Gene Summary

Gene:PIGS; phosphatidylinositol glycan anchor biosynthesis, class S
Summary:This gene encodes a protein that is involved in GPI-anchor biosynthesis. The glycosylphosphatidylinositol (GPI) anchor is a glycolipid found on many blood cells and serves to anchor proteins to the cell surface. This gene encodes an essential component of the multisubunit enzyme, GPI transamidase. GPI transamidase mediates GPI anchoring in the endoplasmic reticulum, by catalyzing the transfer of fully assembled GPI units to proteins. [provided by RefSeq, Jul 2008]
Databases:OMIM, VEGA, HGNC, Ensembl, GeneCard, Gene
Protein:GPI transamidase component PIG-S
Source:NCBIAccessed: 18 August, 2015


What does this gene/protein do?
Show (8)
Pathways:What pathways are this gene/protein implicaed in?
Show (2)

Cancer Overview

Research Indicators

Publications Per Year (1990-2015)
Graph generated 18 August 2015 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Disease Models, Animal
  • Cell Differentiation
  • Cattle
  • Immunohistochemistry
  • Base Sequence
  • Cell Proliferation
  • Genetic Predisposition
  • Amino Acid Sequence
  • Sequence Alignment
  • Chromosome Mapping
  • Cricetinae
  • Adolescents
  • Breast Cancer
  • Molecular Sequence Data
  • Swine Diseases
  • Neoplasm Proteins
  • Cultured Cells
  • Messenger RNA
  • Thyroid Cancer
  • Signal Transduction
  • Melanoma
  • DNA
  • Mutation
  • Cloning, Molecular
  • Swine
  • Species Specificity
  • alpha-Glucosidases
  • Neoplastic Cell Transformation
  • Genotype
  • Cell Line
  • Sequence Homology
  • Polymerase Chain Reaction
  • Transcription Factors
  • Cancer Gene Expression Regulation
  • Chromosome 17
  • Tumor Suppressor Gene
  • Phenotype
  • Recombinant Proteins
  • Guinea Pigs
Tag cloud generated 18 August, 2015 using data from PubMed, MeSH and CancerIndex

Specific Cancers (3)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: PIGS (cancer-related)

Wang J, Hu G, Lin Z, et al.
Characteristic and functional analysis of a newly established porcine small intestinal epithelial cell line.
PLoS One. 2014; 9(10):e110916 [PubMed] Free Access to Full Article Related Publications
The mucosal surface of intestine is continuously exposed to both potential pathogens and beneficial commensal microorganisms. Recent findings suggest that intestinal epithelial cells, which once considered as a simple physical barrier, are a crucial cell lineage necessary for maintaining intestinal immune homeostasis. Therefore, establishing a stable and reliable intestinal epithelial cell line for future research on the mucosal immune system is necessary. In the present study, we established a porcine intestinal epithelial cell line (ZYM-SIEC02) by introducing the human telomerase reverse transcriptase (hTERT) gene into small intestinal epithelial cells derived from a neonatal, unsuckled piglet. Morphological analysis revealed a homogeneous cobblestone-like morphology of the epithelial cell sheets. Ultrastructural indicated the presence of microvilli, tight junctions, and a glandular configuration typical of the small intestine. Furthermore, ZYM-SIEC02 cells expressed epithelial cell-specific markers including cytokeratin 18, pan-cytokeratin, sucrase-isomaltase, E-cadherin and ZO-1. Immortalized ZYM-SIEC02 cells remained diploid and were not transformed. In addition, we also examined the host cell response to Salmonella and LPS and verified the enhanced expression of mRNAs encoding IL-8 and TNF-α by infection with Salmonella enterica serovars Typhimurium (S. Typhimurium). Results showed that IL-8 protein expression were upregulated following Salmonella invasion. TLR4, TLR6 and IL-6 mRNA expression were upregulated following stimulation with LPS, ZYM-SIEC02 cells were hyporeponsive to LPS with respect to IL-8 mRNA expression and secretion. TNFα mRNA levels were significantly decreased after LPS stimulation and TNF-α secretion were not detected challenged with S. Typhimurium neither nor LPS. Taken together, these findings demonstrate that ZYM-SIEC02 cells retained the morphological and functional characteristics typical of primary swine intestinal epithelial cells and thus provide a relevant in vitro model system for future studies on porcine small intestinal pathogen-host cell interactions.

Keane M, Craig T, Alföldi J, et al.
The Naked Mole Rat Genome Resource: facilitating analyses of cancer and longevity-related adaptations.
Bioinformatics. 2014; 30(24):3558-60 [PubMed] Free Access to Full Article Related Publications
MOTIVATION: The naked mole rat (Heterocephalus glaber) is an exceptionally long-lived and cancer-resistant rodent native to East Africa. Although its genome was previously sequenced, here we report a new assembly sequenced by us with substantially higher N50 values for scaffolds and contigs.
RESULTS: We analyzed the annotation of this new improved assembly and identified candidate genomic adaptations which may have contributed to the evolution of the naked mole rat's extraordinary traits, including in regions of p53, and the hyaluronan receptors CD44 and HMMR (RHAMM). Furthermore, we developed a freely available web portal, the Naked Mole Rat Genome Resource (http://www.naked-mole-rat.org), featuring the data and results of our analysis, to assist researchers interested in the genome and genes of the naked mole rat, and also to facilitate further studies on this fascinating species.

Sieren JC, Meyerholz DK, Wang XJ, et al.
Development and translational imaging of a TP53 porcine tumorigenesis model.
J Clin Invest. 2014; 124(9):4052-66 [PubMed] Free Access to Full Article Related Publications
Cancer is the second deadliest disease in the United States, necessitating improvements in tumor diagnosis and treatment. Current model systems of cancer are informative, but translating promising imaging approaches and therapies to clinical practice has been challenging. In particular, the lack of a large-animal model that accurately mimics human cancer has been a major barrier to the development of effective diagnostic tools along with surgical and therapeutic interventions. Here, we developed a genetically modified porcine model of cancer in which animals express a mutation in TP53 (which encodes p53) that is orthologous to one commonly found in humans (R175H in people, R167H in pigs). TP53(R167H/R167H) mutant pigs primarily developed lymphomas and osteogenic tumors, recapitulating the tumor types observed in mice and humans expressing orthologous TP53 mutant alleles. CT and MRI imaging data effectively detected developing tumors, which were validated by histopathological evaluation after necropsy. Molecular genetic analyses confirmed that these animals expressed the R167H mutant p53, and evaluation of tumors revealed characteristic chromosomal instability. Together, these results demonstrated that TP53(R167H/R167H) pigs represent a large-animal tumor model that replicates the human condition. Our data further suggest that this model will be uniquely suited for developing clinically relevant, noninvasive imaging approaches to facilitate earlier detection, diagnosis, and treatment of human cancers.

