibit the TGF-β signaling, and thus promote the progression of gastric cancer.

Zizi-Sermpetzoglou A, Myoteri D, Arkoumani E, et al.
A study of Smad4 and Smad7 expression in surgically resected samples of gastric adenocarcinoma and their correlation with clinicopathological parameters and patient survival.
J BUON. 2014 Jan-Mar; 19(1):221-7 [PubMed] Related Publications
PURPOSE: The canonical signaling pathway for the transforming growth factor-beta (TGF-β) family is through the Smad proteins which are pivotal intracellular mediators of TGF-β family members. Recently, disruption of the TGF-β pathway in cancer has been demonstrated at the level of the Smad signal transducers. In this study, we examined Smad4 and Smad7 expression in gastric carcinomas to elucidate their role in tumor progression.
METHODS: The immunohistochemical expression of Smad4 and Smad7 was evaluated in 151 surgically resected samples of gastric adenocarcinoma in order to examine their correlation with clinicopathologic findings and patients' survival.
RESULTS: Smad4 and Smad7 expression (low, moderate or strong) was observed in 86.7% (131/151) and 33.1% (50/151) of gastric adenocarcinoma tumor samples, respectively. Our results revealed that the loss of Smad4 expression correlated significantly with the intestinal type, male sex, depth of tumor and poor survival. Smad7 expression was significantly more frequent in intestinal type and well differentiated gastric adenocarcinomas and significantly correlated with the duration of disease-free survival.
CONCLUSION: Smad signal transducers are considered as important molecules in tumor development and progression and the evaluation of their expression in human gastric cancer could be useful in selecting stage I patients who should be considered as candidates for adjuvant chemotherapy.

Zhenye L, Chuzhong L, Youtu W, et al.
The expression of TGF-β1, Smad3, phospho-Smad3 and Smad7 is correlated with the development and invasion of nonfunctioning pituitary adenomas.
J Transl Med. 2014; 12:71 [PubMed] Article available free on PMC after 01/09/2015 Related Publications
BACKGROUND: Transforming growth factor β (TGF-β) signaling functions as a suppressor or a promoter in tumor development, depending on the tumor stage and type. However, the role of TGF-β signaling in nonfunctioning pituitary adenomas (NFPAs) has not been explored.
METHODS: TGF-β1, Smad2, phospho-Smad2 (p-Smad2), Smad3, phospho-Smad3 (p-Smad3), Smad4, and Smad7 were detected in 5 cases of normal anterior pituitaries, 29 cases of invasive NFPAs, and 21 cases of noninvasive NFPAs by real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR), Western blot, and immunohistochemical analysis.
RESULTS: The Smad3 and p-Smad3 protein levels gradually decreased from normal anterior pituitaries, noninvasive NFPAs, to invasive NFPAs. However, there were no significant differences in Smad2 (P = 0.122) and p-Smad2 protein levels (P = 0.101) or Smad2 mRNA level (P = 0.409). In addition, the TGF-β1 mRNA level gradually decreased while the Smad7 mRNA level gradually increased from normal anterior pituitaries, noninvasive NFPAs, to invasive NFPAs. Furthermore, proliferating cell nuclear antigen (PCNA) mRNA level was markedly increased in invasive NFPAs compared to noninvasive ones (P < 0.01), and its level was negatively correlated with Smad3 mRNA level (P < 0.01).
CONCLUSION: The activity of TGF-β signaling may be restrained in NFPAs and is correlated with the development and invasion of NFPAs.

Wang N, Wang L, Yang H, et al.
Multiple genetic variants are associated with colorectal cancer risk in the Han Chinese population.
Eur J Cancer Prev. 2015; 24(1):1-5 [PubMed] Related Publications
Colorectal cancer (CRC) is a major health burden worldwide and is the second-leading cause of cancer-related death in Europe. CRC is a complex disease resulting from a series of genetic and epigenetic changes that lead to a stepwise progression from normal mucosa to dysplasia and finally to carcinoma. In this study, we present genetic association results between 25 tag single-nucleotide polymorphisms and CRC in a case-control study (203 cases, 296 controls) of a Han Chinese population. We found that rs1143634 in the interleukin-1β (IL1B) gene and rs1800871 in the interleukin-10 (IL10) gene were associated with increased risk for CRC in the Han Chinese. Further haplotype analysis revealed that the 'GAC' in the SMAD7 (mothers against decapentaplegic homolog 7) gene was found to increase CRC risk (odds ratio=1.48; 95% confidence interval, 1.09-2.01; P=0.012). Our results, combined with previous studies, suggest that IL10, PSCA, IL1B, and SMAD7 are significantly correlated with CRC susceptibility in the Han Chinese population.

