HMMR

Gene Summary

Gene:HMMR; hyaluronan mediated motility receptor
Aliases: CD168, IHABP, RHAMM
Location:5q34
Summary:The protein encoded by this gene is involved in cell motility. It is expressed in breast tissue and together with other proteins, it forms a complex with BRCA1 and BRCA2, thus is potentially associated with higher risk of breast cancer. Alternatively spliced transcript variants encoding different isoforms have been noted for this gene. [provided by RefSeq, Dec 2008]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:hyaluronan mediated motility receptor
Source:NCBIAccessed: 01 September, 2019

Ontology:

What does this gene/protein do?
Show (9)
Pathways:What pathways are this gene/protein implicaed in?
Show (1)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 01 September 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Biomarkers, Tumor
  • Hyaluronan Receptors
  • Case-Control Studies
  • Signal Transduction
  • Estrogen Receptors
  • RNA
  • Gene Regulatory Networks
  • Cell Differentiation
  • Genetic Predisposition
  • Cancer Gene Expression Regulation
  • Nerve Sheath Neoplasms
  • DNA Sequence Analysis
  • Cell Proliferation
  • Gene Expression Profiling
  • Ubiquitin
  • Neoplasm Proteins
  • Breast Cancer
  • Adenocarcinoma
  • Immunohistochemistry
  • Messenger RNA
  • Polymerase Chain Reaction
  • Prostate Cancer
  • Survival Rate
  • Protein-Serine-Threonine Kinases
  • Acute Myeloid Leukaemia
  • Cell Cycle
  • Extracellular Matrix Proteins
  • Computational Biology
  • Brain Tumours
  • Cell Cycle Proteins
  • Lung Cancer
  • Chromosome 5
  • Tissue Array Analysis
  • Up-Regulation
  • Oligonucleotide Array Sequence Analysis
  • DNA Repair
  • Genes, Neoplasm
  • Glioblastoma
  • RTPCR
  • BRCA1 Protein
  • Cell Movement
Tag cloud generated 01 September, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (6)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: HMMR (cancer-related)

van IJzendoorn DGP, Szuhai K, Briaire-de Bruijn IH, et al.
Machine learning analysis of gene expression data reveals novel diagnostic and prognostic biomarkers and identifies therapeutic targets for soft tissue sarcomas.
PLoS Comput Biol. 2019; 15(2):e1006826 [PubMed] Free Access to Full Article Related Publications
Based on morphology it is often challenging to distinguish between the many different soft tissue sarcoma subtypes. Moreover, outcome of disease is highly variable even between patients with the same disease. Machine learning on transcriptome sequencing data could be a valuable new tool to understand differences between and within entities. Here we used machine learning analysis to identify novel diagnostic and prognostic markers and therapeutic targets for soft tissue sarcomas. Gene expression data was used from the Cancer Genome Atlas, the Genotype-Tissue Expression project and the French Sarcoma Group. We identified three groups of tumors that overlap in their molecular profiles as seen with unsupervised t-Distributed Stochastic Neighbor Embedding clustering and a deep neural network. The three groups corresponded to subtypes that are morphologically overlapping. Using a random forest algorithm, we identified novel diagnostic markers for soft tissue sarcoma that distinguished between synovial sarcoma and MPNST, and that we validated using qRT-PCR in an independent series. Next, we identified prognostic genes that are strong predictors of disease outcome when used in a k-nearest neighbor algorithm. The prognostic genes were further validated in expression data from the French Sarcoma Group. One of these, HMMR, was validated in an independent series of leiomyosarcomas using immunohistochemistry on tissue micro array as a prognostic gene for disease-free interval. Furthermore, reconstruction of regulatory networks combined with data from the Connectivity Map showed, amongst others, that HDAC inhibitors could be a potential effective therapy for multiple soft tissue sarcoma subtypes. A viability assay with two HDAC inhibitors confirmed that both leiomyosarcoma and synovial sarcoma are sensitive to HDAC inhibition. In this study we identified novel diagnostic markers, prognostic markers and therapeutic leads from multiple soft tissue sarcoma gene expression datasets. Thus, machine learning algorithms are powerful new tools to improve our understanding of rare tumor entities.

