Gene Summary

Gene:RARRES1; retinoic acid receptor responder 1
Aliases: LXNL, TIG1, PERG-1
Summary:This gene was identified as a retinoid acid (RA) receptor-responsive gene. It encodes a type 1 membrane protein. The expression of this gene is upregulated by tazarotene as well as by retinoic acid receptors. The expression of this gene is found to be downregulated in prostate cancer, which is caused by the methylation of its promoter and CpG island. Alternatively spliced transcript variant encoding distinct isoforms have been observed. [provided by RefSeq, Jul 2008]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:retinoic acid receptor responder protein 1
Source:NCBIAccessed: 01 September, 2019


What does this gene/protein do?
RARRES1 is implicated in:
- integral to membrane
- negative regulation of cell proliferation
Data from Gene Ontology via CGAP

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 02 September 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Stomach Cancer
  • Prostate Cancer
  • Ubiquitin-Conjugating Enzymes
  • Cancer Gene Expression Regulation
  • Breast Cancer
  • Retinoic Acid
  • Polymerase Chain Reaction
  • Cell Proliferation
  • Transcription
  • Neoplastic Cell Transformation
  • Enzyme Inhibitors
  • Gene Expression Profiling
  • CpG Islands
  • Messenger RNA
  • Transfection
  • Signal Transduction
  • Neoplasm Invasiveness
  • DNA Methylation
  • Neoplasm Proteins
  • Promoter Regions
  • Azacitidine
  • Esophageal Cancer
  • Antineoplastic Agents
  • Tumor Suppressor Gene
  • Gene Silencing
  • Lymphatic Metastasis
  • Wilms Tumour
  • Retinoids
  • Up-Regulation
  • Down-Regulation
  • Chromosome 3
  • Receptors, Retinoic Acid
  • Retinol-Binding Proteins
  • Prostatic Hyperplasia
  • Epigenetics
  • Membrane Proteins
  • Proteins
  • Decitabine
  • Serum
  • Oligonucleotide Array Sequence Analysis
Tag cloud generated 01 September, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (5)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: RARRES1 (cancer-related)

Maimouni S, Issa N, Cheng S, et al.
Tumor suppressor RARRES1- A novel regulator of fatty acid metabolism in epithelial cells.
PLoS One. 2018; 13(12):e0208756 [PubMed] Free Access to Full Article Related Publications
Retinoic acid receptor responder 1 (RARRES1) is silenced in many cancers and is differentially expressed in metabolism associated diseases, such as hepatic steatosis, hyperinsulinemia and obesity. Here we report a novel function of RARRES1 in metabolic reprogramming of epithelial cells. Using non-targeted LC-MS, we discovered that RARRES1 depletion in epithelial cells caused a global increase in lipid synthesis. RARRES1-depleted cells rewire glucose metabolism by switching from aerobic glycolysis to glucose-dependent de novo lipogenesis (DNL). Treatment with fatty acid synthase (FASN) inhibitor, C75, reversed the effects of RARRES1 depletion. The increased DNL in RARRES1-depleted normal breast and prostate epithelial cells proved advantageous to the cells during starvation, as the increase in fatty acid availability lead to more oxidized fatty acids (FAO), which were used for mitochondrial respiration. Expression of RARRES1 in several common solid tumors is also contextually correlated with expression of fatty acid metabolism genes and fatty acid-regulated transcription factors. Pathway enrichment analysis led us to determine that RARRES1 is regulated by peroxisome proliferating activated receptor (PPAR) signaling. These findings open up a new avenue for metabolic reprogramming and identify RARRES1 as a potential target for cancers and other diseases with impaired fatty acid metabolism.

Wang CH, Shyu RY, Wu CC, et al.
Tazarotene-Induced Gene 1 Interacts with DNAJC8 and Regulates Glycolysis in Cervical Cancer Cells.
Mol Cells. 2018; 41(6):562-574 [PubMed] Free Access to Full Article Related Publications
The tazarotene-induced gene 1 (TIG1) protein is a retinoid-inducible growth regulator and is considered a tumor suppressor. Here, we show that DnaJ heat shock protein family member C8 (DNAJC8) is a TIG1 target that regulates glycolysis. Ectopic DNAJC8 expression induced the translocation of pyruvate kinase M2 (PKM2) into the nucleus, subsequently inducing glucose transporter 1 (GLUT1) expression to promote glucose uptake. Silencing either DNAJC8 or PKM2 alleviated the upregulation of GLUT1 expression and glucose uptake induced by ectopic DNAJC8 expression. TIG1 interacted with DNAJC8 in the cytosol, and this interaction completely blocked DNAJC8-mediated PKM2 translocation and inhibited glucose uptake. Furthermore, increased glycose uptake was observed in cells in which TIG1 was silenced. In conclusion, TIG1 acts as a pivotal repressor of DNAJC8 to enhance glucose uptake by partially regulating PKM2 translocation.

Pudova EA, Kudryavtseva AV, Fedorova MS, et al.
HK3 overexpression associated with epithelial-mesenchymal transition in colorectal cancer.
BMC Genomics. 2018; 19(Suppl 3):113 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Colorectal cancer (CRC) is a common cancer worldwide. The main cause of death in CRC includes tumor progression and metastasis. At molecular level, these processes may be triggered by epithelial-mesenchymal transition (EMT) and necessitates specific alterations in cell metabolism. Although several EMT-related metabolic changes have been described in CRC, the mechanism is still poorly understood.
RESULTS: Using CrossHub software, we analyzed RNA-Seq expression profile data of CRC derived from The Cancer Genome Atlas (TCGA) project. Correlation analysis between the change in the expression of genes involved in glycolysis and EMT was performed. We obtained the set of genes with significant correlation coefficients, which included 21 EMT-related genes and a single glycolytic gene, HK3. The mRNA level of these genes was measured in 78 paired colorectal cancer samples by quantitative polymerase chain reaction (qPCR). Upregulation of HK3 and deregulation of 11 genes (COL1A1, TWIST1, NFATC1, GLIPR2, SFPR1, FLNA, GREM1, SFRP2, ZEB2, SPP1, and RARRES1) involved in EMT were found. The results of correlation study showed that the expression of HK3 demonstrated a strong correlation with 7 of the 21 examined genes (ZEB2, GREM1, TGFB3, TGFB1, SNAI2, TWIST1, and COL1A1) in CRC.
CONCLUSIONS: Upregulation of HK3 is associated with EMT in CRC and may be a crucial metabolic adaptation for rapid proliferation, survival, and metastases of CRC cells.

