Gene Summary

Gene:HPRT1; hypoxanthine phosphoribosyltransferase 1
Aliases: HPRT, HGPRT
Summary:The protein encoded by this gene is a transferase, which catalyzes conversion of hypoxanthine to inosine monophosphate and guanine to guanosine monophosphate via transfer of the 5-phosphoribosyl group from 5-phosphoribosyl 1-pyrophosphate. This enzyme plays a central role in the generation of purine nucleotides through the purine salvage pathway. Mutations in this gene result in Lesch-Nyhan syndrome or gout.[provided by RefSeq, Jun 2009]
Databases:OMIM, VEGA, HGNC, Ensembl, GeneCard, Gene
Protein:hypoxanthine-guanine phosphoribosyltransferase
Source:NCBIAccessed: 21 August, 2015


What does this gene/protein do?
Show (35)
Pathways:What pathways are this gene/protein implicaed in?
Show (1)

Cancer Overview

Research Indicators

Publications Per Year (1990-2015)
Graph generated 21 August 2015 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Restriction Fragment Length Polymorphism
  • Ultraviolet Rays
  • Y Chromosome
  • Transferases
  • Oncogenes
  • RNA-Binding Proteins
  • Xeroderma Pigmentosum
  • Thymidine Kinase
  • Xanthine Oxidase
  • Polymorphism
  • Vesicular stomatitis Indiana virus
  • Repetitive Sequences, Nucleic Acid
  • Xeroderma Pigmentosum Group A Protein
  • Plasmacytoma
  • p53 Protein
  • Smoking
  • Topoisomerase II Inhibitors
  • T-Cell Antigen Receptors
  • Polymerase Chain Reaction
  • Vaginal Smears
  • Proto-Oncogenes
  • Species Specificity
  • Risk Factors
  • alpha 1-Antitrypsin
  • Bladder Cancer
  • Pyrenes
  • Skin Cancer
  • RNA Splicing
  • Mutation
  • Sex Chromosomes
  • Tumor Markers
  • Whole-Body Irradiation
  • Cervical Cancer
  • Hypoxanthine Phosphoribosyltransferase
  • Repressor Proteins
  • X-Rays
  • X Chromosome
  • Tioguanine
  • Wilms Tumour
  • Telomere
Tag cloud generated 21 August, 2015 using data from PubMed, MeSH and CancerIndex

Specific Cancers (4)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: HPRT1 (cancer-related)

Romani C, Calza S, Todeschini P, et al.
Identification of optimal reference genes for gene expression normalization in a wide cohort of endometrioid endometrial carcinoma tissues.
PLoS One. 2014; 9(12):e113781 [PubMed] Free Access to Full Article Related Publications
Accurate normalization is a primary component of a reliable gene expression analysis based on qRT-PCR technique. While the use of one or more reference genes as internal controls is commonly accepted as the most appropriate normalization strategy, many qPCR-based published studies still contain data poorly normalized and reference genes arbitrarily chosen irrespective of the particular tissue and the specific experimental design. To date, no validated reference genes have been identified for endometrial cancer tissues. In this study, 10 normalization genes (GAPDH, B2M, ACTB, POLR2A, UBC, PPIA, HPRT1, GUSB, TBP, H3F3A) belonging to different functional and abundance classes in various tissues and used in different studies, were analyzed to determine their applicability. In total, 100 endometrioid endometrial cancer samples, which were carefully balanced according to their tumor grade, and 29 normal endometrial tissues were examined using SYBR Green Real-Time RT-PCR. The expression stability of candidate reference genes was determined and compared by means of geNorm and NormFinder softwares. Both algorithms were in agreement in identifying GAPDH, H3F3A, PPIA, and HPRT1 as the most stably expressed genes, only differing in their ranking order. Analysis performed on the expression levels of all candidate genes confirm HPRT1 and PPIA as the most stably expressed in the study groups regardless of sample type, to be used alone or better in combination. As the stable expression of HPRT1 and PPIA between normal and tumor endometrial samples fulfill the basic requirement of a reference gene to be used for normalization purposes, HPRT1 expression showed significant differences between samples from low-grade and high-grade tumors. In conclusion, our results recommend the use of PPIA as a single reference gene to be considered for improved reliability of normalization in gene expression studies involving endometrial tumor samples at different tumor degrees.

Autsavapromporn N, Plante I, Liu C, et al.
Genetic changes in progeny of bystander human fibroblasts after microbeam irradiation with X-rays, protons or carbon ions: the relevance to cancer risk.
Int J Radiat Biol. 2015; 91(1):62-70 [PubMed] Related Publications
PURPOSE: Radiation-induced bystander effects have important implications in radiotherapy. Their persistence in normal cells may contribute to risk of health hazards, including cancer. This study investigates the role of radiation quality and gap junction intercellular communication (GJIC) in the propagation of harmful effects in progeny of bystander cells.
MATERIALS AND METHODS: Confluent human skin fibroblasts were exposed to microbeam radiations with different linear energy transfer (LET) at mean absorbed doses of 0.4 Gy by which 0.036-0.4% of the cells were directly targeted by radiation. Following 20 population doublings, the cells were harvested and assayed for micronucleus formation, gene mutation and protein oxidation.
RESULTS: Our results showed that expression of stressful effects in the progeny of bystander cells is dependent on LET. The progeny of bystander cells exposed to X-rays (LET ∼6 keV/μm) or protons (LET ∼11 keV/μm) showed persistent oxidative stress, which correlated with increased micronucleus formation and mutation at the hypoxanthine-guanine phosphoribosyl-transferase (HPRT) locus. Such effects were not observed after irradiation by carbon ions (LET ∼103 keV/μm). Interestingly, progeny of bystander cells from cultures exposed to protons or carbon ions under conditions where GJIC was inhibited harbored reduced oxidative and genetic damage. This mitigating effect was not detected when the cultures were exposed to X-rays.
CONCLUSIONS: These findings suggest that cellular exposure to proton and heavy charged particle with LET properties similar to those used here can reduce the risk of lesions associated with cancer. The ability of cells to communicate via gap junctions at the time of irradiation appears to impact residual damage in progeny of bystander cells.