Li B, Qiu B, Lee DS, et al.
Fructose-1,6-bisphosphatase opposes renal carcinoma progression.
Nature. 2014; 513(7517):251-5 [PubMed] Free Access to Full Article Related Publications
Clear cell renal cell carcinoma (ccRCC), the most common form of kidney cancer, is characterized by elevated glycogen levels and fat deposition. These consistent metabolic alterations are associated with normoxic stabilization of hypoxia-inducible factors (HIFs) secondary to von Hippel-Lindau (VHL) mutations that occur in over 90% of ccRCC tumours. However, kidney-specific VHL deletion in mice fails to elicit ccRCC-specific metabolic phenotypes and tumour formation, suggesting that additional mechanisms are essential. Recent large-scale sequencing analyses revealed the loss of several chromatin remodelling enzymes in a subset of ccRCC (these included polybromo-1, SET domain containing 2 and BRCA1-associated protein-1, among others), indicating that epigenetic perturbations are probably important contributors to the natural history of this disease. Here we used an integrative approach comprising pan-metabolomic profiling and metabolic gene set analysis and determined that the gluconeogenic enzyme fructose-1,6-bisphosphatase 1 (FBP1) is uniformly depleted in over six hundred ccRCC tumours examined. Notably, the human FBP1 locus resides on chromosome 9q22, the loss of which is associated with poor prognosis for ccRCC patients. Our data further indicate that FBP1 inhibits ccRCC progression through two distinct mechanisms. First, FBP1 antagonizes glycolytic flux in renal tubular epithelial cells, the presumptive ccRCC cell of origin, thereby inhibiting a potential Warburg effect. Second, in pVHL (the protein encoded by the VHL gene)-deficient ccRCC cells, FBP1 restrains cell proliferation, glycolysis and the pentose phosphate pathway in a catalytic-activity-independent manner, by inhibiting nuclear HIF function via direct interaction with the HIF inhibitory domain. This unique dual function of the FBP1 protein explains its ubiquitous loss in ccRCC, distinguishing FBP1 from previously identified tumour suppressors that are not consistently mutated in all tumours.

Musilova P, Drbalova J, Kubickova S, et al.
Illegitimate recombination between T cell receptor genes in humans and pigs (Sus scrofa domestica).
Chromosome Res. 2014; 22(4):483-93 [PubMed] Related Publications
T cell receptor (TCR) genes (TRA/TRD, TRB and TRG) reside in three regions on human chromosomes (14q11.2, 7q34 and 7p14, respectively) and pig chromosomes (7q15.3-q21, 18q11.3-q12 and 9q21-22, respectively). During the maturation of T cells, TCR genes are rearranged by site-specific recombination. Occasionally, interlocus recombination of different TCR genes takes place, resulting in chromosome rearrangements. It has been suggested that the absolute number of these "innocent" trans-rearrangements correlates with the risk of lymphoma. The aims of this work were to assess the frequencies of rearrangements with breakpoints in TCR genes in domestic pig lymphocytes and to compare these with the frequencies of corresponding rearrangements in human lymphocytes by using fluorescence in situ hybridization with chromosome painting probes. We show that frequencies of trans-rearrangements involving TRA/TRD locus in pigs are significantly higher than the frequency of translocations with breakpoints in TRB and TRG genes in pigs and the frequencies of corresponding trans-rearrangements involving TRA/TRD locus in humans. Complex structure of the pig TRA/TRD locus with high number of potential V(D)J rearrangements compared to the human locus may account for the observed differences. Furthermore, we demonstrated that trans-rearrangements involving pig TRA/TRD locus occur at lower frequencies in γδ T cells than in αβ T lymphocytes. The decrease of the frequencies in γδ T cells is probably caused by the absence of TRA recombination during maturation of this T cell lineage. High numbers of innocent trans-rearrangements in pigs may indicate a higher risk of T-cell lymphoma than in humans.

Wang XQ, Terry PD, Cheng L, et al.
Interactions between pork consumption, CagA status and IL-1B-31 genotypes in gastric cancer.
World J Gastroenterol. 2014; 20(25):8151-7 [PubMed] Free Access to Full Article Related Publications
AIM: To explore potential interactions among Helicobacter pylori (H. pylori), CagA status, interleukin (IL)-1B-31 genotypes, and non-cardiac gastric cancer (GC) risk.
METHODS: A case-control study of non-cardia GC was performed at 3 hospitals located in Xi'an, China, between September 2008 and July 2010. We included 171 patients with histologically diagnosed primary non-cardia GC and 367 population based controls (matched by sex, age and city of residence). A standardized questionnaire was used to obtain information regarding potential risk factors, including pork consumption. H. pylori CagA status was assessed by enzyme-linked immunosorbent assay, and IL-1B-31 genotypes were determined by polymerase chain reaction-restriction fragment length polymorphism. Multivariate unconditional logistic regression was used to explore potential interactions among the factors.
RESULTS: The CagA appeared to confer an increased risk of GC (OR = 1.81, 95%CI: 1.25-2.61). The main associations with IL-1B-31C allele here were 0.98 (95%CI: 0.59-1.63) for CC vs TT and 0.99 (95%CI: 0.64-1.51) for C Carriers vs TT. However, no associations were observed for CagA or IL-1B-31 genotype status among subjects who reported low pork consumption (P for interaction = 0.11). In contrast, high pork consumption and IL-1B-31C genotypes appeared to synergistically increase GC risk (P for interaction = 0.048) after adjusting for confounding factors, particularly among subjects with CagA (OR = 3.07, 95%CI: 1.17-10.79). We did not observe effect modification of pork consumption by H. pylori CagA status, or between H. pylori CagA status and IL-1B-31 genotypes after adjustment for pork consumption and other factors.
CONCLUSION: These interaction relationships among CagA, IL-1B-31 and pork consumption may have implications for development of the preventive strategies for the early detection of non-cardiac GC.