Huebner H, Strick R, Wachter DL, et al.
Hypermethylation and loss of retinoic acid receptor responder 1 expression in human choriocarcinoma.
J Exp Clin Cancer Res. 2017; 36(1):165 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Human placental development resembles tumorigenesis, due to the invasive and fusogenic potential of trophoblasts. However, these features are tightly controlled in trophoblasts. Disturbance of this spatial and temporal regulation is thought to contribute to the rare formation of choriocarcinomas. Promoter hypermethylation and loss of the tumor suppressor Retinoic acid receptor responder 1 (RARRES1) were shown to contribute to cancer progression. Our study investigated the epigenetic and transcriptional regulation of RARRES1 in healthy human placenta in comparison to choriocarcinoma cell lines and cases.
METHODS: Three choriocarcinoma cell lines (Jeg-3, JAR and BeWo) were treated with three different retinoic acid derivates (Am580, Tazarotene and all-trans retinoic acid) and 5-aza-2'-deoxycytidine. We analyzed RARRES1 promoter methylation by pyrosequencing and performed realtime-PCR quantification to determine RARRES1 expression in placental tissue and trophoblastic cell lines. Additionally, RARRES1 was stained in healthy placentas and in biopsies of choriocarcinoma cases (n = 10) as well as the first trimester trophoblast cell line Swan71 by immunofluorescence and immunohistochemistry.
RESULTS: In the choriocarcinoma cell lines, RARRES1 expression could not be induced by sole retinoic acid treatment. Stimulation with 5-aza-2'-deoxycytidine significantly induced RARRES1 expression, which then could be further increased with Am580, Tazarotene and all-trans retinoic acid. In comparison to healthy placenta, choriocarcinoma cell lines showed a hypermethylation of the RARRES1 promoter, which correlated with a reduced RARRES1 expression. In concordance, RARRES1 protein expression was lost in choriocarcinoma tissue. Additionally, in the trophoblastic cell line Swan71, we found a significant induction of RARRES1 expression with increased cell density, during mitosis and in syncytial knots.
CONCLUSIONS: Our findings showed that RARRES1 expression is absent in choriocarcinoma due to promoter methylation. Based on our analysis, we hypothesize that RARRES1 might exert tumor suppressive functions in multiple cellular processes (e.g. cell cycle regulation, adhesion, invasion and apoptosis).

Roy A, Ramalinga M, Kim OJ, et al.
Multiple roles of RARRES1 in prostate cancer: Autophagy induction and angiogenesis inhibition.
PLoS One. 2017; 12(7):e0180344 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Prostate cancer (PCa) poses a major health concern in men worldwide. Retinoic Acid Receptor Responder (RARRES1)/ Tazarotene-induced gene-1 (TIG-1) is a putative tumor suppressor gene that exerts its tumor suppressor function via unknown mechanisms. Epigenetic silencing of RARRES1 leads to its loss in several types of cancer, including PCa. Determining the molecular mechanisms that mediate the tumor suppressor role of RARRES1 in PCa is the focus of our study.
FINDINGS: Our data indicates that RARRES1 over expression in PCa cell lines represses mitogen-activated protein kinase (MAPK) activation. RARRES1 expression induces the levels of autophagy-related genes, beclin, ATG3 and increases LC3B-II conversion. A significant induction of SIRT1 along with mTOR inhibition is noted on RARRES1 expression. Furthermore, RARRES1 over expression elevates the levels of the antioxidant enzyme, catalase. Our results also indicate that RARRES1 expression inhibits angiogenesis in endothelial cells.
CONCLUSIONS: In summary, the data presented here indicate that forced expression of RARRES1 in PCa cells (a) induces ER stress and autophagic response; (b) increases SIRT1 levels; and (c) higher levels of anti-oxidant enzymes. Our study also implicates the role of RARRES1 as a novel anti-angiogenic molecule. Overall this study reports the molecular players that RARRES1 modulates to serve as a tumor suppressor molecule. Future studies will help determine the in vivo mechanisms by which RARRES1 may serve as a target for therapeutic intervention both in cancer and in angiogenesis-related disorders.

Wang S, He Z, Li D, et al.
Aberrant methylation of RUNX3 is present in Aflatoxin B
Toxicology. 2017; 385:1-9 [PubMed] Related Publications
Chronic exposure to aflatoxin B

Shyu RY, Wang CH, Wu CC, et al.
Tazarotene-Induced Gene 1 Enhanced Cervical Cell Autophagy through Transmembrane Protein 192.
Mol Cells. 2016; 39(12):877-887 [PubMed] Free Access to Full Article Related Publications
Tazarotene-induced gene 1 (TIG1) is a retinoic acid-inducible protein that is considered a putative tumor suppressor. The expression of TIG1 is decreased in malignant prostate carcinoma or poorly differentiated colorectal adenocarcinoma, but TIG1 is present in benign or well-differentiated tumors. Ectopic TIG1 expression led to suppression of growth in cancer cells. However, the function of TIG1 in cell differentiation is still unknown. Using a yeast two-hybrid system, we found that transmembrane protein 192 (TMEM192) interacted with TIG1. We also found that both TIG1A and TIG1B isoforms interacted and co-localized with TMEM192 in HtTA cervical cancer cells. The expression of TIG1 induced the expression of autophagy-related proteins, including Beclin-1 and LC-3B. The silencing of TMEM192 reduced the TIG1-mediated upregulation of autophagic activity. Furthermore, silencing of either TIG1 or TMEM192 led to alleviation of the upregulation of autophagy induced by all-trans retinoic acid. Our results demonstrate that the expression of TIG1 leads to cell autophagy through TMEM192. Our study also suggests that TIG1 and TMEM192 play an important role in the all-trans retinoic acid-mediated upregulation of autophagic activity.