Krzystek-Korpacka M, Diakowska D, Bania J, Gamian A
Expression stability of common housekeeping genes is differently affected by bowel inflammation and cancer: implications for finding suitable normalizers for inflammatory bowel disease studies.
Inflamm Bowel Dis. 2014; 20(7):1147-56 [PubMed] Related Publications
Instability of housekeeping genes (HKG), supposedly unregulated and hence used as normalizers, may dramatically change conclusions of quantitative PCR experiments. The effect of bowel inflammation on HKG remains unknown. Expression stability of 15 HKG (ACTB, B2M, GAPDH, GUSB, HPRT1, IPO8, MRPL19, PGK1, PPIA, RPLP0, RPS23, SDHA, TBP, UBC, and YWHAZ) in 166 bowel specimens (91 normal, 35 cancerous, and 40 inflamed) was ranked by coefficients of variation (CV%) or using dedicated software: geNorm and NormFinder. The RPS23, PPIA, and RPLP0 were top-ranked, whereas IPO8, UBC and TBP were the lowest-ranked HKG across inflamed/cancerous/normal colonic tissues. The pairs RPS23/RPLP0, PGK1/MRPL19, or PPIA/RPLP0 were optimal reference by CV%, NormFinder, and geNorm, respectively. Colon inflammation affected HKG more pronouncedly than cancer with ACTB significantly down- and B2M upregulated. In inflammatory bowel disease (IBD), different genes were top-ranked in a large and small bowel, whereas TBP, UBC, and IPO8 were lowest-ranked in both. For patients with IBD at large, RPS23/PPIA, PGK1/MRPL19, and PPIA/RPLP0 were found optimal by CV%, NormFinder, and geNorm, respectively. ACTB and B2M expression was related to CRC stage and positively correlated with clinical activity of IBD. Although GAPDH was upregulated neither in CRC nor IBD, it tended to positively correlate with tumor depth and Crohn's disease activity index. Normalizing against GAPDH affected experimental conclusions in a small but not large bowel. Bowel inflammation significantly affects several classic HKG. The pair PPIA/RPLP0 is a common optimal reference for studies encompassing tissues sampled from colorectal cancer and IBD patients. Using ACTB or B2M is not recommended.

Wu X, Blackburn PR, Tschumper RC, et al.
TALEN-mediated genetic tailoring as a tool to analyze the function of acquired mutations in multiple myeloma cells.
Blood Cancer J. 2014; 4:e210 [PubMed] Free Access to Full Article Related Publications
Multiple myeloma (MM) is a clonal plasma cell malignancy that is initiated by a number of mutations and the process of disease progression is characterized by further acquisition of mutations. The identification and functional characterization of these myelomagenic mutations is necessary to better understand the underlying pathogenic mechanisms in this disease. Recent advancements in next-generation sequencing have made the identification of most of these mutations a reality. However, the functional characterization of these mutations has been hampered by the lack of proper and efficient tools to dissect these mutations. Here we explored the possible utility of transcription activator-like effector nuclease (TALEN) genome engineering technology to tailoring the genome of MM cells. To test this possibility, we targeted the HPRT1 gene and found that TALENs are a very robust and efficient genome-editing tool in MM cells. Using cotransfected green fluorescent protein as an enrichment marker, single-cell subclones with desirable TALEN modifications in the HPRT1 gene were obtained in as little as 3-4 weeks of time. We believe that TALENs will greatly facilitate the functional study of somatic mutations in MM as well as other cancers.

Almeida TA, Quispe-Ricalde A, Montes de Oca F, et al.
A high-throughput open-array qPCR gene panel to identify housekeeping genes suitable for myometrium and leiomyoma expression analysis.
Gynecol Oncol. 2014; 134(1):138-43 [PubMed] Related Publications
OBJECTIVE: To evaluate 51 different housekeeping genes for their use as internal standards in myometrial and matched leiomyoma samples in proliferative and secretory phases.
METHODS: RNA from 6 myometrium and matched leiomyoma samples was obtained from pre-menopausal women who underwent hysterectomy. Reverse-transcription and real-time quantitative PCR were achieved using TaqMan high-density open-array human endogenous control panel.
RESULTS: Expression stability of 51 candidate genes was determined by GeNorm and NormFinder softwares. We identified 10 housekeeping genes, ARF1, MRPL19, FBXW2, PUM1, UBE2D2, EIF2B1, HPRT1, GUSB, ALAS1, and TRIM27, as the best set of normalization genes for comparing relative expression between leiomyoma and myometrium samples in proliferative and secretory phases.
CONCLUSIONS: Adequate reference genes for accurate normalization are essential to compare gene expression between leiomyoma and myometrial samples. Ideal housekeeping genes must have stable expression patterns regardless of the sample type and menstrual cycle phase. In this study, we propose a set of 10 candidate genes with greater expression stability than those housekeeping genes commonly used in leiomyoma and myometrium tissues. Their use will improve the sensitivity and specificity of the gene expression analysis in these tissues.

Sarker AH, Chatterjee A, Williams M, et al.
NEIL2 protects against oxidative DNA damage induced by sidestream smoke in human cells.
PLoS One. 2014; 9(3):e90261 [PubMed] Free Access to Full Article Related Publications
Secondhand smoke (SHS) is a confirmed lung carcinogen that introduces thousands of toxic chemicals into the lungs. SHS contains chemicals that have been implicated in causing oxidative DNA damage in the airway epithelium. Although DNA repair is considered a key defensive mechanism against various environmental attacks, such as cigarette smoking, the associations of individual repair enzymes with susceptibility to lung cancer are largely unknown. This study investigated the role of NEIL2, a DNA glycosylase excising oxidative base lesions, in human lung cells treated with sidestream smoke (SSS), the main component of SHS. To do so, we generated NEIL2 knockdown cells using siRNA-technology and exposed them to SSS-laden medium. Representative SSS chemical compounds in the medium were analyzed by mass spectrometry. An increased production of reactive oxygen species (ROS) in SSS-exposed cells was detected through the fluorescent detection and the induction of HIF-1α. The long amplicon-quantitative PCR (LA-QPCR) assay detected significant dose-dependent increases of oxidative DNA damage in the HPRT gene of cultured human pulmonary fibroblasts (hPF) and BEAS-2B epithelial cells exposed to SSS for 24 h. These data suggest that SSS exposure increased oxidative stress, which could contribute to SSS-mediated toxicity. siRNA knockdown of NEIL2 in hPF and HEK 293 cells exposed to SSS for 24 h resulted in significantly more oxidative DNA damage in HPRT and POLB than in cells with control siRNA. Taken together, our data strongly suggest that decreased repair of oxidative DNA base lesions due to an impaired NEIL2 expression in non-smokers exposed to SSS would lead to accumulation of mutations in genomic DNA of lung cells over time, thus contributing to the onset of SSS-induced lung cancer.