Kim A, Im M, Yim NH, et al.
A novel herbal medicine, KIOM-C, induces autophagic and apoptotic cell death mediated by activation of JNK and reactive oxygen species in HT1080 human fibrosarcoma cells.
PLoS One. 2014; 9(5):e98703 [PubMed] Free Access to Full Article Related Publications
KIOM-C was recently demonstrated to have anti-metastatic activity in highly malignant cancer cells via suppression of NF-κB-mediated MMP-9 activity. In addition, it was reported to be effective for clearance of the influenza virus by increasing production of anti-viral cytokines, such as TNF-α and IFN-γ, and efficacious in the treatment of pigs suffering from porcine circovirus-associated disease (PCVAD). In this study, we investigated whether KIOM-C induces cancer cell death and elucidated the underlying anti-cancer mechanisms. In addition, we examined whether KIOM-C oral administration suppresses in vivo tumor growth of HT1080 cells in athymic nude mice. We initially found that KIOM-C at concentrations of 500 and 1000 µg/ml caused dose- and time-dependent cell death in cancer cells, but not normal hepatocytes, to approximately 50% of control levels. At the early stage of KIOM-C treatment (12 h), cells were arrested in G1 phase, which was accompanied by up-regulation of p21 and p27, down-regulation of cyclin D1, and subsequent increases in apoptotic and autophagic cells. Following KIOM-C treatment, the extent of caspase-3 activation, PARP cleavage, Beclin-1 expression, and LC3-II conversion was remarkably up-regulated, but p62 expression was down-regulated. Phosphorylation of AMPK, ULK, JNK, c-jun, and p53 was increased significantly in response to KIOM-C treatment. The levels of intracellular ROS and CHOP expression were also increased. In particular, the JNK-specific inhibitor SP600125 blocked KIOM-C-induced ROS generation and CHOP expression almost completely, which consequently almost completely rescued cell death, indicating that JNK activation plays a critical role in KIOM-C-induced cell death. Furthermore, daily oral administration of 85 and 170 mg/kg KIOM-C efficiently suppressed the tumorigenic growth of HT1080 cells, without systemic toxicity. These results collectively suggest that KIOM-C efficiently induces cancer cell death by both autophagy and apoptosis via activation of JNK signaling pathways, and KIOM-C represents a safe and potent herbal therapy for treating malignancies.

Kim J, Ahn H, Woo HM, et al.
Generation of liver-specific TGF-α and c-Myc-overexpressing fibroblasts for future creation of a liver cancer porcine model.
Mol Med Rep. 2014; 10(1):329-35 [PubMed] Related Publications
Liver cancer is one of the most serious life-threatening diseases in the world. Although the rodent model of hepatocellar carcinoma (HCC) is commonly used, it is limited when considering preclinical applications, including transarterial chemoembolization. The pig is a more appropriate model for applying preclinical procedures as it has similar anatomical and physiological characteristics to humans. In the current study, transgenic fibroblasts were generated that overexpressed two proto-oncogenes specifically in hepatocytes. Porcine TGF-α and c-myc genes were isolated and these were linked with the porcine albumin promoter, which has exhibited selective activity in liver cells. Targeting vectors were introduced into the porcine fibroblasts using a liposome-mediated delivery system and the transgenic cell line was screened with 3 weeks of G-418 treatment. Selected vector‑positive colonies were further confirmed with polymerase chain reaction-based genotyping. Thus, the transgenic cell lines created in the current study should induce liver cancer in pig models following somatic cell nuclear transfer.

Lai CW, Chen HL, Lin KY, et al.
FTSJ2, a heat shock-inducible mitochondrial protein, suppresses cell invasion and migration.
PLoS One. 2014; 9(3):e90818 [PubMed] Free Access to Full Article Related Publications
Ribosomal RNA large subunit methyltransferase J (RrmJ), an Escherichia coli heat shock protein, is responsible for 2'-O-ribose methylation in 23S rRNA. In mammals, three close homologs of RrmJ have been identified and have been designated as FTSJ1, FTSJ2 and FTSJ3; however, little is known about these genes. In this study, we characterized the mammalian FTSJ2, which was the most related protein to RrmJ in a phylogenetic analysis that had similar amino acid sequence features and tertiary protein structures of RrmJ. FTSJ2 was first identified in this study as a nucleus encoded mitochondrial protein that preserves the heat shock protein character in mammals in which the mRNA expressions was increased in porcine lung tissues and A549 cells after heat shock treatment. In addition, a recent study in non-small cell lung cancer (NSCLC) suggested that the FTSJ2 gene is located in a novel oncogenic locus. However, our results demonstrate that the expression of FTSJ2 mRNA was decreased in the more invasive subline (CL1-5) of the lung adenocarcinoma cells (CL1) compared with the less invasive subline (CL1-0), and overexpression of FTSJ2 resulted in the inhibition of cell invasion and migration in the rhabdomyosarcoma cell (TE671). In conclusion, our findings indicate that mammalian FTSJ2 is a mitochondrial ortholog of E. coli RrmJ and conserves the heat shock protein properties. Moreover, FTSJ2 possesses suppressive effects on the invasion and migration of cancer cells.

Wu J, Liu S, Yu J, et al.
Vertically integrated translational studies of PDX1 as a therapeutic target for pancreatic cancer via a novel bifunctional RNAi platform.
Cancer Gene Ther. 2014; 21(2):48-53 [PubMed] Related Publications
RNA interference (RNAi) represents a powerful, new tool for scientific investigation as well as a promising new form of targeted gene therapy, with applications currently in clinical trials. Bifunctional short hairpin RNA (shRNA) are synthetic RNAi molecules, engineered to utilize multiple endogenous RNAi pathways to specifically silence target genes. Pancreatic and duodenal homeobox 1 (PDX1) is a key regulator of pancreatic development, β-cell differentiation, normal β-cell function and pancreatic cancer. Our aim is to review the process of identifying PDX1 as a specific, potential RNAi target in pancreatic cancer, as well as the underlying mechanisms and various forms of RNAi, with subsequent testing and development of PDX1-targeted bifunctional shRNA therapy.