Stolfi C, De Simone V, Colantoni A, et al.
A functional role for Smad7 in sustaining colon cancer cell growth and survival.
Cell Death Dis. 2014; 5:e1073 [PubMed] Article available free on PMC after 01/09/2015 Related Publications
Initially identified as an inhibitor of transforming growth factor (TGF)-β mainly owing to its ability to bind TGF-β receptor type I and abrogate TGF-β-driven signaling, Smad7 can interact with additional intracellular proteins and regulate TGF-β-independent pathways, thus having a key role in the control of neoplastic processes in various organs. Genome-wide association studies have shown that common alleles of Smad7 influence the risk of colorectal cancer (CRC), even though the contribution of Smad7 in colon carcinogenesis is not fully understood. In this study, we assessed the expression and role of Smad7 in human and mouse models of sporadic CRC. We document a significant increase of Smad7 in human CRC relative to the surrounding nontumor tissues and show that silencing of Smad7 inhibits the growth of CRC cell lines both in vitro and in vivo after transplantation into immunodeficient mice. Knockdown of Smad7 results in enhanced phosphorylation of the cyclin-dependent kinase (CDK)2, accumulation of CRC cells in S phase and enhanced cell death. Smad7-deficient CRC cells have lower levels of CDC25A, a phosphatase that dephosphorylates CDK2, and hyperphosphorylated eukaryotic initiation factor 2 (eIF2)α, a negative regulator of CDC25 protein translation. Consistently, knockdown of Smad7 associates with inactivation of eIF2α, lower CDC25A expression and diminished fraction of proliferating cells in human CRC explants, and reduces the number of intestinal tumors in Apc(min/+) mice. Altogether, these data support a role for Smad7 in sustaining colon tumorigenesis.

Zhang B, Jia WH, Matsuo K, et al.
Genome-wide association study identifies a new SMAD7 risk variant associated with colorectal cancer risk in East Asians.
Int J Cancer. 2014; 135(4):948-55 [PubMed] Article available free on PMC after 01/09/2015 Related Publications
Genome-wide association studies (GWAS) of colorectal cancer (CRC) have been conducted primarily in European descendants. In a GWAS conducted in East Asians, we first analyzed approximately 1.7 million single-nucleotide polymorphisms (SNPs) in four studies with 1,773 CRC cases and 2,642 controls. We then selected 66 promising SNPs for replication and genotyped them in three independent studies with 3,612 cases and 3,523 controls. Five SNPs were further evaluated using data from four additional studies including up to 3,290 cases and 4,339 controls. SNP rs7229639 in the SMAD7 gene was found to be associated with CRC risk with an odds ratio (95% confidence interval) associated with the minor allele (A) of 1.22 (1.15-1.29) in the combined analysis of all 11 studies (p = 2.93 × 10(-11) ). SNP rs7229639 is 2,487 bp upstream from rs4939827, a risk variant identified previously in a European-ancestry GWAS in relation to CRC risk. However, these two SNPs are not correlated in East Asians (r(2)  = 0.008) nor in Europeans (r(2)  = 0.146). The CRC association with rs7229639 remained statistically significant after adjusting for rs4939827 as well as three additional CRC risk variants (rs58920878, rs12953717 and rs4464148) reported previously in this region. SNPs rs7229639 and rs4939827 explained approximately 1% of the familial relative risk of CRC in East Asians. This study identifies a new CRC risk variant in the SMAD7 gene, further highlighting the significant role of this gene in the etiology of CRC.