Fiscon G, Conte F, Paci P
SWIM tool application to expression data of glioblastoma stem-like cell lines, corresponding primary tumors and conventional glioma cell lines.
BMC Bioinformatics. 2018; 19(Suppl 15):436 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: It is well-known that glioblastoma contains self-renewing, stem-like subpopulation with the ability to sustain tumor growth. These cells - called cancer stem-like cells - share certain phenotypic characteristics with untransformed stem cells and are resistant to many conventional cancer therapies, which might explain the limitations in curing human malignancies. Thus, the identification of genes controlling the differentiation of these stem-like cells is becoming a successful therapeutic strategy, owing to the promise of novel targets for treating malignancies.
METHODS: Recently, we developed SWIM, a software able to unveil a small pool of genes - called switch genes - critically associated with drastic changes in cell phenotype. Here, we applied SWIM to the expression profiling of glioblastoma stem-like cells and conventional glioma cell lines, in order to identify switch genes related to stem-like phenotype.
RESULTS: SWIM identifies 171 switch genes that are all down-regulated in glioblastoma stem-like cells. This list encompasses genes like CAV1, COL5A1, COL6A3, FLNB, HMMR, ITGA3, ITGA5, MET, SDC1, THBS1, and VEGFC, involved in "ECM-receptor interaction" and "focal adhesion" pathways. The inhibition of switch genes highly correlates with the activation of genes related to neural development and differentiation, such as the 4-core OLIG2, POU3F2, SALL2, SOX2, whose induction has been shown to be sufficient to reprogram differentiated glioblastoma into stem-like cells. Among switch genes, the transcription factor FOSL1 appears as the brightest star since: it is down-regulated in stem-like cells; it highly negatively correlates with the 4-core genes that are all up-regulated in stem-like cells; the promoter regions of the 4-core genes harbor a consensus binding motif for FOSL1.
CONCLUSIONS: We suggest that the inhibition of switch genes in stem-like cells could induce the deregulation of cell communication pathways, contributing to neoplastic progression and tumor invasiveness. Conversely, their activation could restore the physiological equilibrium between cell adhesion and migration, hampering the progression of cancer. Moreover, we posit FOSL1 as promising candidate to orchestrate the differentiation of cancer stem-like cells by repressing the 4-core genes' expression, which severely halts cancer growth and might affect the therapeutic outcome. We suggest FOSL1 as novel putative therapeutic and prognostic biomarker, worthy of further investigation.

Yeh MH, Tzeng YJ, Fu TY, et al.
Extracellular Matrix-receptor Interaction Signaling Genes Associated with Inferior Breast Cancer Survival.
Anticancer Res. 2018; 38(8):4593-4605 [PubMed] Related Publications
BACKGROUND/AIM: Breast cancer is a common type of cancer in women, and metastasis frequently leads to therapy failure. Using next-generation sequencing (NGS), we aspired to identify the optimal differentially expressed genes (DEGs) for use as prognostic biomarkers for breast cancer.
MATERIALS AND METHODS: NGS was used to determine transcriptome profiles in breast cancer tissues and their corresponding adjacent normal tissues from three patients with breast cancer.
RESULTS: Herein, 15 DEGs (fold change >4 and <0.25) involved in extracellular matrix (ECM)-receptor interaction signaling were identified through NGS. Among them, our data indicated that high HMMR expression levels were correlated with a poor pathological stage (p<0.001) and large tumor size (p<0.001), whereas high COL6A6 and Reelin (RELN) expression levels were significantly correlated with an early pathological stage (COL6A6: p=0.003 and RELN: p<0.001). Multivariate analysis revealed that high HMMR and SDC1 expression levels were significantly correlated with poor overall survival (OS; HMMR: adjusted hazard ratio [aHR] 1.93, 95% confidence interval [CI]=1.10-3.41, p=0.023; SDC1: [aHR] 2.47, 95%CI=1.28-4.77, p=0.007) for breast cancer. Combined, the effects of HMMR and SDC1 showed a significant correlation with poor OS for patients with breast cancer (high expression for both HMMR and SDC1: [aHR] 3.29, 95%CI=1.52-7.12, p=0.003).
CONCLUSION: These findings suggest that HMMR and SDC1 involved in the ECM-receptor interaction signaling pathway could act as effective independent prognostic biomarkers for breast ductal carcinoma.