Zhan Y, Wang L, Liu J, et al.
Choline plasmalogens isolated from swine liver inhibit hepatoma cell proliferation associated with caveolin-1/Akt signaling.
PLoS One. 2013; 8(10):e77387 [PubMed] Free Access to Full Article Related Publications
Plasmalogens play multiple roles in the structures of biological membranes, cell membrane lipid homeostasis and human diseases. We report the isolation and identification of choline plasmalogens (ChoPlas) from swine liver by high performance thin layer chromatography (HPTLC) and high performance liquid chromatography (HPLC)/MS. The growth and viability of hepatoma cells (CBRH7919, HepG2 and SMMC7721) was determined following ChoPlas treatment comparing with that of human normal immortal cell lines (HL7702). Result indicated that ChoPlas inhibited hepatoma cell proliferation with an optimal concentration and time of 25 μmol/L and 24 h. To better understand the mechanism of the ChoPlas-induced inhibition of hepatoma cell proliferation, Caveolin-1 and PI3K/Akt pathway signals, including total Akt, phospho-Akt(pAkt) and Bcl-2 expression in CBRH7919 cells, were determined by western blot. ChoPlas treatment increased Caveolin-1 expression and reduced the expression of phospho-Akt (pAkt) and Bcl-2, downstream targets of the PI3K/Akt pathway. Further cell cycle analysis showed that ChoPlas treatment induced G1 and G1/S phase transition cell cycle arrest. The expression of essential cell cycle regulatory proteins involved in the G1 and G1/S phase transitions, cyclin D, CDK4, cyclin E and CDK2, were also analyzed by western blot. ChoPlas reduced CDK4, cyclin E and CDK2 expression. Taken together, the results indicate that swine liver-derived natural ChoPlas inhibits hepatoma cell proliferation associated with Caveolin-1 and PI3K/Akt signals.

Wang C, Lv X, He C, et al.
The G-protein-coupled estrogen receptor agonist G-1 suppresses proliferation of ovarian cancer cells by blocking tubulin polymerization.
Cell Death Dis. 2013; 4:e869 [PubMed] Free Access to Full Article Related Publications
The G-protein-coupled estrogen receptor 1 (GPER) has recently been reported to mediate the non-genomic action of estrogen in different types of cells and tissues. G-1 (1-[4-(6-bromobenzo[1,3] dioxol-5yl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinolin-8-yl]-ethanone) was developed as a potent and selective agonist for GPER. G-1 has been shown to induce the expression of genes and activate pathways that facilitate cancer cell proliferation by activating GPER. Here we demonstrate that G-1 has an anticancer potential with a mechanism similar to vinca alkaloids, the commonly used chemotherapy drugs. We found that G-1 blocks tubulin polymerization and thereby interrupts microtubule assembly in ovarian cancer cells leading to the arrest of cell cycle in the prophase of mitosis and the suppression of ovarian cancer cell proliferation. G-1 treatment also induces apoptosis of ovarian cancer cells. The ability of G-1 to target microtubules to suppress ovarian cancer cell proliferation makes it a promising candidate drug for treatment of ovarian cancer.

Balasubramaniam VR, Hong Wai T, Ario Tejo B, et al.
Highly pathogenic avian influenza virus nucleoprotein interacts with TREX complex adaptor protein Aly/REF.
PLoS One. 2013; 8(9):e72429 [PubMed] Free Access to Full Article Related Publications
We constructed a novel chicken (Gallus gallus) lung cDNA library fused inside yeast acting domain vector (pGADT7). Using yeast two-hybrid screening with highly pathogenic avian influenza (HPAI) nucleoprotein (NP) from the strain (A/chicken/Malaysia/5858/2004(H5N1)) as bait, and the Gallus gallus lung cDNA library as prey, a novel interaction between the Gallus gallus cellular RNA export adaptor protein Aly/REF and the viral NP was identified. This interaction was confirmed and validated with mammalian two hybrid studies and co-immunoprecipitation assay. Cellular localization studies using confocal microscopy showed that NP and Aly/REF co-localize primarily in the nucleus. Further investigations by mammalian two hybrid studies into the binding of NP of other subtypes of influenza virus such as the swine A/New Jersey/1976/H1N1 and pandemic A/Malaysia/854/2009(H1N1) to human Aly/REF, also showed that the NP of these viruses interacts with human Aly/REF. Our findings are also supported by docking studies which showed tight and favorable binding between H5N1 NP and human Aly/REF, using crystal structures from Protein Data Bank. siRNA knockdown of Aly/REF had little effect on the export of HPAI NP and other viral RNA as it showed no significant reduction in virus titer. However, UAP56, another component of the TREX complex, which recruits Aly/REF to mRNA was found to interact even better with H5N1 NP through molecular docking studies. Both these proteins also co-localizes in the nucleus at early infection similar to Aly/REF. Intriguingly, knockdown of UAP56 in A549 infected cells shows significant reduction in viral titer (close to 10 fold reduction). Conclusively, our study have opened new avenues for research of other cellular RNA export adaptors crucial in aiding viral RNA export such as the SRSF3, 9G8 and ASF/SF2 that may play role in influenza virus RNA nucleocytoplasmic transport.

Guo S, Israel AL, Basu G, et al.
Topical gene electrotransfer to the epidermis of hairless guinea pig by non-invasive multielectrode array.
PLoS One. 2013; 8(8):e73423 [PubMed] Free Access to Full Article Related Publications
Topical gene delivery to the epidermis has the potential to be an effective therapy for skin disorders, cutaneous cancers, vaccinations and systemic metabolic diseases. Previously, we reported on a non-invasive multielectrode array (MEA) that efficiently delivered plasmid DNA and enhanced expression to the skin of several animal models by in vivo gene electrotransfer. Here, we characterized plasmid DNA delivery with the MEA in a hairless guinea pig model, which has a similar histology and structure to human skin. Significant elevation of gene expression up to 4 logs was achieved with intradermal DNA administration followed by topical non-invasive skin gene electrotransfer. This delivery produced gene expression in the skin of hairless guinea pig up to 12 to 15 days. Gene expression was observed exclusively in the epidermis. Skin gene electrotransfer with the MEA resulted in only minimal and mild skin changes. A low level of human Factor IX was detected in the plasma of hairless guinea pig after gene electrotransfer with the MEA, although a significant increase of Factor IX was obtained in the skin of animals. These results suggest gene electrotransfer with the MEA can be a safe, efficient, non-invasive skin delivery method for skin disorders, vaccinations and potential systemic diseases where low levels of gene products are sufficient.