Ahmad AS, Vasiljević N, Carter P, et al.
A novel DNA methylation score accurately predicts death from prostate cancer in men with low to intermediate clinical risk factors.
Oncotarget. 2016; 7(44):71833-71840 [PubMed] Free Access to Full Article Related Publications
Clinically aggressive disease behavior is difficult to predict in men with low to intermediate clinical risk prostate cancer and methylation biomarkers may be a valuable adjunct for assessing the management of these patients. We set to evaluate the utility of DNA methylation to identify high risk disease in men currently considered as low or intermediate risk. DNA was extracted from formalin-fixed paraffin-embedded transurethral prostate resection tissues collected during the years 1990-96 in a watchful-waiting cohort of men in the UK. The primary end point was death of prostate cancer, assessed by reviewing cancer registry records from 2009. Methylation was quantified by pyrosequencing assays for six genes (HSPB1, CCND2, TIG1, DPYS, PITX2, and MAL) with established biomarker value in prostate cancer. A novel prognostic methylation score was developed by multivariate Cox modelling using the six methylation biomarkers in 385 men with low-and-intermediate clinical risk variables and its prognostic value compared to two previously defined clinically-derived risk scores. Methylation score was the most significant variable in univariate and bivariate analysis in men with low-to-intermediate CAPRA risk score. When combined with CAPRA score the hazard ratio was 2.02; 95% confidence interval, 1.40-2.92. For a methylation score sensitivity of 83% the specificity was 44%, while the maximum achieved sensitivity by CAPRA was 68% at a specificity of 44%. The derived methylation score is a strong predictor of aggressive prostate cancer that could have an important role in directing the management of patients with low-to-intermediate risk disease. The estimated areas under the curve (AUC) at 10 years of follow-up were 0.62 (95% CI: 0.51, 0.70) and 0.74 (95% CI: 0.65, 0.82) for CAPRA, and combined (CAPRA + methylation) risk score (CRS) respectively.

Zimpfer A, Dammert F, Glass A, et al.
Expression and clinicopathological correlations of retinoid acid receptor responder protein 1 in renal cell carcinomas.
Biomark Med. 2016; 10(7):721-32 [PubMed] Related Publications
AIM: To evaluate the expression and prognostic value of RARRES1 at protein level in renal cell carcinoma (RCC).
MATERIALS & METHODS: Expression profile of RARRES1 was analyzed in 903 documented RCC followed by clinicopathological correlations and survival analysis.
RESULTS: RARRES1 expression was seen in 72.5% of RCC. A stronger RARRES1 expression was seen in high grade compared with low grade RCC (p < 0.001). Logrank tests revealed shorter overall survival in RARRES1 positive RCC (p = 0.006) and in pT1/2 tumors with RARRES1 expression (p = 0.002).
CONCLUSION: The variable expression profile in low and high grade RCC may reflect and confirm the differences of previous gene expression analysis. There was a significant prognostic value of RARRES1 expression in patients with RCC, especially in pT1/2 tumors.

Coyle KM, Murphy JP, Vidovic D, et al.
Breast cancer subtype dictates DNA methylation and ALDH1A3-mediated expression of tumor suppressor RARRES1.
Oncotarget. 2016; 7(28):44096-44112 [PubMed] Free Access to Full Article Related Publications
Breast cancer subtyping, based on the expression of hormone receptors and other genes, can determine patient prognosis and potential options for targeted therapy. Among breast cancer subtypes, tumors of basal-like and claudin-low subtypes are typically associated with worse patient outcomes, are primarily classified as triple-negative breast cancers (TNBC), and cannot be treated with existing hormone-receptor-targeted therapies. Understanding the molecular basis of these subtypes will lead to the development of more effective treatment options for TNBC. In this study, we focus on retinoic acid receptor responder 1 (RARRES1) as a paradigm to determine if breast cancer subtype dictates protein function and gene expression regulation. Patient tumor dataset analysis and gene expression studies of a 26 cell-line panel, representing the five breast cancer subtypes, demonstrate that RARRES1 expression is greatest in basal-like TNBCs. Cell proliferation and tumor growth assays reveal that RARRES1 is a tumor suppressor in TNBC. Furthermore, gene expression studies, Illumina HumanMethylation450 arrays, and chromatin immunoprecipitation demonstrate that expression of RARRES1 is retained in basal-like breast cancers due to hypomethylation of the promoter. Additionally, expression of the cancer stem cell marker, aldehyde dehydrogenase 1A3, which provides the required ligand (retinoic acid) for RARRES1 transcription, is also specific to the basal-like subtype. We functionally demonstrate that the combination of promoter methylation and retinoic acid signaling dictates expression of tumor suppressor RARRES1 in a subtype-specific manner. These findings provide a precedent for a therapeutically-inducible tumor suppressor and suggest novel avenues of therapeutic intervention for patients with basal-like breast cancer.

Choudhury Y, Wei X, Chu YH, et al.
A multigene assay identifying distinct prognostic subtypes of clear cell renal cell carcinoma with differential response to tyrosine kinase inhibition.
Eur Urol. 2015; 67(1):17-20 [PubMed] Related Publications
Patients with clear cell renal cell carcinoma (ccRCC) have divergent survival outcomes and therapeutic responses, which may be determined by underlying molecular diversity. We aimed to develop a practical molecular assay that can identify subtypes with differential prognosis and response to targeted therapy. Whole-genome expression analysis of formalin-fixed paraffin-embedded (FFPE) material from 55 ccRCC patients was performed and two molecular subtypes with differential clinical outcomes were identified by hierarchical clustering. An eight-gene quantitative polymerase chain reaction assay for classification into two subtypes was developed for FFPE material. The primary objective was to assess assay performance by correlating ccRCC prognostic subtypes to cancer-specific survival (CSS) and, for patients receiving targeted therapy, radiologic response. In three validation cohorts, patients could be distinguished into prognostic subtypes with differential CSS (Singapore General Hospital FFPE cohort: n = 224; p = 1.48 × 10(-8); the Cancer Genome Atlas RNA-Sequencing cohort: n = 419; p = 3.06 × 10(-7); Van Andel Research Institute microarray cohort: n=174; p=0.00743). For 48 patients receiving tyrosine kinase inhibitor (TKI) treatment, the prognostic classification was associated with radiologic response to treatment (p = 5.96 × 10(-4)) and prolonged survival on TKI treatment (p=0.019). The multigene assay can classify ccRCCs into clinical prognostic subtypes, which may be predictive of response in patients receiving TKI therapy.

Moritz R, Ellinger J, Nuhn P, et al.
DNA hypermethylation as a predictor of PSA recurrence in patients with low- and intermediate-grade prostate cancer.
Anticancer Res. 2013; 33(12):5249-54 [PubMed] Related Publications
BACKGROUND: DNA CpG island hypermethylation causes gene silencing and is a common event in prostate carcinogenesis and progression. We investigated its role as a possible prognostic marker in patients with PCA Gleason score ≤7.
PATIENTS AND METHODS: We used a quantitative, methylation-specific PCR to analyze methylation patterns at five gene loci (APC, GSTP1, PTGS2, RARbeta and TIG1) in 84 prostate cancer (PCA) tissues (Gleason Score ≤7). Methylation was correlated with established clinico-pathological parameters (preoperative PSA, pathological Gleason score, extraprostatic extension, seminal vesicle penetration, lymph node involvement, surgical margins and age) and PSA recurrence.
RESULTS: DNA hypermethylation was frequently detected at APC (95.2%), GSTP1 (84.5%), PTGS2 (100%), RAR-beta (81.0%) and TIG1 (95.2%). DNA hypermethylation was correlated with Gleason Score (p=0.027; PTGS2) and lymph node involvement (p=0.024; RARbeta). High methylation levels at RARbeta (p=0.023) was a significant predictor of PSA recurrence following radical prostatectomy.
CONCLUSION: The analysis of DNA hypermethylation provides prognostic information in prognosis of low- and intermediate-grade PCA.