Herman KN, Toffton S, McCulloch SD
Detrimental effects of UV-B radiation in a xeroderma pigmentosum-variant cell line.
Environ Mol Mutagen. 2014; 55(5):375-84 [PubMed] Free Access to Full Article Related Publications
DNA polymerase η (pol η), of the Y-family, is well known for its in vitro DNA lesion bypass ability. The most well-characterized lesion bypassed by this polymerase is the cyclobutane pyrimidine dimer (CPD) caused by ultraviolet (UV) light. Historically, cellular and whole-animal models for this area of research have been conducted using UV-C (λ=100-280 nm) owing to its ability to generate large quantities of CPDs and also the more structurally distorting 6-4 photoproduct. Although UV-C is useful as a laboratory tool, exposure to these wavelengths is generally very low owing to being filtered by stratospheric ozone. We are interested in the more environmentally relevant wavelength range of UV-B (λ=280-315 nm) for its role in causing cytotoxicity and mutagenesis. We evaluated these endpoints in both a normal human fibroblast control line and a Xeroderma pigmentosum variant cell line in which the POLH gene contains a truncating point mutation, leading to a nonfunctional polymerase. We demonstrate that UV-B has similar but less striking effects compared to UV-C in both its cytotoxic and its mutagenic effects. Analysis of the mutation spectra after a single dose of UV-B shows that a majority of mutations can be attributed to mutagenic bypass of dipyrimidine sequences. However, we do note additional types of mutations with UV-B that are not previously reported after UV-C exposure. We speculate that these differences are attributed to a change in the spectra of photoproduct lesions rather than other lesions caused by oxidative stress.

Zhan C, Zhang Y, Ma J, et al.
Identification of reference genes for qRT-PCR in human lung squamous-cell carcinoma by RNA-Seq.
Acta Biochim Biophys Sin (Shanghai). 2014; 46(4):330-7 [PubMed] Related Publications
Although the accuracy of quantitative real-time polymerase chain reaction (qRT-PCR) is highly dependent on the reliable reference genes, many commonly used reference genes are not stably expressed and as such are not suitable for quantification and normalization of qRT-PCR data. The aim of this study was to identify novel reliable reference genes in lung squamous-cell carcinoma. We used RNA sequencing (RNA-Seq) to survey the whole genome expression in 5 lung normal samples and 44 lung squamous-cell carcinoma samples. We evaluated the expression profiles of 15 commonly used reference genes and identified five additional candidate reference genes. To validate the RNA-Seq dataset, we used qRT-PCR to verify the expression levels of these 20 genes in a separate set of 100 pairs of normal lung tissue and lung squamous-cell carcinoma samples, and then analyzed these results using geNorm and NormFinder. With respect to 14 of the 15 common reference genes (B2M, GAPDH, GUSB, HMBS, HPRT1, IPO8, PGK1, POLR2A, PPIA, RPLP0, TBP, TFRC, UBC, and YWHAZ), the expression levels were either too low to be easily detected, or exhibited a high degree of variability either between lung normal and squamous-cell carcinoma samples, or even among samples of the same tissue type. In contrast, 1 of the 15 common reference genes (ACTB) and the 5 additional candidate reference genes (EEF1A1, FAU, RPS9, RPS11, and RPS14) were stably and constitutively expressed at high levels in all the samples tested. ACTB, EEF1A1, FAU, RPS9, RPS11, and RPS14 are ideal reference genes for qRT-PCR analysis of lung squamous-cell carcinoma, while 14 commonly used qRT-PCR reference genes are less appropriate in this context.

Liu S, Zhu P, Zhang L, et al.
Selection of reference genes for RT-qPCR analysis in tumor tissues from male hepatocellular carcinoma patients with hepatitis B infection and cirrhosis.
Cancer Biomark. 2013; 13(5):345-9 [PubMed] Related Publications
BACKGROUND: Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) has been widely used to quantify relative gene expression because of the high specificity, sensitivity and accuracy of this technique. However, its reliability is strongly depends on the expression stability of reference gene used for data normalization. Therefore, identification of reliable and condition specific reference genes is critical for the success of RT-qPCR.
OBJECTIVE: Hepatitis B virus (HBV) infection, male gender and the presence of cirrhosis are widely recognized as the leading independent risk factors for the development of hepatocellular carcinoma (HCC). This study aimed to select reliable reference gene for RT-qPCR analysis in HCC patients with all of those risk factors.
METHODS: Six candidate reference genes were analyzed in 33 paired tumor and non-tumor tissues from untreated HCC patients. The genes expression stabilities were assessed by geNorm and NormFinder.
RESULTS: C-terminal binding protein 1(CTBP1) was the most stable gene among the 6 candidate genes evaluated by both geNorm and NormFinder. The expression stability values were 0.08 for CTBP1 and UBC, 0.09 for HPRT1, 0.12 for HMBS, 0.14 for GAPDH and 0.18 for 18S with geNorm analysis. The stability values suggested by NormFinder software were CTBP1: 0.044, UBC: 0.063, HMBS: 0.072, HPRT1: 0.072, GAPDH: 0.098 and 18S rRNA: 0.161.
CONCLUSION: This is the first systematic analysis which suggested CTBP1 as the highest expression-stable gene in human male HBV infection related-HCC with cirrhosis. We recommend CTBP1 as the best candidate reference gene when RT-qPCR was used to determine gene(s) expression in HCC. This may facilitate the relevant HBV related HCC studies in the future.

Patanè M, Porrati P, Bottega E, et al.
Frequency of NFKBIA deletions is low in glioblastomas and skewed in glioblastoma neurospheres.
Mol Cancer. 2013; 12:160 [PubMed] Free Access to Full Article Related Publications
The NF-kB family of transcription factors is up-regulated in inflammation and different cancers. Recent data described heterozygous deletions of the NF-kB Inhibitor alpha gene (NFKBIA) in about 20% of glioblastomas (GBM): deletions were mutually exclusive with epidermal growth factor receptor (EGFR) amplification, a frequent event in GBM. We assessed the status of NFKBIA and EGFR in 69 primary GBMs and in corresponding neurospheres (NS). NFKBIA deletion was investigated by the copy number variation assay (CNV); EGFR amplification by CNV ratio with HGF; expression of EGFR and EGFRvIII by quantitative PCR or ReverseTranscriptase PCR. Heterozygous deletions of NFKBIA were present in 3 of 69 primary GBMs and, surprisingly, in 30 of 69 NS. EGFR amplification was detected in 36 GBMs: in corresponding NS, amplification was lost in 13 cases and reduced in 23 (10 vs 47 folds in NS vs primary tumors; p < 0.001). The CNV assay was validated investigating HPRT1 on chromosome X in females and males. Results of array-CGH performed on 3 primary GBMs and 1 NS line were compatible with the CNV assay. NS cells with NFKBIA deletion had increased nuclear activity of p65 (RelA) and increased expression of the NF-kB target IL-6. In absence of EGF in the medium, EGFR amplification was more conserved and NFKBIA deletion less frequent point to a low frequency of NFKBIA deletions in GBM and suggest that EGF in the culture medium of NS may affect frequency not only of EGFR amplifications but also of NFKBIA deletions.