Tang JC, Shen GB, Wang SM, et al.
IL-7 inhibits tumor growth by promoting T cell-mediated antitumor immunity in Meth A model.
Immunol Lett. 2014 Mar-Apr; 158(1-2):159-66 [PubMed] Related Publications
Immune suppression is well documented during tumor progression, which includes loss of effect of T cells and expansion of T regulatory (Treg) cells. IL-7 plays a key role in the proliferation, survival and homeostasis of T cells and displays a potent antitumor activity in vivo. In the present study, we investigated the antitumor effect of IL-7 in Meth A model. IL-7 inhibited tumor growth and prolonged the survival of tumor-bearing mice with corresponding increases in the frequency of CD4 and CD8 T cells, Th1 (CD4(+)IFN-γ(+)), Tc1 (CD8(+)IFN-γ(+)) and T cells cytolytic activity against Meth A cells. Neutralization of CD4 or CD8 T cells reversed the antitumor benefit of IL-7. Furthermore, IL-7 decreased regulatory T Foxp3 as well as cells suppressive activity with a reciprocal increase in SMAD7. In addition, we observed an increase of the serum concentrations of IL-6 and IFN-γ, and a significant decrease of TGF-β and IL-10 after IL-7 treatment. Taken together, these results indicate that IL-7 augments T cell-mediated antitumor immunity and improves the effect of antitumor in Meth A model.

Li Y, Wang H, Li J, Yue W
MiR-181c modulates the proliferation, migration, and invasion of neuroblastoma cells by targeting Smad7.
Acta Biochim Biophys Sin (Shanghai). 2014; 46(1):48-55 [PubMed] Related Publications
MicroRNAs (miRNAs) function as key regulators of gene expression in various cancers. In this study, the aim is to explore the roles and regulation mechanism of miR-181c in neuroblastoma (NB) cells. We found that miR-181c was downregulated in metastatic NB tissues, compared with primary NB tissues. Then functional studies indicated that miR-181c overexpression inhibited NB cell proliferation, migration, and invasion, while miR-181c inhibition increased cell proliferation, migration, and invasion. EGFP reporter assay, real-time polymerase chain reaction and western blot analysis validated that Smad7 was a direct target of miR-181c. MiR-181c reduced Smad7 expression at both mRNA and protein levels. Finally, functional assays showed that the effect of Smad7 knockdown on cells was similar to that of miR-181c overexpression. Importantly, Smad7 overexpression could restore the antitumor effects that were induced by miR-181c. In conclusion, our results demonstrated that miR-181c inhibits NB cell growth and metastasis-related traits through the suppression of Smad7, functioning as a tumor suppressor. Moreover, our results suggested that miR-181c may serve as an important therapeutic target for NB patients.

DiVito KA, Simbulan-Rosenthal CM, Chen YS, et al.
Id2, Id3 and Id4 overcome a Smad7-mediated block in tumorigenesis, generating TGF-β-independent melanoma.
Carcinogenesis. 2014; 35(4):951-8 [PubMed] Article available free on PMC after 01/09/2015 Related Publications
The role for the inhibitors of differentiation (Ids) proteins in melanomagenesis has been poorly explored. In other cell types, Ids have been shown to contribute to cell proliferation, migration and angiogenesis and, along with a number of other genes, are direct downstream targets of the transforming growth factor (TGF)-β pathway. Expression of Smad7, which suppress TGF-β signaling, or synthetic TGF-β inhibitors, was shown to potently suppress melanomagenesis. We found that endogenous Id2, Id3 and Id4 expression was elevated in 1205Lu versus 1205Lu cells constitutively expressing Smad7, indicating Ids may play a role in melanomagenesis. Therefore, the effects of Tet-inducible expression of Id2, Id3 or Id4 along with Smad7 in TGF-β-dependent 1205Lu human melanoma cells were explored in vitro and in vivo. 1205Lu cells formed subcutaneous tumors in athymic mice, whereas cells expressing Smad7 failed to form tumors. However, 1205Lu cells expressing Smad7 along with doxycycline-induced Id2, Id3 or Id4 were able to overcome the potent tumorigenic block mediated by S7, to varying degrees. Conversely, Id small interfering RNA knockdown suppressed anchorage-independent growth of melanoma. Histology of tumors from 1205Lu cells expressing Smad7 + Id4 revealed an average of 31% necrosis, compared with 5.2% in tumors from 1205Lu with vector only. Downstream, Ids suppressed cyclin-dependent kinase inhibitors, and re-upregulated invasion and metastasis-related genes matrix metalloproteinase 2 (MMP2), MMP9, CXCR4 and osteopontin, shown previously to be downregulated in response to Smad7. This study shows that Id2, Id3 and Id4 are each able to overcome TGF-β dependence, and establish a role for Ids as key mediators of TGF-β melanomagenesis.