Au JT, Mittra A, Song TJ, et al.
Irreversible electroporation facilitates gene transfer of a GM-CSF plasmid with a local and systemic response.
Surgery. 2013; 154(3):496-503 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Electroporation uses an electric field to induce pores in the cell membrane that can transfer macromolecules into target cells. Modulation of electrical parameters leads to irreversible electroporation (IRE), which is being developed for tissue ablation. We sought to evaluate whether the application of IRE may induce a lesser electric field in the periphery where reversible electroporation may occur, facilitating gene transfer of a granulocyte macrophage colony-stimulating factor (GM-CSF) plasmid to produce its biologic response.
METHODS: Yorkshire pigs underwent laparotomy, and IRE of the liver was performed during hepatic arterial infusion of 1 or 7 mg of a naked human GM-CSF plasmid. The serum, liver, lymph nodes, and bone marrow were harvested for analysis.
RESULTS: Human GM-CSF level rose from undetectable to 131 pg/mL in the serum at 24 hours after IRE and plasmid infusion. The liver demonstrated an ablation zone surrounded by an immune infiltrate that had greater macrophage intensity than when treated with IRE or plasmid infusion alone. This dominance of macrophages was dose dependent. Distant effects of GM-CSF were found in the bone marrow, where proliferating myeloid cells increased from 14% to 25%.
CONCLUSION: IRE facilitated gene transfer of the GM-CSF plasmid and brought about a local and systemic biologic response. This technique holds potential for tumor eradication and immunotherapy of residual cancer.

Wei X, Sun H, Yan H, et al.
ZC88, a novel 4-amino piperidine analog, inhibits the growth of neuroblastoma cells through blocking hERG potassium channel.
Cancer Biol Ther. 2013; 14(5):450-7 [PubMed] Free Access to Full Article Related Publications
Many studies have provided convincing evidence for hERG as an important diagnostic and prognostic factor in human cancers, as well as a useful target for antineoplastic therapy. Our previous study also revealed that knockdown of herg gene expression by shRNA interference inhibited the growth of neuroblastoma cells in vitro and in vivo. In the experiment, a novel 4-amino piperidine analog, ZC88, was examined for its effect on hERG potassium channels and its antitumor potency was observed in vitro and in vivo. The results showed that ZC88 could block hERG1 and hERG1b channels expressed in Xenopus oocytes in a concentration-dependent manner. ZC88 displayed significant antiproliferative activity in several tumor cell lines and the tumor cells with higher expression of hERG presented higher sensitivity to ZC88. The mitotic progression of tumor cells was markedly suppressed in the presence of ZC88 through arresting cells in G₀/G₁ phase. ZC88 significantly inhibited the tumor growth in nude mice at a dosage with slight influence on the cardiac QT interval. The antitumor effect of ZC88 was correlated at least partly with its blockage of hERG channels, which implicated a positive role of hERG potassium channel in tumor cell proliferation.

Pedron S, Becka E, Harley BA
Regulation of glioma cell phenotype in 3D matrices by hyaluronic acid.
Biomaterials. 2013; 34(30):7408-17 [PubMed] Related Publications
Human glioblastoma multiforme (hGBM) is the most common, aggressive, and deadly form of brain cancer. A major obstacle to understanding the impact of extracellular cues on glioblastoma invasion is the absence of model matrix systems able to replicate compositional and structural elements of the glioma mass as well as the surrounding brain tissue. Contact with a primary extracellular matrix component in the brain, hyaluronan, is believed to play a pivotal role in glioma cell invasion and malignancy. In this study we report use of gelatin and poly(ethylene glycol) (PEG) based hydrogel platforms to evaluate the effect of extracellular (composition, mechanics, HA incorporation) and intracellular (epidermal growth factor receptor overexpression) factors on the malignant transformation of U87MG glioma cells. Three-dimensional culture platforms elicit significantly different responses of U87MG glioma cells versus standard 2D culture. Critically, grafting brain-mimetic hyaluronic acid (HA) into the hydrogel network was found to induce significant, dose-dependent alterations of markers of glioma malignancy versus non-grafted 3D gelatin or PEG hydrogels. Clustering of glioma cells was observed exclusively in HA containing gels and expression profiles of malignancy-associated genes were found to vary biphasically with incorporated HA content. We also found HA-induced expression of MMP-2 is blocked by +EGFR signaling, suggesting a connection between CD44 and EGFR in glioma malignancy. Together, this work describes an adaptable platform for manipulating the local extracellular microenvironment surrounding glioma cells and highlights the importance of developing such systems for investigating the etiology and early growth of glioblastoma multiforme tumors.

Flisikowska T, Kind A, Schnieke A
The new pig on the block: modelling cancer in pigs.
Transgenic Res. 2013; 22(4):673-80 [PubMed] Related Publications
The molecular mechanisms underlying many human cancers are now reasonably well understood. The challenge now is to bridge the gap between laboratory and clinical oncology, so these accomplishments can be translated into practical benefits for human patients. While genetically modified mice have played a prominent role in basic research, they are less suitable for many preclinical studies. Other animals can provide important complementary resources to aid the development, validation and application of new medicines and procedures. Powerful methods of genetic engineering have now been extended to physiologically more relevant species, particularly the pig, opening the prospect of more representative, genetically defined, cancer models at human scale. We briefly review the field and outline our program to generate gene-targeted pigs carrying mutations in tumour suppressor genes and proto-oncogenes that replicate key lesions responsible for a variety of human cancers. We also highlight some important issues for the future development and usefulness of porcine cancer models.