Vera-Lozada G, Segges P, Stefanoff CG, et al.
Pathway-focused gene expression profiles and immunohistochemistry detection identify contrasting association of caspase 3 (CASP3) expression with prognosis in pediatric classical Hodgkin lymphoma.
Hematol Oncol. 2018; 36(4):663-670 [PubMed] Related Publications
The search for clinically relevant molecular markers in classical Hodgkin lymphoma (cHL) is hampered by the histopathological complexity of the disease, resulting from the admixture of a small number of neoplastic Hodgkin and Reed-Sternberg (H-RS) cells with an abundant and heterogeneous microenvironment. In this study, we evaluated gene expression profiles of 11 selected genes previously proposed as a molecular score for adult cHL, aiming to validate its application in the pediatric setting. Assays were performed by RT-qPCR from formalin-fixed paraffin-embedded (FFPE) lymph nodes in 80 patients with cHL. Selected genes were associated with cell cycle (CENPF, CDK1, CCNA2, CCNE2, and HMMR), apoptosis (BCL2, BCL2L1, and CASP3), and monocytes/macrophages (LYZ and STAT1). Despite using controlled preanalytical and analytical strategies, we were not able to validate the 11-gene score to be applied in pediatric cHL. Principal component analysis (PCA) disclosed 3 components that accounted for 65.7% of the total variability. The second PC included microenvironment and apoptosis genes, from which CASP3 expression was associated with a short time of progression-free survival, which impact was maintained in the unfavorable risk group, Epstein-Barr virus-negative cases, and multivariate analysis (P < .05). Because this is a counterintuitive association, CASP3 active expression was assessed at the protein level in H-RS cells by double immunohistochemistry. In contrast to the association of mRNA levels with a poor therapeutic response, a high number of cleaved CASP3+ cells were associated with longer progression-free survival (P = .03) and overall survival (P = .002). Our results demonstrate the feasibility of using FFPE samples as RNA source for molecular prognostication, but argue against the concept of direct and wide applicability of molecular scores in cHL. We reinforce the potential of CASP3 as an interesting target to be explored in adult and pediatric cHL, and alert for its dual biological role in H-RS cells and tumor microenvironment.

Tammi MI, Oikari S, Pasonen-Seppänen S, et al.
Activated hyaluronan metabolism in the tumor matrix - Causes and consequences.
Matrix Biol. 2019; 78-79:147-164 [PubMed] Related Publications
Hyaluronan accumulates in the stroma of several solid tumors and promotes their progression. Both enhanced synthesis and fragmentation of hyaluronan are required as a part of this inflammatory process resembling wound healing. Increased expression of the genes of hyaluronan synthases (HAS1-3) are infrequent in human tumors, while posttranslational modifications that activate the HAS enzymes, and glucose shunted to the UDP-sugar substrates HASs, can have crucial contributions to tumor hyaluronan synthesis. The pericellular hyaluronan influences virtually all cell-cell and cell-matrix interactions, controlling migration, proliferation, apoptosis, epithelial to mesenchymal transition, and stem cell functions. The catabolism by hyaluronidases and free radicals appears to be as important as synthesis for the inflammation that promotes tumor growth, since the receptors mediating the signals create specific responses to hyaluronan fragments. Targeting hyaluronan metabolism shows therapeutic efficiency in animal experiments and early clinical trials.

Li J, Ji X, Wang H
Targeting Long Noncoding RNA HMMR-AS1 Suppresses and Radiosensitizes Glioblastoma.
Neoplasia. 2018; 20(5):456-466 [PubMed] Free Access to Full Article Related Publications
Emergent evidences revealed that long noncoding RNAs (lncRNAs) participate in neoplastic progression. HMMR is an oncogene that is highly expressed in glioblastoma (GBM) and supports GBM growth. Whether lncRNAs regulate HMMR in GBM remains unknown. Herein, we identify that an HMMR antisense lncRNA, HMMR-AS1, is hyperexpressed in GBM cell lines and stabilizes HMMR mRNA. Knockdown of HMMR-AS1 reduces HMMR expression; inhibits cell migration, invasion, and mesenchymal phenotypes; and suppresses GBM cell growth both in vitro and in vivo. Moreover, knockdown of HMMR-AS1 radiosensitizes GBM by reducing DNA repair proteins ATM, RAD51, and BMI1. Our data demonstrate a mechanism of sense-antisense interference between HMMR and HMMR-AS1 in GBM and suggest that targeting HMMR-AS1 is a potential strategy for GBM treatment.