Tsaur I, Renninger M, Hennenlotter J, et al.
Reliable housekeeping gene combination for quantitative PCR of lymph nodes in patients with prostate cancer.
Anticancer Res. 2013; 33(12):5243-8 [PubMed] Related Publications
BACKGROUND: To reliably compare the results of gene expression studies, the expression of the target gene should be normalized to the expression of a reference gene. For lymph node metastases of prostate cancer, no data on polymerase chain reaction (PCR) normalization have yet been reported. We aimed to determine the most reliable reference gene combination for this purpose in patients with prostate cancer.
MATERIALS AND METHODS: Ten histologically- positive and ten negative lymph nodes of patients with prostate cancer were analyzed respectively. Expression of six candidate reference genes was comparatively assessed with quantitative Real-time PCR. The most stably-expressed gene combination was determined with geNorm software version 3.4.
RESULTS: Hypoxanthine phosphoribosyltransferase-1 (HPRT1) and TATA box binding protein (TPB) were found to be the most stably expressed genes, with their combination having an expression stability value of M=0.17.
CONCLUSION: Gene combination HPRT1 and TPB has the potential to be utilized for normalization in gene profiling assessment of metastatic and non-metastatic pelvic lymph node tissue from patients with prostate cancer.

Seuter S, Pehkonen P, Heikkinen S, Carlberg C
Dynamics of 1α,25-dihydroxyvitamin D3-dependent chromatin accessibility of early vitamin D receptor target genes.
Biochim Biophys Acta. 2013; 1829(12):1266-75 [PubMed] Related Publications
The signaling cascade of the transcription factor vitamin D receptor (VDR) is triggered by its specific ligand 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3). In this study we demonstrate that in THP-1 human monocytic leukemia cells 87.4% of the 1034 most prominent genome-wide VDR binding sites co-localize with loci of open chromatin. At 165 of them 1α,25(OH)2D3 strongly increases chromatin accessibility and has at further 217 sites weaker effects. Interestingly, VDR binding sites in 1α,25(OH)2D3-responsive chromatin regions are far more often composed of direct repeats with 3 intervening nucleotides (DR3s) than those in ligand insensitive regions. DR3-containing VDR sites are enriched in the neighborhood of genes that are involved in controling cellular growth, while non-DR3 VDR binding is often found close to genes related to immunity. At the example of six early VDR target genes we show that the slope of their 1α,25(OH)2D3-induced transcription correlates with the basal chromatin accessibility of their major VDR binding regions. However, the chromatin loci controlling these genes are indistinguishable in their VDR association kinetics. Taken together, ligand responsive chromatin loci represent dynamically regulated contact points of VDR with the genome, from where it controls early 1α,25(OH)2D3 target genes.

Walter RF, Mairinger FD, Wohlschlaeger J, et al.
FFPE tissue as a feasible source for gene expression analysis--a comparison of three reference genes and one tumor marker.
Pathol Res Pract. 2013; 209(12):784-9 [PubMed] Related Publications
BACKGROUND: Formalin-fixation, paraffin-embedding is the standard processing technique for tumor tissue in modern pathology. New techniques such as cryo-conservation allow rapid fixation and long-time storage but come along with increased costs and enlarged storage complexity. However, formalin-fixed, paraffin-embedded (FFPE) tissue is available in a large quantity, making it the ideal material for retrospective studies. The following study was designed to investigate the influence of formalin-fixation on the quality of mRNA and applicability of FFPE-derived mRNA for gene expression analysis. Three potential reference genes for pulmonary tumors with neuroendocrine differentiation were included and tested for their robust expression.
MATERIALS AND METHODS: Eighty specimens collected from 2005 to 2012 at the Institute of Pathology and Neuropathology at the University Hospital Essen were analyzed for their gene expression by using TaqMan(®) gene expression assays on demand (AoD). Three distinct potential reference genes (ACTB, GAPDH, HPRT1) were evaluated for their expression, and a proteasome subunit (PSMA1) was included in the analysis as tumor marker and functioned as an internal technical control.
CONCLUSION: For GAPDH and ACTB, a highly significant correlation and consistent expression between the investigated entities was found, making them reliable reference genes for further research. Additionally, the feasibility for a FFPE tissue-based gene expression analysis was verified by showing that the mRNA quality is sufficient. When standardized FFPE preparation is performed carefully, sufficient mRNA can be isolated for reliable and successful gene expression analysis. That provides the basis the door for large, retrospective studies that correlate molecular and clinical follow-up data.

Marcinkiewicz KM, Gudas LJ
Altered epigenetic regulation of homeobox genes in human oral squamous cell carcinoma cells.
Exp Cell Res. 2014; 320(1):128-43 [PubMed] Free Access to Full Article Related Publications
To gain insight into oral squamous cell carcinogenesis, we performed deep sequencing (RNAseq) of non-tumorigenic human OKF6-TERT1R and tumorigenic SCC-9 cells. Numerous homeobox genes are differentially expressed between OKF6-TERT1R and SCC-9 cells. Data from Oncomine, a cancer microarray database, also show that homeobox (HOX) genes are dysregulated in oral SCC patients. The activity of Polycomb repressive complexes (PRC), which causes epigenetic modifications, and retinoic acid (RA) signaling can control HOX gene transcription. HOXB7, HOXC10, HOXC13, and HOXD8 transcripts are higher in SCC-9 than in OKF6-TERT1R cells; using ChIP (chromatin immunoprecipitation) we detected PRC2 protein SUZ12 and the epigenetic H3K27me3 mark on histone H3 at these genes in OKF6-TERT1R, but not in SCC-9 cells. In contrast, IRX1, IRX4, SIX2 and TSHZ3 transcripts are lower in SCC-9 than in OKF6-TERT1R cells. We detected SUZ12 and the H3K27me3 mark at these genes in SCC-9, but not in OKF6-TERT1R cells. SUZ12 depletion increased HOXB7, HOXC10, HOXC13, and HOXD8 transcript levels and decreased the proliferation of OKF6-TERT1R cells. Transcriptional responses to RA are attenuated in SCC-9 versus OKF6-TERT1R cells. SUZ12 and H3K27me3 levels were not altered by RA at these HOX genes in SCC-9 and OKF6-TERT1R cells. We conclude that altered activity of PRC2 is associated with dysregulation of homeobox gene expression in human SCC cells, and that this dysregulation potentially plays a role in the neoplastic transformation of oral keratinocytes.