Chen XH, Wu WG, Ding J
Aberrant TIG1 methylation associated with its decreased expression and clinicopathological significance in hepatocellular carcinoma.
Tumour Biol. 2014; 35(2):967-71 [PubMed] Related Publications
Recently, it has been reported that tazarotene-induced gene 1 (TIG1) methylation was frequently detected in a variety of human cancers. However, the relationship between the TIG1 methylation and the characteristics of hepatocellular carcinoma (HCC) remains unknown. The aim of present study was to observe the promoter methylation of TIG1 in HCC tissues and assess its prognostic significance for HCC. Real-time quantitative polymerase chain reaction and methylation-specific polymerase chain reaction were used, respectively, to examine the mRNA expression and methylation status of TIG1 in 91 pairs of HCC and adjacent noncancerous tissues. The mRNA expression level of TIG1 was significantly lower in HCC tissues than in adjacent noncancerous tissues. The rate of TIG1 promoter methylation was significantly higher in HCC tissues than in adjacent noncancerous tissues (P < 0.001). A strong correlation between downregulation and promoter methylation was found in these tumors (P < 0.001). More importantly, TIG1 methylation status was related to tumor size (P = 0.015), histological differentiation (P = 0.004), and tumor stage (P < 0.001). Kaplan-Meier survival analysis showed that TIG1 promoter hypermethylation was associated with a worse outcome in patients with HCC. Further, Cox multivariate analysis indicated that TIG1 methylation status was an independent prognostic factor for the overall survival rate of HCC patients. In conclusion, our data suggested that epigenetic silencing of TIG1 gene expression by promoter hypermethylation may play an important role in HCC.

Rong G, Kang H, Wang Y, et al.
Candidate markers that associate with chemotherapy resistance in breast cancer through the study on Taxotere-induced damage to tumor microenvironment and gene expression profiling of carcinoma-associated fibroblasts (CAFs).
PLoS One. 2013; 8(8):e70960 [PubMed] Free Access to Full Article Related Publications
Recently, emerging evidence has suggested that carcinoma-associated fibroblasts (CAFs) could contribute to chemotherapy resistances in breast cancer treatment. The aim of this study is to compare the gene expression profiling of CAFs before and after chemotherapy and pick up candidate genes that might associate with chemotherapy resistance and could be used as predictors of treatment response. CAFs were cultured from surgically resected primary breast cancers and identified with immunohistochemistry (IHC) and Flow cytometry (FCM). MDA-MB-231 cells were cultured as the breast cancer cell line. Cell adhesion assay, invasion assay, and proliferation assay (MTT) were performed to compare the function of MDA-MB-231 cells co-cultured with CAFs and MDA-MB-231 cells without co-culture, after chemotherapy. Totally 6 pairs of CAFs were prepared for microarray analysis. Each pair of CAFs were obtained from the same patient and classified into two groups. One group was treated with Taxotere (regarded as after chemotherapy) while the other group was not processed with Taxotere (regarded as before chemotherapy). According to our study, the primary-cultured CAFs exhibited characteristic phenotype. After chemotherapy, MDA-MB-231 cells co-cultured with CAFs displayed increasing adhesion, invasiveness and proliferation abilities, compared with MDA-MB-231 cells without CAFs. Moreover, 35 differentially expressed genes (absolute fold change >2) were identified between CAFs after chemotherapy and before chemotherapy, including 17 up-regulated genes and 18 down-regulated genes. CXCL2, MMP1, IL8, RARRES1, FGF1, and CXCR7 were picked up as the candidate markers, of which the differential expression in CAFs before and after chemotherapy was confirmed. The results indicate the changes of gene expression in CAFs induced by Taxotere treatment and propose the candidate markers that possibly associate with chemotherapy resistance in breast cancer.

Qu Y, Dang S, Hou P
Gene methylation in gastric cancer.
Clin Chim Acta. 2013; 424:53-65 [PubMed] Related Publications
Gastric cancer is one of the most common malignancies and remains the second leading cause of cancer-related death worldwide. Over 70% of new cases and deaths occur in developing countries. In the early years of the molecular biology revolution, cancer research mainly focuses on genetic alterations, including gastric cancer. Epigenetic mechanisms are essential for normal development and maintenance of tissue-specific gene expression patterns in mammals. Disruption of epigenetic processes can lead to altered gene function and malignant cellular transformation. Recent advancements in the rapidly evolving field of cancer epigenetics have shown extensive reprogramming of every component of the epigenetic machinery in cancer, including DNA methylation, histone modifications, nucleosome positioning, noncoding RNAs, and microRNAs. Aberrant DNA methylation in the promoter regions of gene, which leads to inactivation of tumor suppressor and other cancer-related genes in cancer cells, is the most well-defined epigenetic hallmark in gastric cancer. The advantages of gene methylation as a target for detection and diagnosis of cancer in biopsy specimens and non-invasive body fluids such as serum and gastric washes have led to many studies of application in gastric cancer. This review focuses on the most common and important phenomenon of epigenetics, DNA methylation, in gastric cancer and illustrates the impact epigenetics has had on this field.

Hauser S, Kogej M, Fechner G, et al.
Serum DNA hypermethylation in patients with bladder cancer: results of a prospective multicenter study.
Anticancer Res. 2013; 33(3):779-84 [PubMed] Related Publications
BACKGROUND: Cell-free serum DNA levels are increased in patients with cancer, and at least partially, these DNA fragments are derived from cancer cells. A few reports indicated that methylated serum DNA in patients with bladder cancer (BCA) is a useful non-invasive biomarker. The purpose of this prospective multicenter study was to validate earlier studies.
MATERIALS AND METHODS: In total, 227 consecutive participants (non-muscle invasive BCA, n=75; muscle-invasive BCA, n=20; transurethral bladder resection (TURB) without BCA, n=48; benign disease, n=31; healthy individuals, n=53), were recruited for this study. Cell-free serum DNA was isolated and digested with methylation-sensitive restriction-enzymes (Bsh1236I, HpaII and HinP1I) to quantify the amount of methylated (TIMP3, APC, RARB, TIG1, GSTP1, p14, p16, PTGS2 and RASSF1A) DNA fragments.
RESULTS: The amount of methylated DNA was usually small (<10%), and the methylation frequencies varied for different genes (e.g. frequent: TIMP3; moderate: APC, RARB, TIG1; infrequent: p16, PTGS2, p14, RASSF1A, GSTP1). Methylation levels at each gene site and the number of methylated genes were increased in BCA compared to healthy individuals, but were similar in BCA and patients with non-malignant disease. The number of methylated genes allowed for discrimination (62% sensitivity, 89% specificity) of BCA patients from healthy individuals. DNA hypermethylation was not correlated with advanced stage or grade in patients with BCA.
CONCLUSION: The detection of hypermethylated DNA in serum allows for discrimination of patients with BCA and healthy individuals, but there is no difference between patients with BCA and those with non-malignant disease, thereby limiting its value as a non-invasive biomarker.