Tang YC, Ho SC, Tan E, et al.
Functional genomics identifies specific vulnerabilities in PTEN-deficient breast cancer.
Breast Cancer Res. 2018; 20(1):22 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Phosphatase and tensin homolog (PTEN) is one of the most frequently inactivated tumor suppressors in breast cancer. While PTEN itself is not considered a druggable target, PTEN synthetic-sick or synthetic-lethal (PTEN-SSL) genes are potential drug targets in PTEN-deficient breast cancers. Therefore, with the aim of identifying potential targets for precision breast cancer therapy, we sought to discover PTEN-SSL genes present in a broad spectrum of breast cancers.
METHODS: To discover broad-spectrum PTEN-SSL genes in breast cancer, we used a multi-step approach that started with (1) a genome-wide short interfering RNA (siRNA) screen of ~ 21,000 genes in a pair of isogenic human mammary epithelial cell lines, followed by (2) a short hairpin RNA (shRNA) screen of ~ 1200 genes focused on hits from the first screen in a panel of 11 breast cancer cell lines; we then determined reproducibility of hits by (3) identification of overlaps between our results and reanalyzed data from 3 independent gene-essentiality screens, and finally, for selected candidate PTEN-SSL genes we (4) confirmed PTEN-SSL activity using either drug sensitivity experiments in a panel of 19 cell lines or mutual exclusivity analysis of publicly available pan-cancer somatic mutation data.
RESULTS: The screens (steps 1 and 2) and the reproducibility analysis (step 3) identified six candidate broad-spectrum PTEN-SSL genes (PIK3CB, ADAMTS20, AP1M2, HMMR, STK11, and NUAK1). PIK3CB was previously identified as PTEN-SSL, while the other five genes represent novel PTEN-SSL candidates. Confirmation studies (step 4) provided additional evidence that NUAK1 and STK11 have PTEN-SSL patterns of activity. Consistent with PTEN-SSL status, inhibition of the NUAK1 protein kinase by the small molecule drug HTH-01-015 selectively impaired viability in multiple PTEN-deficient breast cancer cell lines, while mutations affecting STK11 and PTEN were largely mutually exclusive across large pan-cancer data sets.
CONCLUSIONS: Six genes showed PTEN-SSL patterns of activity in a large proportion of PTEN-deficient breast cancer cell lines and are potential specific vulnerabilities in PTEN-deficient breast cancer. Furthermore, the NUAK1 PTEN-SSL vulnerability identified by RNA interference techniques can be recapitulated and exploited using the small molecule kinase inhibitor HTH-01-015. Thus, NUAK1 inhibition may be an effective strategy for precision treatment of PTEN-deficient breast tumors.

Xiao Y, Feng M, Ran H, et al.
Identification of key differentially expressed genes associated with non‑small cell lung cancer by bioinformatics analyses.
Mol Med Rep. 2018; 17(5):6379-6386 [PubMed] Free Access to Full Article Related Publications
Increasing evidence has indicated that the abnormal expressions of certain genes serve important roles in tumorigenesis, progression and metastasis. The aim of the present study was to explore the key differentially expressed genes (DEGs) between non‑small cell lung cancer (NSCLC) and matched normal lung tissues by analyzing 4 different mRNA microarray datasets downloaded from the Gene Expression Omnibus (GEO) database. In improving the reliability of the bioinformatics analysis, the DEGs in each dataset that met the cut‑off criteria (adjust P‑value <0.05 and |log2fold‑change (FC)|>1) were intersected with each other, from which 195 were identified (consisting of 57 upregulated and 138 downregulated DEGs). The GO analysis results revealed that the upregulated DEGs were significantly enriched in various biological processes (BP), including cell cycle, mitosis and cell proliferation while the downregulated DEGs were significantly enriched in angiogenesis and response to drug and cell adhesion. The hub genes, including CCNB1, CCNA2, CEP55, PBK and HMMR, were identified based on the protein‑protein interaction (PPI) network. The Kaplan‑Meier survival analysis indicated that the high expression level of each of these hub genes correlates with poorer overall survival in all patients with NSCLC, which indicates that they may serve important roles in the progression of NSCLC. In conclusion, the DEGs and hub genes identified in the present study may contribute to the comprehensive understanding of the molecular mechanisms of NSCLC and may be used as diagnostic and prognostic biomarkers as well as molecular targets for the treatment of NSCLC.