Agbor AA, Göksenin AY, LeCompte KG, et al.
Human Pol ε-dependent replication errors and the influence of mismatch repair on their correction.
DNA Repair (Amst). 2013; 12(11):954-63 [PubMed] Free Access to Full Article Related Publications
Mutations in human DNA polymerase (Pol) ε, one of three eukaryotic Pols required for DNA replication, have recently been found associated with an ultramutator phenotype in tumors from somatic colorectal and endometrial cancers and in a familial colorectal cancer. Possibly, Pol ε mutations reduce the accuracy of DNA synthesis, thereby increasing the mutational burden and contributing to tumor development. To test this possibility in vivo, we characterized an active site mutant allele of human Pol ε that exhibits a strong mutator phenotype in vitro when the proofreading exonuclease activity of the enzyme is inactive. This mutant has a strong bias toward mispairs opposite template pyrimidine bases, particularly T • dTTP mispairs. Expression of mutant Pol ε in human cells lacking functional mismatch repair caused an increase in mutation rate primarily due to T • dTTP mispairs. Functional mismatch repair eliminated the increased mutagenesis. The results indicate that the mutant Pol ε causes replication errors in vivo, and is at least partially dominant over the endogenous, wild type Pol ε. Since tumors from familial and somatic colorectal patients arise with Pol ε mutations in a single allele, are microsatellite stable and have a large increase in base pair substitutions, our data are consistent with a Pol ε mutation requiring additional factors to promote tumor development.

Otero-Estévez O, Martínez-Fernández M, Vázquez-Iglesias L, et al.
Decreased expression of alpha-L-fucosidase gene FUCA1 in human colorectal tumors.
Int J Mol Sci. 2013; 14(8):16986-98 [PubMed] Free Access to Full Article Related Publications
In previous studies we described a decreased alpha-L-fucosidase activity in colorectal tumors, appearing as a prognostic factor of tumoral recurrence. The aim of this work was to extend the knowledge about tissue alpha-L-fucosidase in colorectal cancer by quantifying the expression of its encoding gene FUCA1 in tumors and healthy mucosa. FUCA1 mRNA levels were measured by RT-qPCR in paired tumor and normal mucosa tissues from 31 patients. For the accuracy of the RT-qPCR results, five candidate reference genes were validated in those samples. In addition, activity and expression of alpha-L-fucosidase in selected matched tumor and healthy mucosa samples were analyzed. According to geNorm and NormFinder algorithms, RPLP0 and HPRT1 were the best reference genes in colorectal tissues. These genes were used for normalization of FUCA1 expression levels. A significant decrease of more than 60% in normalized FUCA1 expression was detected in tumors compared to normal mucosa (p = 0.002). Moreover, a gradual decrease in FUCA1 expression was observed with progression of disease from earlier to advanced stages. These findings were confirmed by Western blot analysis of alpha-L-fucosidase expression. Our results demonstrated diminished FUCA1 mRNA levels in tumors, suggesting that expression of tissue alpha-L-fucosidase could be regulated at transcriptional level in colorectal cancer.

Wu C, Wang X, Zhong M, et al.
Evaluation of potential reference genes for qRT-PCR studies in human hepatoma cell lines treated with TNF-α.
Acta Biochim Biophys Sin (Shanghai). 2013; 45(9):780-6 [PubMed] Related Publications
In this study, the expression of eight candidate reference genes, B2M, ACTB, GAPDH, HMBS, HPRT1, TBP, UBC, and YWHAZ, was examined to identify optimal reference genes by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis in two human hepatoma cell lines, BEL-7402 and SMMC-7721, treated with tumor necrosis factor-α (TNF-α) for different time periods. The expression stability of these genes was analyzed by three independent algorithms: geNorm, NormFinder, and BestKeeper. Results showed that TBP was the most stably expressed gene in BEL-7402 and SMMC-7721 cell lines under current experimental conditions, and that the optimal set of reference genes required for accurate normalization was TBP and HMBS, based on the pairwise variation value determined with geNorm. UBC and ACTB were ranked as the least stable genes by same algorithms. Our findings provide evidence that using TBP alone or in combination with HMBS as endogenous controls could be a reliable method for normalizing qRT-PCR data in human hepatoma cell lines treated with TNF-α.

Gábelová A, Poláková V, Prochazka G, et al.
Sustained induction of cytochrome P4501A1 in human hepatoma cells by co-exposure to benzo[a]pyrene and 7H-dibenzo[c,g]carbazole underlies the synergistic effects on DNA adduct formation.
Toxicol Appl Pharmacol. 2013; 271(1):1-12 [PubMed] Related Publications
To gain a deeper insight into the potential interactions between individual aromatic hydrocarbons in a mixture, several benzo[a]pyrene (B[a]P) and 7H-dibenzo[c,g]carbazole (DBC) binary mixtures were studied. The biological activity of the binary mixtures was investigated in the HepG2 and WB-F344 liver cell lines and the Chinese hamster V79 cell line that stably expresses the human cytochrome P4501A1 (hCYP1A1). In the V79 cells, binary mixtures, in contrast to individual carcinogens, caused a significant decrease in the levels of micronuclei, DNA adducts and gene mutations, but not in cell survival. Similarly, a lower frequency of micronuclei and levels of DNA adducts were found in rat liver WB-F344 cells treated with a binary mixture, regardless of the exposure time. The observed antagonism between B[a]P and DBC may be due to an inhibition of Cyp1a1 expression because cells exposed to B[a]P:DBC showed a decrease in Cyp1a1 mRNA levels. In human liver HepG2 cells exposed to binary mixtures for 2h, a reduction in micronuclei frequency was also found. However, after a 24h treatment, synergism between B[a]P and DBC was determined based on DNA adduct formation. Accordingly, the up-regulation of CYP1A1 expression was detected in HepG2 cells exposed to B[a]P:DBC. Our results show significant differences in the response of human and rat cells to B[a]P:DBC mixtures and stress the need to use multiple experimental systems when evaluating the potential risk of environmental pollutants. Our data also indicate that an increased expression of CYP1A1 results in a synergistic effect of B[a]P and DBC in human cells. As humans are exposed to a plethora of noxious chemicals, our results have important implications for human carcinogenesis.