Schwarzenbach H, Eichelser C, Kropidlowski J, et al.
Loss of heterozygosity at tumor suppressor genes detectable on fractionated circulating cell-free tumor DNA as indicator of breast cancer progression.
Clin Cancer Res. 2012; 18(20):5719-30 [PubMed] Related Publications
PURPOSE: LOH on circulating DNA may provide tumor-specific information on breast cancer. As identification of LOH on cell-free DNA is impeded by the prevalence of wild type DNA in blood of cancer patients, we fractionated plasma DNA, and determined the diagnostic and prognostic value of both fractions.
EXPERIMENTAL DESIGN: Our cohort of 388 patients with primary breast cancer before chemotherapy was selected from a multicenter study (SUCCESS). Postoperative plasma was fractionated in low- and high-molecular weight DNA by two different column systems. In both fractions, LOH was determined by a PCR-based microsatellite analysis using a panel of 8 polymorphic markers. Circulating tumor DNA in plasma from 30 patients after chemotherapy was additionally analyzed. The significance levels were adjusted for multiple comparisons.
RESULTS: More patients (38%) had LOH at all markers in the fraction containing short DNA fragments than in the fraction containing the long DNA molecules (28%, P = 0.0001). In both fractions 32.85% of LOH were concordant. LOH at the markers D3S1605, D10S1765, D12S1725, D13S218, and D17S855 significantly correlated with tumor stage, tumor size, and lymph node metastasis, positive progesterone, and HER2 receptor status. Most importantly, LOH at D12S1725 mapping to cyclin D2 correlated with shorter overall survival (P = 0.004).
CONCLUSIONS: The improved detection of LOH on cell-free DNA provides important information on DNA losses of tumor suppressor genes TIG1, PTEN, cyclin D2, RB1, and BRCA1 in breast cancer. In particular, loss of the cyclin D2 gene might become an important prognostic marker easily detectable in the peripheral blood.

Gu S, Tian Y, Chlenski A, et al.
Valproic acid shows a potent antitumor effect with alteration of DNA methylation in neuroblastoma.
Anticancer Drugs. 2012; 23(10):1054-66 [PubMed] Free Access to Full Article Related Publications
Epigenetic aberrations and a CpG island methylator phenotype are associated with poor outcome in children with neuroblastoma (NB). Previously, we have shown that valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, exerts antitumor effects in an NB xenograft model. However, the underlying antitumor molecular mechanisms are largely unknown. In this study, we examined the role of HDAC in cell proliferation, cell cycle progression, gene expression patterns, and epigenome in NB. Cell proliferation, cell cycle progression, caspase activity, RNA and protein expression, quantitative methylation, and global DNA methylation were examined in NBL-W-N and LA1-55n NB cell lines. Our studies showed that inhibition of HDAC decreased NB proliferation, and induced caspase activity and G1 growth arrest. Expression patterns of cancer-related genes were modulated by VPA. The expression of THBS1, CASP8, SPARC, CDKN1A, HIC1, CDKN1B, and HIN1 was upregulated, and that of MYCN and TIG1 was downregulated. HDAC inhibition decreased methylation levels of THBS1 and RASSF1A promoters. Inhibition of HDAC increased acetylation of histone 4 and overall DNA methylation levels. Our studies showed that inhibition of HDAC blocked cell proliferation and cell cycle progression in relation to alteration in cancer-related genes, increased overall DNA methylation, and decreased methylation of tumor suppressor genes. Further studies examining the antitumor effects of VPA in NB are warranted.

Peng Z, Shen R, Li YW, et al.
Epigenetic repression of RARRES1 is mediated by methylation of a proximal promoter and a loss of CTCF binding.
PLoS One. 2012; 7(5):e36891 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The cis-acting promoter element responsible for epigenetic silencing of retinoic acid receptor responder 1 (RARRES1) by methylation is unclear. Likewise, how aberrant methylation interplays effectors and thus affects breast neoplastic features remains largely unknown.
METHODOLOGY/PRINCIPAL FINDINGS: We first compared methylation occurring at the sequences (-664~+420) flanking the RARRES1 promoter in primary breast carcinomas to that in adjacent benign tissues. Surprisingly, tumor cores displayed significantly elevated methylation occurring solely at the upstream region (-664~-86), while the downstream element (-85~+420) proximal to the transcriptional start site (+1) remained largely unchanged. Yet, hypermethylation at the former did not result in appreciable silencing effect. In contrast, the proximal sequence displayed full promoter activity and methylation of which remarkably silenced RARRES1 transcription. This phenomenon was recapitulated in breast cancer cell lines, in which methylation at the proximal region strikingly coincided with downregulation. We also discovered that CTCF occupancy was enriched at the unmethylayed promoter bound with transcription-active histone markings. Furthermore, knocking-down CTCF expression hampered RARRES1 expression, suggesting CTCF positively regulated RARRES1 transcription presumably by binding to unmethylated promoter poised at transcription-ready state. Moreover, RARRES1 restoration not only impeded cell invasion but also promoted death induced by chemotherapeutic agents, denoting its tumor suppressive effect. Its role of attenuating invasion agreed with data generated from clinical specimens revealing that RARRES1 was generally downregulated in metastatic lymph nodes compared to the tumor cores.
CONCLUSION/SIGNIFICANCE: This report delineated silencing of RARRES1 by hypermethylation is occurring at a proximal promoter element and is associated with a loss of binding to CTCF, an activator for RARRES1 expression. We also revealed the tumor suppressive roles exerted by RARRES1 in part by promoting breast epithelial cell death and by impeding cell invasion that is an important property for metastatic spread.