Ramachandran S, Krishnamurthy S, Jacobi AM, et al.
Efficient delivery of RNA interference oligonucleotides to polarized airway epithelia in vitro.
Am J Physiol Lung Cell Mol Physiol. 2013; 305(1):L23-32 [PubMed] Free Access to Full Article Related Publications
Polarized and pseudostratified primary airway epithelia present barriers that significantly reduce their transfection efficiency and the efficacy of RNA interference oligonucleotides. This creates an impediment in studies of the airway epithelium, diminishing the utility of loss-of-function as a research tool. Here we outline methods to introduce RNAi oligonucleotides into primary human and porcine airway epithelia grown at an air-liquid interface and difficult-to-transfect transformed epithelial cell lines grown on plastic. At the time of plating, we reverse transfect small-interfering RNA (siRNA), Dicer-substrate siRNA, or microRNA oligonucleotides into cells by use of lipid or peptide transfection reagents. Using this approach we achieve significant knockdown in vitro of hypoxanthine-guanine phosphoribosyltransferase, IL-8, and CFTR expression at the mRNA and protein levels in 1-3 days. We also attain significant reduction of secreted IL-8 in polarized primary pig airway epithelia 3 days posttransfection and inhibition of CFTR-mediated Cl⁻ conductance in polarized air-liquid interface cultures of human airway epithelia 2 wk posttransfection. These results highlight an efficient means to deliver RNA interference reagents to airway epithelial cells and achieve significant knockdown of target gene expression and function. The ability to reliably conduct loss-of-function assays in polarized primary airway epithelia offers benefits to research in studies of epithelial cell homeostasis, candidate gene function, gene-based therapeutics, microRNA biology, and targeting the replication of respiratory viruses.

Pedron S, Harley BA
Impact of the biophysical features of a 3D gelatin microenvironment on glioblastoma malignancy.
J Biomed Mater Res A. 2013; 101(12):3404-15 [PubMed] Related Publications
Three-dimensional tissue engineered constructs provide a platform to examine how the local extracellular matrix (ECM) contributes to the malignancy of cancers such as human glioblastoma multiforme. Improved resolution of how local matrix biophysical features impact glioma proliferation, genomic and signal transduction paths, as well as phenotypic malignancy markers would complement recent improvements in our understanding of molecular mechanisms associated with enhanced malignancy. Here, we report the use of a gelatin methacrylate (GelMA) platform to create libraries of three-dimensional biomaterials to identify combinations of biophysical features that promote malignant phenotypes of human U87MG glioma cells. We noted key biophysical properties, namely matrix density, crosslinking density, and biodegradability, that significantly impact glioma cell morphology, proliferation, and motility. Gene expression profiles and secreted markers of increased malignancy, notably VEGF, MMP-2, MMP-9, HIF-1, and the ECM protein fibronectin, were also significantly impacted by the local biophysical environment as well as matrix-induced deficits in diffusion-mediated oxygen and nutrient biotransport. Overall, this biomaterial system provides a flexible platform to explore the role biophysical factors play in the etiology, growth, and subsequent invasive spreading of gliomas.

Leuchowius KJ, Clausson CM, Grannas K, et al.
Parallel visualization of multiple protein complexes in individual cells in tumor tissue.
Mol Cell Proteomics. 2013; 12(6):1563-71 [PubMed] Free Access to Full Article Related Publications
Cellular functions are regulated and executed by complex protein interaction networks. Accordingly, it is essential to understand the interplay between proteins in determining the activity status of signaling cascades. New methods are therefore required to provide information on different protein interaction events at the single cell level in heterogeneous cell populations such as in tissue sections. Here, we describe a multiplex proximity ligation assay for simultaneous visualization of multiple protein complexes in situ. The assay is an enhancement of the original proximity ligation assay, and it is based on using proximity probes labeled with unique tag sequences that can be used to read out which probes, from a pool of probes, have bound a certain protein complex. Using this approach, it is possible to gain information on the constituents of different protein complexes, the subcellular location of the complexes, and how the balance between different complex constituents can change between normal and malignant cells, for example. As a proof of concept, we used the assay to simultaneously visualize multiple protein complexes involving EGFR, HER2, and HER3 homo- and heterodimers on a single-cell level in breast cancer tissue sections. The ability to study several protein complex formations concurrently at single cell resolution could be of great potential for a systems understanding, paving the way for improved disease diagnostics and possibilities for drug development.

Wold WS, Toth K
Chapter three--Syrian hamster as an animal model to study oncolytic adenoviruses and to evaluate the efficacy of antiviral compounds.
Adv Cancer Res. 2012; 115:69-92 [PubMed] Related Publications
The Syrian (golden) hamster (Mesocricetus auratus) has served as a useful model for different aspects of biology for at least 50 years, and its use has been expanding recently. In earlier years, among other things, it was a model for cancer development. More recently, it has become a model for many different infectious diseases. It has also become an alternative model for the study of oncolytic adenovirus vectors for cancer gene therapy. Among several other human pathogens, the hamster is permissive for the replication of human species C adenoviruses, which are the parental virus for the majority of adenovirus vectors in use today. These vectors replicate in some of the established hamster tumor cell lines that can be used to generate tumors in vivo, that is, one can study oncolytic (replication competent) adenoviruses in a permissive, immunocompetent model. This has afforded the opportunity to study the effect of the host immune system on the vector-infected tumor and has allowed the use of a more relevant animal model to determine the safety and biodistribution of replication-competent adenoviruses. The hamster has also been used to evaluate antiviral compounds and vaccines against many viruses, including adenoviruses, flaviviruses, alphaviruses, arenaviruses, bunyaviruses, and paramyxoviruses.

Miljkovic-Licina M, Hammel P, Garrido-Urbani S, et al.
Targeting olfactomedin-like 3 inhibits tumor growth by impairing angiogenesis and pericyte coverage.
Mol Cancer Ther. 2012; 11(12):2588-99 [PubMed] Related Publications
Antiangiogenic drugs have been used as anticancer agents to target tumor endothelial cells or pericytes. Because of limited efficacy of the current monotherapies, there is a strong demand for the dual targeting of endothelial cells and pericytes. Here, we identify Olfactomedin-like 3 (Olfml3) as a novel proangiogenic cue within the tumor microenvironment. Tumor-derived Olfml3 is produced by both tumor endothelial cells and accompanying pericytes and deposited in the perivascular compartment. Blockade of Olfml3 by anti-Olfml3 antibodies is highly effective in reducing tumor vascularization, pericyte coverage, and tumor growth. In vitro, Olfml3 targeting is sufficient to inhibit endothelioma cell migration and sprouting. Olfml3 alone or through binding to BMP4 enhances the canonical SMAD1/5/8 signaling pathway required for BMP4-induced angiogenesis. Therefore, Olfml3 blockade provides a novel strategy to control tumor growth by targeting two distinct cell types within the tumor microenvironment using a single molecule.