Ramachandran S, Krishnamurthy S, Jacobi AM, et al.
Efficient delivery of RNA interference oligonucleotides to polarized airway epithelia in vitro.
Am J Physiol Lung Cell Mol Physiol. 2013; 305(1):L23-32 [PubMed] Free Access to Full Article Related Publications
Polarized and pseudostratified primary airway epithelia present barriers that significantly reduce their transfection efficiency and the efficacy of RNA interference oligonucleotides. This creates an impediment in studies of the airway epithelium, diminishing the utility of loss-of-function as a research tool. Here we outline methods to introduce RNAi oligonucleotides into primary human and porcine airway epithelia grown at an air-liquid interface and difficult-to-transfect transformed epithelial cell lines grown on plastic. At the time of plating, we reverse transfect small-interfering RNA (siRNA), Dicer-substrate siRNA, or microRNA oligonucleotides into cells by use of lipid or peptide transfection reagents. Using this approach we achieve significant knockdown in vitro of hypoxanthine-guanine phosphoribosyltransferase, IL-8, and CFTR expression at the mRNA and protein levels in 1-3 days. We also attain significant reduction of secreted IL-8 in polarized primary pig airway epithelia 3 days posttransfection and inhibition of CFTR-mediated Cl⁻ conductance in polarized air-liquid interface cultures of human airway epithelia 2 wk posttransfection. These results highlight an efficient means to deliver RNA interference reagents to airway epithelial cells and achieve significant knockdown of target gene expression and function. The ability to reliably conduct loss-of-function assays in polarized primary airway epithelia offers benefits to research in studies of epithelial cell homeostasis, candidate gene function, gene-based therapeutics, microRNA biology, and targeting the replication of respiratory viruses.

Mavridis K, Stravodimos K, Scorilas A
Quantified KLK15 gene expression levels discriminate prostate cancer from benign tumors and constitute a novel independent predictor of disease progression.
Prostate. 2013; 73(11):1191-201 [PubMed] Related Publications
BACKGROUND: Several transcript variants of the kallikrein-related peptidase 15 gene (KLK15) have been identified up to now. The classical KLK15 mRNA isoform encodes for a non-truncated, functional protein. Aberrant KLK15 expression is found in breast, ovarian, and prostate cancers. Our aim in this present study was the specific quantitative expression analysis of the classical KLK15 mRNA transcript in prostate tumors and the examination of its clinical significance in prostate cancer.
METHODS: We isolated total RNA from 150 prostate tissue specimens and, following cDNA synthesis, the expression of KLK15 classical mRNA transcript was measured via quantitative Real-Time PCR using the TaqMan® chemistry. HPRT1 was used as a reference gene, and the absolute quantification approach, through the incorporation of standard curves, was applied for the calculation of normalized KLK15 expression.
RESULTS: KLK15 expression levels were significantly upregulated in malignant compared to benign samples (P < 0.001). The discriminatory value of KLK15 was confirmed by ROC curve and logistic regression analysis (both P < 0.001). KLK15 was also associated with advanced pathological stage (P = 0.023). KLK15-positive prostate cancer patients presented significantly shorter progression-free survival intervals, determined by biochemical relapse (P = 0.006), compared to KLK15-negative ones. Multivariate Cox regression analysis revealed that KLK15 expression is an independent predictor of biochemical recurrence (HR = 3.36, P = 0.038).
CONCLUSIONS: The present study unravels the important role of quantified KLK15 classical mRNA expression levels as a novel biomarker helpful for the differential diagnosis and prognosis of prostate cancer patients.

Gobel G, Szanyi I, Révész P, et al.
Expression of NFkB1, GADD45A and JNK1 in salivary gland carcinomas of different histotypes.
Cancer Genomics Proteomics. 2013 Mar-Apr; 10(2):81-7 [PubMed] Related Publications
The class of salivary gland tumours is very heterogenous, both in a histopathological and clinical sense. Since they are uncommon lesions, their clinical management is still problematic. Molecular mechanisms underlying the development of these cancer types may be fundamental for the diagnosis, treatment and prognosis of this disease. In this study, the gene expression of nuclear factor-kappa B (NKkB1/p65), c-Jun N-terminal kinase (JNK1) and growth arrest and DNA damage (GADD45A), which all play an important role in inflammatory and cell survival mechanisms, was assessed in benign and malignant neoplasms of the salivary gland. The absolute mRNA content of paraffin embedded samples of salivary gland cancer was determined by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) using specific primers for NFkB1, GADD45A and JNK1. Expression values (relative to HPRT) were statistically evaluated. Among the detected alterations in gene expression, the only difference reaching statistical significance was in the case of NFkB1 in adenocystic carcinomas (p=0.05). Given the importance of these signalling mechanisms in the biology of tumorigenesis, these results may be implemented in further research and these genes might become targets for innovative diagnostic and therapeutic strategies.

Ghafouri-Fard S, Abdollahi DZ, Omrani M, Azizi F
shRNA mediated RHOXF1 silencing influences expression of BCL2 but not CASP8 in MCF-7 and MDA-MB-231 cell lines.
Asian Pac J Cancer Prev. 2012; 13(11):5865-9 [PubMed] Related Publications
RHOXF1 has been shown to be expressed in embryonic stem cells, adult germline stem cells and some cancer lines. It has been proposed as a candidate gene to encode transcription factors regulating downstream genes in the human testis with antiapoptotic effects. Its expression in cancer cell lines has implied a similar role in the process of tumorigenesis. The human breast cancer cell lines MDA-MB-231 and MCF-7 were cultured in DMEM medium and transfected with a pGFP-V-RS plasmid bearing an RHOXF1 specific shRNA. Quantitative real- time RT-PCR was performed for RHOXF1, CASP8, BCL2 and HPRT genes. Decreased RHOXF1 expression was confirmed in cells after transfection. shRNA knock down of RHOXF1 resulted in significantly decreased BCL2 expression in both cell lines but no change in CASP8 expression. shRNA targeting RHOXF1 was shown to specifically mediate RHOXF1 gene silencing, so RHOXF1 can mediate transcriptional activation of the BCL2 in cancers and may render tumor cells resistant to apoptotic cell death induced by anticancer therapy. shRNA mediated knock down of RHOXF1 can be effective in induction of apoptotic pathway in cancer cells via BCL2 downregulation, so it can have potential therapeutic utility for human breast cancer.