Kloth M, Goering W, Ribarska T, et al.
The SNP rs6441224 influences transcriptional activity and prognostically relevant hypermethylation of RARRES1 in prostate cancer.
Int J Cancer. 2012; 131(6):E897-904 [PubMed] Related Publications
Epigenetic aberrations are frequent in prostate cancer and could be useful for detection and prognostication. However, the underlying mechanisms and the sequence of these changes remain to be fully elucidated. The tumor suppressor gene RARRES1 (TIG1) is frequently hypermethylated in several cancers. Having noted changes in the expression of its paralogous neighbor gene LXN at 3q25.32, we used pyrosequencing to quantify DNA methylation at both genes and determine its relationship with clinicopathological parameters in 86 prostate cancer tissues from radical prostatectomies. Methylation at LXN and RARRES1 was highly correlated. Increasing methylation was associated with worse clinical features, including biochemical recurrence, and decreased expression of both genes. However, expression of three neighboring genes was unaffected. Intriguingly, RARRES1 methylation was influenced by the genotype of the rs6441224 single-nucleotide polymorphism (SNP) in its promoter. We found that this SNP is located within an ETS-family-response element and that the more strongly methylated allele confers lower activity in reporter assays. Concomitant methylation of RARRES1 and LXN in cancerous tissues was also detected in prostate cancer cell lines and was shown to be associated with repressive histone modifications and transcriptional downregulation. In conclusion, we found that genotype-associated hypermethylation of the ETS-family target gene RARRES1 influences methylation at its neighbor gene LXN and could be useful as a prognostic biomarker.

Tsai FM, Wu CC, Shyu RY, et al.
Tazarotene-induced gene 1 inhibits prostaglandin E2-stimulated HCT116 colon cancer cell growth.
J Biomed Sci. 2011; 18:88 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The tazarotene-induced gene 1 (TIG1) is a putative tumor suppressor gene. We have recently demonstrated both TIG1A and TIG1B isoforms inhibited cell growth and induced the expression of G protein-coupled receptor kinase 5 (GRK5) in colon cancer cells. Because elevated prostaglandin E2 (PGE2) signaling plays a significant role in colorectal carcinogenesis, the objective of this study was to explore the effect of TIG1 on PGE2-induced cellular proliferation and signaling in colon cancer cells.
METHODS: HCT116 cells as well as TIG1A and TIG1B stable cells established from HCT116 colon cancer cells using the GeneSwitch system were used. TIG1 isoform expression was induced by mifepristone treatment in stable cells. Cell growth was determined using the WST-1 cell proliferation assay. Activation of β-catenin/TCF and cyclic adenosine monophosphate (cAMP)/CREB signaling pathways were determined using luciferase reporter assays. Expression and subcellular distribution of β-catenin were analyzed using Western blot and confocal microscope. Levels of cAMP were measured using an enzyme immunoassay. RNA interference was used to examine the effects of TIG1- and GRK5-mediated changes.
RESULTS: PGE2-stimulated cell growth was reduced in inducible TIG1A- and TIG1B-stable HCT116 cells. GRK5 expression was upregulated by both TIG1A and TIG1B isoforms, and its expression suppressed PGE2-stimulated HCT116 cell growth. GRK5, TIG1A, and TIG1B expression significantly inhibited PGE2-stimulated β-catenin/TCF and cAMP signaling pathway reporters and cAMP. Also, PGE2-stimulated nuclear localization of β-catenin was inhibited by expression of TIG1A and TIG1B, which was ameliorated by both TIG1 and GRK5 siRNAs.
CONCLUSIONS: TIG1 suppressed PGE2-stimulated Wnt and cAMP signaling pathways in colon cancer cells through GRK5.

Davidson B, Stavnes HT, Risberg B, et al.
Gene expression signatures differentiate adenocarcinoma of lung and breast origin in effusions.
Hum Pathol. 2012; 43(5):684-94 [PubMed] Related Publications
Lung and breast adenocarcinoma at advanced stages commonly involve the serosal cavities, giving rise to malignant effusions. The aim of the present study was to compare the global gene expression patterns of metastases from these 2 malignancies, to expand and improve the diagnostic panel of biomarkers currently available for their differential diagnosis, as well as to define type-specific biological targets. Gene expression profiles of 7 breast and 4 lung adenocarcinoma effusions were analyzed using the HumanRef-8 BeadChip from Illumina. Differentially expressed candidate genes were validated using quantitative real-time polymerase chain reaction and immunohistochemistry. Unsupervised hierarchical clustering using all 54,675 genes in the array separated lung from breast adenocarcinoma samples. We identified 289 unique probes that were significantly differentially expressed in the 2 cancers by greater than 2-fold using moderated t statistics, of which 65 and 224 were overexpressed in breast and lung adenocarcinoma, respectively. Genes overexpressed in breast adenocarcinoma included TFF1, TFF3, FOXA1, CA12, PITX1, RARRES1, CITED4, MYC, TFAP2A, EFHD1, TOB1, SPDEF, FASN, and TH. Genes overexpressed in lung adenocarcinoma included TITF1, SFTPG, MMP7, EVA1, GPR116, HOP, SCGB3A2, and MET. The differential expression of 15 genes was validated by quantitative real-time PCR, and differences in 8 gene products were confirmed by immunohistochemistry. Expression profiling distinguishes breast adenocarcinoma from lung adenocarcinoma and identifies genes that are differentially expressed in these 2 tumor types. The molecular signatures unique to these cancers may facilitate their differential diagnosis and may provide a molecular basis for therapeutic target discovery.

Vasiljević N, Wu K, Brentnall AR, et al.
Absolute quantitation of DNA methylation of 28 candidate genes in prostate cancer using pyrosequencing.
Dis Markers. 2011; 30(4):151-61 [PubMed] Free Access to Full Article Related Publications
Aberrant DNA methylation plays a pivotal role in carcinogenesis and its mapping is likely to provide biomarkers for improved diagnostic and risk assessment in prostate cancer (PCa). We quantified and compared absolute methylation levels among 28 candidate genes in 48 PCa and 29 benign prostate hyperplasia (BPH) samples using the pyrosequencing (PSQ) method to identify genes with diagnostic and prognostic potential. RARB, HIN1, BCL2, GSTP1, CCND2, EGFR5, APC, RASSF1A, MDR1, NKX2-5, CDH13, DPYS, PTGS2, EDNRB, MAL, PDLIM4, HLAa, ESR1 and TIG1 were highly methylated in PCa compared to BPH (p < 0.001), while SERPINB5, CDH1, TWIST1, DAPK1, THRB, MCAM, SLIT2, CDKN2a and SFN were not. RARB methylation above 21% completely distinguished PCa Separation based on methylation level of SFN, SLIT2 and SERPINB5 distinguished low and high Gleason score cancers, e.g. SFN and SERPINB5 together correctly classified 81% and 77% of high and low Gleason score cancers respectively. Several genes including CDH1 previously reported as methylation markers in PCa were not confirmed in our study. Increasing age was positively associated with gene methylation (p < 0.0001).Accurate quantitative measurement of gene methylation in PCa appears promising and further validation of genes like RARB, HIN1, BCL2, APC and GSTP1 is warranted for diagnostic potential and SFN, SLIT2 and SERPINB5 for prognostic potential.