Hu X, Rui W, Wu C, et al.
Compound Astragalus and Salvia miltiorrhiza extracts suppress hepatocarcinogenesis by modulating transforming growth factor-β/Smad signaling.
J Gastroenterol Hepatol. 2014; 29(6):1284-91 [PubMed] Related Publications
BACKGROUND AND AIM: Previous studies showed Compound Astragalus and Salvia miltiorrhiza extract (CASE), extract from Astragalus membranaceus and Salvia miltiorhiza, significantly suppresses hepatocellular carcinoma (HCC) in rats induced by diethylinitrosamine (DEN), and in vitro experiments further demonstrated that CASE's anti-HepG2 cell invasion is associated with transforming growth factor-β (TGF-β). We hypothesized that CASE's suppression of HCC is modulated by TGF-β/Smad signaling, and we conducted this in vivo study to test this hypothesis.
METHODS: Rats were divided into the normal control, the DEN group, and three CASE (60, 120, and 240 mg/kg) treatment groups. The expression of phosphorylation(p) Smad both at C-terminal and linker region, plasminogen activator inhibitor 1, and Smad4 and Smad7 of liver tissues were measured and compared across the five groups.
RESULTS: The positive staining of pSmad2L and pSmad3L increased both in hepatoma nodule areas and adjacent relatively normal liver tissues in rats treated with DEN, while the positive staining of pSmad2C and pSmad3C increased only in relatively normal liver tissues adjacent to hepatoma tissues. The elevated expression of pSmad2C, pSmad2L, pSmad3L, Smad4, and plasminogen activator inhibitor 1 proteins were suppressed by CASE in a dose-dependent manner. CASE treatment also significantly reduced the intranuclear amounts of pSmad2L and pSmad3L, and upregulated the elevation of pSmad3C positive cells and protein expression in a dose-dependent manner.
CONCLUSION: The results suggest that CASE significantly suppresses HCC progression by mediating TGF-β/Smad signaling, especially by modulating Smad3 phosphorylation both at the C-terminal and linker region.

Ma GF, Liu YM, Gao H, et al.
HER2 mRNA status contributes to the discrepancy between gene amplification and protein overexpression in gastric cancer.
Dig Dis Sci. 2014; 59(2):328-35 [PubMed] Related Publications
BACKGROUND: Human epidermal growth factor receptor 2 (HER2) is an important proto-oncogene of prognostic use in gastric cancer (GC). Fluorescence in-situ hybridization (FISH) and immunohistochemistry (IHC) are the main clinical methods of detection of HER2, but consistency between the methods is poor and the cause of the discrepancy is unclear.
AIM: To investigate the involvement of HER2 mRNA status in the disparity between gene amplification and protein overexpression.
METHODS: We investigated HER2 gene, mRNA, and protein profiles in gastric precancer and cancer tissues by use of the molecular approaches FISH, real-time polymerase chain reaction, and IHC. The relationships between HER2 and matrix metalloproteinase 9 (MMP9) and Smad7 expression were analyzed and the involvement of HER2 in the interaction between tumor cells and lymphocytes was investigated by coculturing GC cell lines with peripheral blood mononuclear cells (PBMCs).
RESULTS: HER2 protein expression was significantly increased in cancer compared with precancer (P = 0.003), and the corresponding mRNA levels were significantly lower in precancer and cancer tissues than in normal tissues (κ = 0.290, P = 0.025). HER2 mRNA levels were significantly higher in tumor than in peritumor tissue (P = 0.028), and were positively correlated with MMP9 and Smad7 mRNA levels in tumor tissues. HER2 mRNA expression in GC cell lines was increased by coculture with PBMCs.
CONCLUSIONS: Different HER2 mRNA profiles, possibly in relation to contact between tumor cells and lymphocytes, might help to explain the discrepancy between gene amplification and protein overexpression results.