Souza AF, Brum IS, Neto BS, et al.
Reference gene for primary culture of prostate cancer cells.
Mol Biol Rep. 2013; 40(4):2955-62 [PubMed] Related Publications
Selection of reference genes to normalize mRNA levels between samples is critical for gene expression studies because their expression can vary depending on the tissues or cells used and the experimental conditions. We performed ten cell cultures from samples of prostate cancer. Cells were divided into three groups: control (with no transfection protocol), cells transfected with siRNA specific to knockdown the androgen receptor and cells transfected with inespecific siRNAs. After 24 h, mRNA was extracted and gene expression was analyzed by Real-time qPCR. Nine candidates to reference genes for gene expression studies in this model were analyzed (aminolevulinate, delta-, synthase 1 (ALAS1); beta-actin (ACTB); beta-2-microglobulin (B2M); glyceraldehyde-3-phosphate dehydrogenase (GAPDH); hypoxanthine phosphoribosyltransferase 1 (HPRT1); succinate dehydrogenase complex, subunit A, flavoprotein (Fp) (SDHA); TATA box binding protein (TBP); ubiquitin C (UBC); tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, zeta polypeptide (YWHAZ)). Expression stability was calculated NormFinder algorithm to find the most stable genes. NormFinder calculated SDHA as the most stable gene and the gene with the lowest intergroup and intragroup variation, and indicated GAPDH and SDHA as the best combination of two genes for the purpose of normalization. Androgen receptor mRNA expression was evaluated after normalization by each candidate gene and showed statistical difference in the transfected group compared to control group only when normalized by combination of GAPDH and SDHA. Based on the algorithm analysis, the combination of SDHA and GAPDH should be used to normalize target genes mRNA levels in primary culture of prostate cancer cells submitted to transfection with siRNAs.

Papachristopoulou G, Talieri M, Scorilas A
Significant alterations in the expression pattern of kallikrein-related peptidase genes KLK4, KLK5 and KLK14 after treatment of breast cancer cells with the chemotherapeutic agents epirubicin, docetaxel and methotrexate.
Tumour Biol. 2013; 34(1):369-78 [PubMed] Related Publications
Given that 1.3 million new cases of breast cancer are universally registered among women and approximately 36 % of the patients die annually, the revelation of new predictive markers for treatment efficiency is of vital importance. Recently, our group has depicted that KLK4, KLK5, and KLK14 are differentially expressed in breast carcinoma. The objective of this study was to determine and investigate the expression pattern of the KLK4, KLK5, and KLK14 genes in breast cancer cells after treatment with established chemotherapeutic agents. We evaluated these genes' expression after treatment of the BT-20 cells with epirubicin, docetaxel and methotrexate, determining their cytotoxic effect by MTT and trypan blue assays. The relative quantification of genes' mRNA levels was performed by using the SYBR Green® chemistry, and the HPRT1 served as an endogenous control gene. The drugs triggered apoptosis in treated cells and induced deregulations in the expression of the above KLKs. The most significant alterations were a 12-fold and tenfold increase of KLK5 in docetaxel and methotrexate-treated cells, respectively, while the KLK4 levels decreased by ten-fold in epirubicin, five-fold in docetaxel and twenty-fold in methotrexate treated-cells, compared to the untreated ones. In the case of KLK14 levels, a twofold increase in epirubicin and threefold decrease in methotrexate-treated cells were observed. Present significant alterations in the expression pattern of KLK4, KLK5, and KLK14 could comprise an initial stage for predicting chemotherapy response in breast cancer and should be further investigated as predictive markers in the future.

Rienzo M, Schiano C, Casamassimi A, et al.
Identification of valid reference housekeeping genes for gene expression analysis in tumor neovascularization studies.
Clin Transl Oncol. 2013; 15(3):211-8 [PubMed] Related Publications
INTRODUCTION: Real time RT-PCR is a widely used technique to evaluate and confirm gene expression data obtained in different cell systems and experimental conditions. However, there are many conflicting reports about the same gene or sets of gene expression. A common method is to report the interest gene expression relative to an internal control, usually a housekeeping gene (HKG), which should be constant in cells independently of experimental conditions.
MATERIALS AND METHODS: In this study, the expression stability of ten HKGs was considered in parallel in two cell systems (endothelial and osteosarcoma cells): beta actin (ACTB), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), TATA box binding protein (TBP), hypoxanthine phosphoribosyl-transferase 1 (HPRT1), Cyclophilin A (PPIA), beta-2-microglobulin (B2M), glucuronidase beta (GUSB), eukaryotic translation elongation factor 1 alpha1 (EEF1A1), transferrin receptor (TFRC), ribosomal protein S18 (RPS18). In order to study the stability of candidate reference genes, data have been also analyzed by several algorithms (geNorm, NormFinder, BestKeeper and delta-Ct method).
RESULTS AND CONCLUSIONS: The overall analysis obtained by the comprehensive ranking showed that RPS18 and PPIA are appropriate internal reference genes for tumor neovascularization studies where it is necessary to analyze both systems at the same time.

Ma Y, Dai H, Kong X, Wang L
Impact of thawing on reference gene expression stability in renal cell carcinoma samples.
Diagn Mol Pathol. 2012; 21(3):157-63 [PubMed] Related Publications
More and more samples are obtained from biobanks for biomedical research; however, some of these samples may undergo thawing before processing. We aim to evaluate the reference gene expression stability in thawed renal cell carcinoma samples. Sixteen matched malignant and nonmalignant renal tissue samples were obtained and each sample was divided into 4 aliquots before being snap frozen and stored at -80°C. By quantitative real-time polymerase chain reaction, a time-course study was conducted on the thawed tissue to evaluate the expression stability of a panel of the 10 most frequently used reference genes in renal cell carcinom samples: ACTB, ALAS1, B2M, GAPDH, HMBS, HPRT, PPIA, RPLP0,TBP, and TUBB. As shown by geNorm M values, PPIA was the most stable gene at the 0-, 15-, and 30-minute time points (M=0.82, 0.85, and 0.76, respectively), whereas GAPDH was ranked last at the 5-, 15-, and 30-minute time points (M=1.38, 1.44, and 1.39, respectively). A positive correlation was found by linear regression between the thawing time and 2 to the power of crossing point values of all candidate reference genes (P<0.05). The mean coefficient of variance of all reference genes increased significantly at time points 5, 15, and 30 minutes compared with 0 minutes (P<0.01). In conclusion, using the geNorm algorithm, PPIA was identified as the most stably expressed gene between malignant and nonmalignant renal tissue samples that were thawed for similar time periods. All the reference genes showed high variations along with the thawing time; it should be recommended to use a combination of several candidate reference genes when comparing samples thawed for different time periods.