Mithani SK, Smith IM, Califano JA
Use of integrative epigenetic and cytogenetic analyses to identify novel tumor-suppressor genes in malignant melanoma.
Melanoma Res. 2011; 21(4):298-307 [PubMed] Free Access to Full Article Related Publications
The objective of this study was to identify novel tumor-suppressor genes in melanoma, using an integrative genomic approach. Data from: (i) earlier reports of DNA loss and gain in malignant melanoma accompanied by comparative genomic hybridization high-definition array data of the entire human genome; (ii) microarray expression data from melanoma-derived cell lines identifying genes with significantly increased expression due to methylation using a pharmacologic demethylating strategy; and (iii) publicly available RNA expression microarray data of primary tumors and benign nevi were integrated using statistical tools to define a population of candidate tumor-suppressor genes. Twenty-seven genes were identified in areas of deletion that demonstrated diminished expression in primary melanomas relative to benign nevi and were significantly increased in expression by 5-Aza treatment. Seven genes of these 27 genes demonstrated methylation and deletion in a validation cohort of 14 separate primary tumors. These were: CHRDL1, SFRP1, TMEM47, LPL, RARRES1, PLCXD1, and KOX15. All of these genes demonstrated growth-suppressive properties with transfection into melanoma-derived cell lines. Seven putative tumor-suppressor genes in malignant melanoma were identified using a novel integrative technique.

Wu CC, Tsai FM, Shyu RY, et al.
G protein-coupled receptor kinase 5 mediates Tazarotene-induced gene 1-induced growth suppression of human colon cancer cells.
BMC Cancer. 2011; 11:175 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Tazarotene-induced gene 1 (TIG1) is a retinoid-inducible type II tumour suppressor gene. The B isoform of TIG1 (TIG1B) inhibits growth and invasion of cancer cells. Expression of TIG1B is frequently downregulated in various cancer tissues; however, the expression and activities of the TIG1A isoform are yet to be reported. Therefore, this study investigated the effects of the TIG1A and TIG1B isoforms on cell growth and gene expression profiles using colon cancer cells.
METHODS: TIG1A and TIG1B stable clones derived from HCT116 and SW620 colon cancer cells were established using the GeneSwitch system; TIG1 isoform expression was induced by mifepristone treatment. Cell growth was assessed using the WST-1 cell proliferation and colony formation assays. RNA interference was used to examine the TIG1 mediating changes in cell growth. Gene expression profiles were determined using microarray and validated using real-time polymerase chain reaction, and Western blot analyses.
RESULTS: Both TIG1 isoforms were expressed at high levels in normal prostate and colon tissues and were downregulated in colon cancer cell lines. Both TIG1 isoforms significantly inhibited the growth of transiently transfected HCT116 cells and stably expressing TIG1A and TIG1B HCT116 and SW620 cells. Expression of 129 and 55 genes was altered upon induction of TIG1A and TIG1B expression, respectively, in stably expressing HCT116 cells. Of the genes analysed, 23 and 6 genes were upregulated and downregulated, respectively, in both TIG1A and TIG1B expressing cells. Upregulation of the G-protein-coupled receptor kinase 5 (GRK5) was confirmed using real-time polymerase chain reaction and Western blot analyses in both TIG1 stable cell lines. Silencing of TIG1A or GRK5 expression significantly decreased TIG1A-mediated cell growth suppression.
CONCLUSIONS: Expression of both TIG1 isoforms was observed in normal prostate and colon tissues and was downregulated in colon cancer cell lines. Both TIG1 isoforms suppressed cell growth and stimulated GRK5 expression in HCT116 and SW620 cells. Knockdown of GRK5 expression alleviated TIG1A-induced growth suppression of HCT116 cells, suggesting that GRK5 mediates cell growth suppression by TIG1A. Thus, TIG1 may participate in the downregulation of G-protein coupled signaling by upregulating GRK5 expression.

Tamura G, So K, Miyoshi H, et al.
Quantitative assessment of gene methylation in neoplastic and non-neoplastic gastric epithelia using methylation-specific DNA microarray.
Pathol Int. 2009; 59(12):895-9 [PubMed] Related Publications
A fiber-type DNA microarray was used to calculate methylation rates (MR) of four tumor suppressor genes, lysyl oxidase (LOX), p16, RUNX3, and tazarotene-induced gene 1 (TIG1). MR were calculated in 26 primary gastric cancers and corresponding non-neoplastic gastric epithelia, and the results were compared to those of conventional methylation-specific polymerase chain reaction (MSP). MR ranged from 0.1% to 69.1% (mean, 18.3%) for LOX, 0.5-74.1% (mean, 15.7%) for p16, 0.2-76.5% (mean, 22.7%) for RUNX3, and 0.6-41.2% (mean, 5.8%) for TIG1 in primary gastric cancers, and from 0.1% to 25.8% (mean, 8.7%) for LOX, 1.0- 23.2% (mean, 10.3%) for p16, 0.7-25.1% (mean, 5.5%) for RUNX3, and 1.8-27.6% (mean, 11.4%) for TIG1 in corresponding non-neoplastic gastric epithelia. Although MR varied significantly across different samples for both neoplastic and non-neoplastic gastric epithelia, high-level methylation (MR >40%) was cancer specific and was observed in 19.2%, 19.2%, 30.8%, and 3.8% of primary gastric cancers for LOX, p16, RUNX3, and TIG1, respectively. All samples with high-level methylation, as well as some samples with low MR (particularly <10%) were judged to be methylation positive on conventional MSP. Quantitative analysis of gene methylation using methylation-specific DNA microarray is a promising method for cancer diagnosis.