Horning AM, Wang Y, Lin CK, et al.
Single-Cell RNA-seq Reveals a Subpopulation of Prostate Cancer Cells with Enhanced Cell-Cycle-Related Transcription and Attenuated Androgen Response.
Cancer Res. 2018; 78(4):853-864 [PubMed] Free Access to Full Article Related Publications
Increasing evidence suggests the presence of minor cell subpopulations in prostate cancer that are androgen independent and poised for selection as dominant clones after androgen deprivation therapy. In this study, we investigated this phenomenon by stratifying cell subpopulations based on transcriptome profiling of 144 single LNCaP prostate cancer cells treated or untreated with androgen after cell-cycle synchronization. Model-based clustering of 397 differentially expressed genes identified eight potential subpopulations of LNCaP cells, revealing a previously unappreciable level of cellular heterogeneity to androgen stimulation. One subpopulation displayed stem-like features with a slower cell doubling rate, increased sphere formation capability, and resistance to G

Purnell MC
Bio-electric field enhancement: the influence on hyaluronan mediated motility receptors in human breast carcinoma.
Discov Med. 2017; 23(127):259-267 [PubMed] Related Publications
Mechanisms that regulate cancer cell metastasis are often intricately linked to mechanisms that control cell migration in wound repair. Hyaluronan Mediated Motility Receptor (HMMR) encodes a receptor for hyaluronan-mediated motility (RHAMM), a non-integral cell surface hyaluronan receptor and intracellular protein that promotes mitotic spindle formation and cell motility. RHAMM has been found to have increased expression in both cancers and wounds, and when cancers show increased RHAMM expression poor outcomes have occurred. Therefore, RHAMM has been shown to contribute to both natural healing mechanisms and cancer cell pathology. RHAMM is expressed in breast tissue and forms a polarity normalizing complex with BRCA1. Mutations of BRCA1 have been associated with a loss of apicobasal cell polarity along with a subsequent increased expression of RHAMM. Here we show how a human breast carcinoma cell line was maintained in media prepared with a dilute saline solution that had been exposed to a dielectrophoretic (DEP) electromagnetic field (EMF) generated by 3 amperes of direct current (dc) to a device housing an array of conductive rings. This Bio-electric Field Enhancement (BEFE) device has been available commercially for use in baths/footbaths since 1996 and consumers claim that it provides health benefits ranging from lowering blood pressure to faster wound healing. Our studies showed a significant inhibition of growth of human breast carcinoma MDA-MB-231 cells when they were maintained in media prepared with dc-DEP EMF force treated dilute saline while no growth inhibition occurred when the same cells were maintained in identically prepared but untreated media. Importantly, no growth inhibition was observed in human epithelial MCF-10A cells when grown in either treated or untreated media. Also, mitotic spindle formation was inhibited in the human breast carcinoma when they were grown in dc-DEP EMF force treated media. To determine if any gene expression changes contributed to the selective growth inhibition and absent mitotic spindle formation in the human breast carcinoma grown in the treated media, we employed microarray analysis and found that there was large-scale transcriptional reprogramming of the tumor cells grown in the treated media with over 1,000 genes up- or down-regulated over 2-fold, whereas the non-cancerous MCF-10A cells showed relatively modest changes in gene expression. Of the genes affected in the MDA-MB-231 cells, the significance of down-regulation of HMMR is discussed. The ability to enhance cell polarity through the application of this dc-DEP EMF force may offer another way to stabilize HMMR and differentially modulate its expression in cancerous and noncancerous cells.