Butler JE, Wertz N, Sun XZ, et al.
Resolution of an immunodiagnostic dilemma: heavy chain chimeric antibodies for species in which plasmocytomas are unknown.
Mol Immunol. 2013; 53(1-2):140-8 [PubMed] Related Publications
The immunoglobulin (Ig) genes of many vertebrates have been characterized but IgG subclasses, IgD and IgE proteins are only available for three species in which plasmacytomas occur. This creates a major problem in the production and specificity verification of diagnostic anti-Ig reagents for the vast majority of mammals. We describe a novel solution using the swine system with its eleven different variants of IgG. It involves the in vitro synthesis of chimeric porcine-camelid heavy chain antibodies (HCAbs) that do not require light chains and therefore only a single transfection vector. The expressed chimeric HCAbs are comprised of the camelid VHH domain encoding specificity for lysozyme and the hinge, CH2 and CH3 domains of the various porcine IgGs. These HCAb retain their antigenic integrity and their ability to recognize lysozyme. The engineered specificity assures that these HCAb can be immobilized in native configuration when used for testing the specificity of anti-swine IgG antibodies. Comparative data to illustrate the importance of this point are provided. These are now available for use in hybridoma selection and as reference standards for evaluating the specificity of currently available anti-swine IgG antibodies.

Flisikowska T, Merkl C, Landmann M, et al.
A porcine model of familial adenomatous polyposis.
Gastroenterology. 2012; 143(5):1173-5.e1-7 [PubMed] Related Publications
We created gene-targeted pigs with mutations in the adenomatous polyposis coli (APC) gene (APC) that are orthologous to those responsible for human familial adenomatous polyposis (FAP). One-year-old pigs with the APC(1311) mutation (orthologous to human APC(1309)) have aberrant crypt foci and low- and high-grade dysplastic adenomas in the large intestine, similar to the precancerous lesions that develop in patients with FAP. Dysplastic adenomas accumulate β-catenin and lose heterozygosity of APC. This large-animal, genetic model of FAP will be useful in the development of diagnostics and therapeutics for colorectal cancer. DNA sequence data: NCBI accession number GU951771.

Morgan CC, Shakya K, Webb A, et al.
Colon cancer associated genes exhibit signatures of positive selection at functionally significant positions.
BMC Evol Biol. 2012; 12:114 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Cancer, much like most human disease, is routinely studied by utilizing model organisms. Of these model organisms, mice are often dominant. However, our assumptions of functional equivalence fail to consider the opportunity for divergence conferred by ~180 Million Years (MY) of independent evolution between these species. For a given set of human disease related genes, it is therefore important to determine if functional equivalency has been retained between species. In this study we test the hypothesis that cancer associated genes have different patterns of substitution akin to adaptive evolution in different mammal lineages.
RESULTS: Our analysis of the current literature and colon cancer databases identified 22 genes exhibiting colon cancer associated germline mutations. We identified orthologs for these 22 genes across a set of high coverage (>6X) vertebrate genomes. Analysis of these orthologous datasets revealed significant levels of positive selection. Evidence of lineage-specific positive selection was identified in 14 genes in both ancestral and extant lineages. Lineage-specific positive selection was detected in the ancestral Euarchontoglires and Hominidae lineages for STK11, in the ancestral primate lineage for CDH1, in the ancestral Murinae lineage for both SDHC and MSH6 genes and the ancestral Muridae lineage for TSC1.
CONCLUSION: Identifying positive selection in the Primate, Hominidae, Muridae and Murinae lineages suggests an ancestral functional shift in these genes between the rodent and primate lineages. Analyses such as this, combining evolutionary theory and predictions - along with medically relevant data, can thus provide us with important clues for modeling human diseases.

Nakaya Y, Shimode S, Kobayashi T, et al.
Binding of transcription factor activating protein 2 γ on the 5'-proximal promoter region of human porcine endogenous retrovirus subgroup A receptor 2/GPR172B.
Xenotransplantation. 2012 May-Jun; 19(3):177-85 [PubMed] Related Publications
BACKGROUND: Xenotransplantation is one of the solutions for the shortage of organ donors, and pigs have been considered to be the most suitable animal donors. Specific pathogen-free pigs are utilized in the xenotransplantation; however, pigs have infectious gammaretroviruses, named porcine endogenous retroviruses (PERVs) in their genome. Of them, PERV-A and PERV-B can infect human cells in vitro and potentially induce diseases like other gammaretroviruses. The human cellular receptors for PERV-A were identified and named human PERV-A receptor (HuPAR)-1 and HuPAR-2 (also called as GPR172A and GPR172B, respectively). We have recently reported that HuPAR-2 expression was regulated by epigenetic modification and preferentially expressed in placenta. However, the detailed mechanisms of HuPAR-2 expression have not been fully characterized. In this study, we analyzed molecular mechanisms associated with HuPAR-2 transcription through the identification of transcription factors that bind to the promoter region of HuPAR-2.
METHODS: In situ hybridization was performed to identify the cells expressing HuPAR-2 in placental tissues. Transcriptional activities were measured by dual-luciferase reporter assay using serial deletion mutants of HuPAR-2 5'-flanking region. To identify the transcription factors bound to the promoter region, in silico analysis, electrophoresis mobility shift assay, and chromatin immunoprecipitation assay were conducted. The effect of the transcription factor transcription factor activator protein (TFAP)-2γ on the promoter activities was investigated by overexpression of the factor.
RESULTS: We identified that HuPAR-2 was specifically expressed in villous trophoblast cells. We also identified that a region spanning from -126 to -32 had proximal promoter activities and TFAP-2γ bound to a region spanning from -58 to -35 in vitro and in vivo. The overexpression of TFAP-2γ also augmented the proximal promoter activity.
CONCLUSION: We demonstrated that TFAP-2γ is one of the transcription factors involved in the HuPAR-2 expression in human villous trophoblast cells. By studying transcriptional factors involved in the expression of HuPAR-2, we may find a clue to control the potential risks caused by PERV-A infection in xenotransplantation.