Son MS, Kang MJ, Park HC, et al.
Expression and mutation analysis of TIG1 (tazarotene-induced gene 1) in human gastric cancer.
Oncol Res. 2009; 17(11-12):571-80 [PubMed] Related Publications
Tazarotene-induced gene 1 (TIG1) has been known to function as a cell adhesion molecule, which leads to better cell to cell contact and reduced proliferation. We investigated expression and mutation status of TIG1 in primary gastric tumors and cell lines to explore the candidacy of the gene as a tumor suppressor. A total of 172 gastric tissue specimes, including 80 primary adenocarcinomas, 12 benign tumors, and 80 adjacent normal mucosa, and 15 gastric cancer cell lines were used. TIG1 expression was analyzed by semiquantitative RT-PCR and immunoblot analysis. To screen for the presence of somatic mutations, RT-PCR-SSCP analysis was carried out. The effect of 5-aza-2'-deoxycytidine treatment was examined to elicit whether TIG1 reduction is associated with abnormal DNA hypermethylation. Compared to noncancerous tissues, a substantial reduction of TIG1 expression was observed in 73.3% (11115) cancer cell lines, and seven of these exhibited nearly undetectable levels of expression. Decreased expression of TIG1 was also found in 62 (77.5%) primary carcinoma tissues compared to adjacent noncancerous tissues, indicating a tumor-specific reduction of TIG1. Expression levels of TIG1 were significantly low in primary carcinomas and cancer cell lines compared to those of normal tissues. Moreover, loss or reduction of TIG1 was significantly high in advanced tumors compared to early tumors and more frequent in poorly differentiated tumors than well or moderately differentiated tumors. TIG1 expression was reactivated or its level was elevated following 5-aza-2'-deoxycytidine treatment, indicating that TIG1 expression is transcriptionally silenced in these cancer cells by abnormal DNA hypermethylation. These data indicate that TIG1 undergoes frequent epigenetic inactivation due to aberrant DNA hypermethylation in gastric cancers, and its altered expression is associated with the malignant progression of tumors.

Kwok WK, Pang JC, Lo KW, Ng HK
Role of the RARRES1 gene in nasopharyngeal carcinoma.
Cancer Genet Cytogenet. 2009; 194(1):58-64 [PubMed] Related Publications
Nasopharyngeal carcinoma (NPC) is a unique type of head and neck cancer that is most prevalent in southern China. Previous studies have suggested that genetic susceptibility, environmental carcinogens, and Epstein-Barr virus (EBV) infection contribute to the etiology of NPC. Our group has identified the retinoic acid receptor responder (tazarotene induced) 1 gene (RARRES1; alias TIG1) to be transcriptionally silenced by promoter hypermethylation in approximately 90% of NPC cases, suggesting that its inactivation may be important in NPC formation. The aim of this study was to explore the functional role of the RARRES1 protein (alias TIG1) in NPC cells with EBV infection (HK1-EBV) and without (HK1). Cellular proliferation analysis, as measured by 5-bromo-2'-deoxyuridine (BrdU) incorporation, showed that knockdown and overexpression of TIG1 in HK1 led, respectively, to significantly increased (P = 0.005) and reduced (P = 0.027) proportions of BrdU-labeled cells, compared with control cells. In contrast, knockdown or overexpression of TIG1 had no significant effect on cellular proliferation in HK1-EBV cells. Invasion chamber assay showed that TIG1 knockdown in HK1-EBV cells resulted in significant enhancement of invasive capacity of HK1-EBV cells (P = 0.006). HK1 cells were not invasive, regardless of TIG1 status. These findings suggest that TIG1 may play a role in cellular proliferation and invasion in NPC cells and that its function may be dependent on the EBV status.

Sun J, Chen Z, Zhu T, et al.
Hypermethylated SFRP1, but none of other nine genes "informative" for western countries, is valuable for bladder cancer detection in Mainland China.
J Cancer Res Clin Oncol. 2009; 135(12):1717-27 [PubMed] Related Publications
PURPOSE: A 11-gene set by methylation-specific PCR in urine sediments for sensitive/specific detection of bladder cancer has been identified previously. In this study, we have evaluated 10 DNA methylation biomarkers that have been reported informative in western countries for bladder cancer diagnosis for a better set.
MATERIALS AND METHODS: The promoter CpG Islands of the following 10 genes: CDH1, FANCF, LOXL1, LOXL4, p16INK4, SFRP1, SOX9, TIG1, TIMP3, and XAF1 have been subjected to methylation-specific PCR analysis in the DNA of 2 bladder cancer cell lines, 2 normal bladder tissues and urine sediments of 82 bladder cancer patients, 15 non-cancerous urogenital patients and 5 healthy volunteers.
RESULTS: Both XAF1 and LOXL1 genes were heterozygously methylated in the normal bladder tissues, showing no cancer state specificity. While the hypermethylated states were detected in urine sediments of bladder cancer at a frequency not less than 2.4% (2/82 cases), nine genes were also methylated in the patients of the non-cancerous urogenital diseases. The methylated SFRP1 was detected in 36.6% (30/82 cases) of bladder cancer and 6.7% (1/15 cases) of non-cancerous urogenital diseases, showing the bladder cancer specificity.
CONCLUSIONS: Inclusion of the SFRP1 gene into a set of 11 genes has improved the bladder cancer detection. The insufficiency of predicting disease onset in this study with the previously recommended targets in western countries suggests a possible disease disparity between these two populations. Alternatively, the tissue-specific methylation might be mistaken as the cancer specific in the studies where no non-cancerous lesion controls were involved.

Bonazzi VF, Irwin D, Hayward NK
Identification of candidate tumor suppressor genes inactivated by promoter methylation in melanoma.
Genes Chromosomes Cancer. 2009; 48(1):10-21 [PubMed] Related Publications
Tumor suppressor genes (TSGs) are sometimes inactivated by transcriptional silencing through promoter hypermethylation. To identify novel methylated TSGs in melanoma, we carried out global mRNA expression profiling on a panel of 12 melanoma cell lines treated with a combination of 5-Aza-2-deoxycytidine (5AzadC) and an inhibitor of histone deacetylase, Trichostatin A. Reactivation of gene expression after drug treatment was assessed using Illumina whole-genome microarrays. After qRT-PCR confirmation, we followed up 8 genes (AKAP12, ARHGEF16, ARHGAP27, ENC1, PPP1R3C, PPP1R14C, RARRES1, and TP53INP1) by quantitative DNA methylation analysis using mass spectrometry of base-specific cleaved amplification products in panels of melanoma cell lines and fresh tumors. PPP1R3C, ENC1, RARRES1, and TP53INP1, showed reduced mRNA expression in 35-59% of the melanoma cell lines compared to melanocytes and which was correlated with a high proportion of promoter methylation (>40-60%). The same genes also showed extensive promoter methylation in 6-25% of the tumor samples, thus confirming them as novel candidate TSGs in melanoma.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. RARRES1, Cancer Genetics Web: http://www.cancer-genetics.org/RARRES1.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 01 September, 2019     Cancer Genetics Web, Established 1999