van Rooyen BA, Schäfer G, Leaner VD, Parker MI
Tumour cells down-regulate CCN2 gene expression in co-cultured fibroblasts in a Smad7- and ERK-dependent manner.
Cell Commun Signal. 2013; 11:75 [PubMed] Article available free on PMC after 01/09/2015 Related Publications
BACKGROUND: Recent studies have revealed that interactions between tumour cells and the surrounding stroma play an important role in facilitating tumour growth and invasion. Stromal fibroblasts produce most of the extracellular matrix components found in the stroma. The aim of this study was to investigate mechanisms involved in tumour cell-mediated regulation of extracellular matrix and adhesion molecules in co-cultured fibroblasts. To this end, microarray analysis was performed on CCD-1068SK human fibroblast cells after direct co-culture with MDA-MB-231 human breast tumour cells.
RESULTS: We found that the expression of both connective tissue growth factor (CTGF/CCN2) and type I collagen was negatively regulated in CCD-1068SK fibroblast cells under direct co-culture conditions. Further analysis revealed that Smad7, a known negative regulator of the Smad signalling pathway involved in CCN2 promoter regulation, was increased in directly co-cultured fibroblasts. Inhibition of Smad7 expression in CCD-1068SK fibroblasts resulted in increased CCN2 expression, while Smad7 overexpression had the opposite effect. Silencing CCN2 gene expression in fibroblasts led, in turn, to a decrease in type I collagen mRNA and protein levels. ERK signalling was also shown to be impaired in CCD-1068SK fibroblasts after direct co-culture with MDA-MB-231 tumour cells, with Smad7 overexpression in fibroblasts leading to a similar decrease in ERK activity. These effects were not, however, seen in fibroblasts that were indirectly co-cultured with tumour cells.
CONCLUSION: We therefore conclude that breast cancer cells require close contact with fibroblasts in order to upregulate Smad7 which, in turn, leads to decreased ERK signalling resulting in diminished expression of the stromal proteins CCN2 and type I collagen.

Gulubova M, Manolova I, Ananiev J, et al.
Relationship of TGF-β1 and Smad7 expression with decreased dendritic cell infiltration in liver gastrointestinal cancer metastasis.
APMIS. 2013; 121(10):967-75 [PubMed] Related Publications
Immune responses and their modulation within the liver are critical to the outcome of liver malignancies. In late-stage tumors, secreted TGF-β promotes oncogenic functions and can confer tolerogenicity to some immune cells like DCs. The TGF-β signaling pathway is involved in the control of several biological processes, including immunosurveillance. The aim of the present study was to assess CD1a(+) and CD83(+) DCs and to evaluate the impact of TGF-β pathway on DCs maturation and distribution in the liver metastases from gastric and colorectal tumors. The percentage of CD83(+) DCs in the liver tissue, surrounding metastasis and in the metastasis-free liver was measured by flow cytometry, and TGF-β levels were assessed in the tissue supernatant from the peritumoral liver after mononuclear cell isolation and in the sera of the same patients. CD1a(+) and CD83(+) DCs were observed in the tumor stroma and border. Out of 73 patients, there was cytoplasmic reactivity: of TGF-β1 in 37 (50.7%); of Smad4 in 62 (84.9%); of Smad7 in 46 (63%), and of TGFβRII in 39 (53.4%) of the metastases. The TGF-β1 expression in tumor cell cytoplasm correlated with low CD1a(+) and low CD83(+) DCs infiltration. The tissue levels of TGF-β1, measured by ELISA in the supernatant were significantly increased in metastases than in normal liver. Using a two-color FACS analysis, we found that the percentage of HLA-DR(+) CD83(+) DCs in metastases was significantly decreased as compared with metastasis-free liver tissue. In conclusion, the positive and negative correlations between the mediators from the TGF-β pathway implied the existence of imbalance and suppression of this cytokine activity. The presence of increased TGF-β expression by immunohistochemistry in tumor cells was confirmed by detection of increased TGF-β tissue level in the supernatant from the tissue homogenate. The observation of low numbers of CD1a(+) and CD83(+) DCs in tumor stroma correlated with TGF-β overexpression in tumor cells, a fact that well documents the immunosuppressive role of TGF-β in metastasis development. The increased percentage of CD83(+) DCs in the peritumoral tissue supposes that there could be active recruitment or local differentiation of DCs in the metastasis border, but inside the tumor the immune cells recruitment and activity are suppressed by TGF-β and by other cytokines.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. SMAD6, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 21 August, 2015     Cancer Genetics Web, Established 1999