Bajpai AK, Davuluri S, Chandrashekar DS, et al.
MGEx-Udb: a mammalian uterus database for expression-based cataloguing of genes across conditions, including endometriosis and cervical cancer.
PLoS One. 2012; 7(5):e36776 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Gene expression profiling of uterus tissue has been performed in various contexts, but a significant amount of the data remains underutilized as it is not covered by the existing general resources.
METHODOLOGY/PRINCIPAL FINDINGS: We curated 2254 datasets from 325 uterus related mass scale gene expression studies on human, mouse, rat, cow and pig species. We then computationally derived a 'reliability score' for each gene's expression status (transcribed/dormant), for each possible combination of conditions and locations, based on the extent of agreement or disagreement across datasets. The data and derived information has been compiled into the Mammalian Gene Expression Uterus database (MGEx-Udb, http://resource.ibab.ac.in/MGEx-Udb/). The database can be queried with gene names/IDs, sub-tissue locations, as well as various conditions such as the cervical cancer, endometrial cycles and disorders, and experimental treatments. Accordingly, the output would be a) transcribed and dormant genes listed for the queried condition/location, or b) expression profile of the gene of interest in various uterine conditions. The results also include the reliability score for the expression status of each gene. MGEx-Udb also provides information related to Gene Ontology annotations, protein-protein interactions, transcripts, promoters, and expression status by other sequencing techniques, and facilitates various other types of analysis of the individual genes or co-expressed gene clusters.
CONCLUSIONS/SIGNIFICANCE: In brief, MGEx-Udb enables easy cataloguing of co-expressed genes and also facilitates bio-marker discovery for various uterine conditions.

Ji XT, Huang L, Huang HQ
Construction of nanometer cisplatin core-ferritin (NCC-F) and proteomic analysis of gastric cancer cell apoptosis induced with cisplatin released from the NCC-F.
J Proteomics. 2012; 75(11):3145-57 [PubMed] Related Publications
Both transmission electron microscopy (TEM) and fluorescence spectrometry were used to reveal the characteristics of both subunit disassociation and recombination in apo-pig pancreas ferritin (apoPPF) in an alkaline medium ranging reversibly from pH 7.0 to 13.0. The experimental results indicated that apoPPF could be completely disassociated into 24 free subunits at pH 13.0, and then these subunits could be quickly reassembled into the original apoPPF once the pH of the reactive medium was returned to pH7.0. This novel and simple method could be used to effectively construct a novel nanometer cisplatin core-PPF (NCC-PPF). The major characteristics of NCC-PPF were investigated using various analytical methods such as ultraviolet-spectrometry, circular dichroism spectrometry and TEM, which indicated that its molecular structure was still similar to that of the original apoPPF. Results from the inductively coupled plasma mass spectrometer (ICP-MS) method showed that 11.26 cisplatin (CDDP) molecules were successfully packaged within the NCC-PPF shell, indicating that each molecule of apoPPF had the ability to enwrap 11.26 CDDP molecules for constructing the NCC-PPF. Flow cytometry showed that NCC-PPF also had the ability to release CDDP for inducing the apoptosis of gastric cancer cells BGC823 (GCC), but this phenomenon could scarcely be observed using apoPPF. A differential proteomic technique using two-dimensional electrophoresis (2-DE) gels selected and identified the differential proteins from cell apoptosis in order to reveal the molecular pathway of GCC apoptosis by both NCC-PPF and free CDDP, giving 13 differential expression proteins. These differential proteins could be further classified into six groups, which were described as being involved in the regulation of apoptosis, RNA transcription, oxidative stress response, signal transduction, cell metabolism, and cytoskeleton changes. In addition, a real-time PCR method was used to prove the expression level of mRNA and to identify the reliability of the protein expression according to these differential proteins, which indicated that the mRNA level changes of six differential proteins corresponded to those of its differential protein expression in 2-DE gels. These studies played an important role in reasonably revealing the different pathways of GCC apoptosis induced with both the CDDP released by NCC-PPF and the free CDDP. We thus suggest that apoPPF has great potential for constructing a nanometer carrier filled with various drugs for application in clinical work.

Chen YJ, Chen CC, Li TK, et al.
Docosahexaenoic acid suppresses the expression of FoxO and its target genes.
J Nutr Biochem. 2012; 23(12):1609-16 [PubMed] Related Publications
Docosahexaenoic acid (DHA), an n-3 polyunsaturated fatty acid, has previously been shown to ameliorate obesity-associated metabolic syndrome. To decipher the mechanism responsible for the beneficial effects of DHA on energy/glucose homeostasis and the metabolic syndrome, 30 weaned cross-bred pigs were randomly assigned to three groups and fed ad libitum with a standard diet supplemented with 2% of beef tallow, soybean oil or DHA oil for 30 days, and the gene expression profile of various tissues was evaluated by quantitative real-time polymerase chain reaction. The DHA-supplemented diets reduced the expression of forkhead box O transcription factor (FoxO) 1 and FoxO3 in the liver and adipose tissue. DHA treatments also decreased the expression of FoxO1 and FoxO3 in human hepatoma cells, SK-HEP-1 and human and porcine primary adipocytes. In addition, DHA also down-regulated FoxO target genes, such as microsomal triacylglycerol transfer protein (MTP), glucose-6-phosphatase, apolipoprotein C-III (apoC-III) and insulin-like growth factor binding-protein 1 in the liver, as well as reduced total plasma levels of cholesterol and triacylglycerol in the pig. Transcriptional suppression of FoxO1, FoxO3, apoC-III and MTP by DHA was further confirmed by reporter assays with each promoter construct. Taken together, our study indicates that DHA modulates lipid and glucose homeostasis in part by down-regulating FoxO function. The down-regulation of genes associated with triacylglycerol metabolism and very low density lipoprotein assembly is likely to contribute to the beneficial effects of DHA on the metabolic syndrome.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. PIGS, Cancer Genetics Web: http://www.cancer-genetics.org/PIGS.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 18 August, 2015     Cancer Genetics Web, Established 1999