Torrezan GT, da Silva FC, Krepischi AC, et al.
A novel SYBR-based duplex qPCR for the detection of gene dosage: detection of an APC large deletion in a familial adenomatous polyposis patient with an unusual phenotype.
BMC Med Genet. 2012; 13:55 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Familial adenomatous polyposis (FAP) is a hereditary colorectal cancer syndrome caused by a loss of function of the APC gene. Large deletions in APC are a common cause of FAP; despite the existence of a variety of gene dosage detection methodologies, most are labor intensive and time and resource consuming.
METHODS: We describe a new duplex qPCR method for gene dosage analysis based on the coamplification of a target and a reference gene in a SYBR Green reaction, followed by a comparison of the ratio between the target and the reference peaks of the melting curve for the test (patient) and control samples. The reliability of the described duplex qPCR was validated for several genes (APC, HPRT1, ATM, PTEN and BRCA1).
RESULTS: Using this novel gene dosage method, we have identified an APC gene deletion in a FAP patient undergoing genetic testing. Comparative genomic hybridization based on microarrays (aCGH) was used to confirm and map the extent of the deletion, revealing a 5.2 MB rearrangement (5q21.3-q22.3) encompassing the entire APC and 19 additional genes.
CONCLUSION: The novel assay accurately detected losses and gains of one copy of the target sequences, representing a reliable and flexible alternative to other gene dosage techniques. In addition, we described a FAP patient harboring a gross deletion at 5q21.3-q22.3 with an unusual phenotype of the absence of mental impairment and dysmorphic features.

Jarrett SG, Novak M, Harris N, et al.
NM23 deficiency promotes metastasis in a UV radiation-induced mouse model of human melanoma.
Clin Exp Metastasis. 2013; 30(1):25-36 [PubMed] Free Access to Full Article Related Publications
Cutaneous malignant melanoma is the most lethal form of skin cancer, with 5-year survival rates of <5 % for patients presenting with metastatic disease. Mechanisms underlying metastatic spread of UVR-induced melanoma are not well understood, in part due to a paucity of animal models that accurately recapitulate the disease in its advanced forms. We have employed a transgenic mouse strain harboring a tandem deletion of the nm23-m1 and nm23-m2 genes to assess the combined contribution of these genes to suppression of melanoma metastasis. Crossing of the nm23-h1/nm23-h2 knockout in hemizygous-null form ([m1m2](+/-)) to a transgenic mouse strain (hepatocyte growth factor/scatter factor-overexpressing, or HGF(+) strain) vulnerable to poorly-metastatic, UVR-induced melanomas resulted in UVR-induced melanomas with high metastatic potential. Metastasis to draining lymph nodes was seen in almost all cases of back skin melanomas, while aggressive metastasis to lung, thoracic cavity, liver and bone also occurred. Interestingly, no differences were observed in the invasive characteristics of primary melanomas of HGF(+) and HGF(+) × [m1m2](+/-) strains, with both exhibiting invasion into the dermis and subcutis, indicating factors other than simple invasive activity were responsible for metastasis of HGF(+) × [m1m2](+/-) melanomas. Stable cell lines were established from the primary and metastatic melanoma lesions from these mice, with HGF(+) × [m1m2](+/-) lines exhibiting increased single cell migration and genomic instability. These studies demonstrate for the first time in vivo a potent metastasis suppressor activity of NM23 in UVR-induced melanoma, and have provided new tools for identifying molecular mechanisms that underlie melanoma metastasis.

Klingler J, Kaufmann D
Polypropylenimine generation four: a suitable vector for targeted gene alteration in vitro.
J Drug Target. 2012; 20(5):474-80 [PubMed] Related Publications
BACKGROUND: Polypropylenimine dendrimers have been shown to be alternative vectors for DNA delivery.
PURPOSE: Up to now, polypropylenimine dendrimers have not been investigated for the transport of specific single stranded modified oligonucleotides for targeted gene alteration.
METHODS: We investigated generation four polypropylenimine dendrimers to target a 45 base (phosphorothioate modified) DNA oligonucleotide in the cell nuclei of cultured cells in order to correct a specific point mutation in hprt.
RESULTS: Transfection resulted in a high cellular uptake of the FITC-labeled oligonucleotides in V79 hamster fibroblasts and HuH-7 human liver cell lines, at low toxicity levels. Using transmission electron microscopy and immunolabeling, oligonucleotides were found 24 h after transfection predominantly in the nuclear compartment. The oligonucleotides showed the desired biological activity, the correction of the hprt point mutation in V79-400 cells.
CONCLUSIONS: For the transfection of modified oligonucleotides in targeted gene alteration, generation four polypropylenimine dendrimer is a suitable vector.

Dey S, Maiti AK, Hegde ML, et al.
Increased risk of lung cancer associated with a functionally impaired polymorphic variant of the human DNA glycosylase NEIL2.
DNA Repair (Amst). 2012; 11(6):570-8 [PubMed] Free Access to Full Article Related Publications
Human NEIL2, one of five oxidized base-specific DNA glycosylases, is unique in preferentially repairing oxidative damage in transcribed genes. Here we show that depletion of NEIL2 causes a 6-7-fold increase in spontaneous mutation frequency in the HPRT gene of the V79 Chinese hamster lung cell line. This prompted us to screen for NEIL2 variants in lung cancer patients' genomic DNA. We identified several polymorphic variants, among which R103Q and R257L were frequently observed in lung cancer patients. We then characterized these variants biochemically, and observed a modest decrease in DNA glycosylase activity relative to the wild type (WT) only with the R257L mutant protein. However, in reconstituted repair assays containing WT NEIL2 or its R257L and R103Q variants together with other DNA base excision repair (BER) proteins (PNKP, Polβ, Lig IIIα and XRCC1) or using NEIL2-FLAG immunocomplexes, an ~5-fold decrease in repair was observed with the R257L variant compared to WT or R103Q NEIL2, apparently due to the R257L mutant's lower affinity for other repair proteins, particularly Polβ. Notably, increased endogenous DNA damage was observed in NEIL2 variant (R257L)-expressing cells relative to WT cells. Taken together, our results suggest that the decreased DNA repair capacity of the R257L variant can induce mutations that lead to lung cancer development.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. HPRT1, Cancer Genetics Web: http://www.cancer-genetics.org/HPRT1.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 21 August, 2015     Cancer Genetics Web, Established 1999