Stafford JL, Dyson G, Levin NK, et al.
Reanalysis of BRCA1/2 negative high risk ovarian cancer patients reveals novel germline risk loci and insights into missing heritability.
PLoS One. 2017; 12(6):e0178450 [PubMed] Free Access to Full Article Related Publications
While up to 25% of ovarian cancer (OVCA) cases are thought to be due to inherited factors, the majority of genetic risk remains unexplained. To address this gap, we sought to identify previously undescribed OVCA risk variants through the whole exome sequencing (WES) and candidate gene analysis of 48 women with ovarian cancer and selected for high risk of genetic inheritance, yet negative for any known pathogenic variants in either BRCA1 or BRCA2. In silico SNP analysis was employed to identify suspect variants followed by validation using Sanger DNA sequencing. We identified five pathogenic variants in our sample, four of which are in two genes featured on current multi-gene panels; (RAD51D, ATM). In addition, we found a pathogenic FANCM variant (R1931*) which has been recently implicated in familial breast cancer risk. Numerous rare and predicted to be damaging variants of unknown significance were detected in genes on current commercial testing panels, most prominently in ATM (n = 6) and PALB2 (n = 5). The BRCA2 variant p.K3326*, resulting in a 93 amino acid truncation, was overrepresented in our sample (odds ratio = 4.95, p = 0.01) and coexisted in the germline of these women with other deleterious variants, suggesting a possible role as a modifier of genetic penetrance. Furthermore, we detected loss of function variants in non-panel genes involved in OVCA relevant pathways; DNA repair and cell cycle control, including CHEK1, TP53I3, REC8, HMMR, RAD52, RAD1, POLK, POLQ, and MCM4. In summary, our study implicates novel risk loci as well as highlights the clinical utility for retesting BRCA1/2 negative OVCA patients by genomic sequencing and analysis of genes in relevant pathways.

Song JM, Molla K, Anandharaj A, et al.
Triptolide suppresses the in vitro and in vivo growth of lung cancer cells by targeting hyaluronan-CD44/RHAMM signaling.
Oncotarget. 2017; 8(16):26927-26940 [PubMed] Free Access to Full Article Related Publications
Higher levels of hyaluronan (HA) and its receptors CD44 and RHAMM have been associated with poor prognosis and metastasis in NSCLC. In the current study, our goal was to define, using cellular and orthotopic lung tumor models, the role of HA-CD44/RHAMM signaling in lung carcinogenesis and to assess the potential of triptolide to block HA-CD44/RHAMM signaling and thereby suppress the development and progression of lung cancer. Triptolide reduced the viability of five non-small cell lung cancer (NSCLC) cells, the proliferation and self-renewal of pulmospheres, and levels of HA synthase 2 (HAS2), HAS3, HA, CD44, RHAMM, EGFR, Akt and ERK, but increased the cleavage of caspase 3 and PARP. Silencing of HAS2, CD44 or RHAMM induced similar effects. Addition of excess HA to the culture media completely abrogated the effects of triptolide and siRNAs targeting HAS2, CD44, or RHAMM. In an orthotopic lung cancer model in nude rats, intranasal administration of liposomal triptolide (400 μg/kg) for 8 weeks significantly reduced lung tumor growth as determined by bioluminescence imaging, lung weight measurements and gross and histopathological analysis of tumor burden. Also, triptolide suppressed expressions of Ki-67, a marker for cell proliferation, HAS2, HAS3, HA, CD44, and RHAMM in lung tumors. Overall, our results provide a strong rationale for mitigating lung cancer by targeting the HA-CD44/RHAMM signaling axis.

Stevens LE, Cheung WKC, Adua SJ, et al.
Extracellular Matrix Receptor Expression in Subtypes of Lung Adenocarcinoma Potentiates Outgrowth of Micrometastases.
Cancer Res. 2017; 77(8):1905-1917 [PubMed] Free Access to Full Article Related Publications
Mechanisms underlying the propensity of latent lung adenocarcinoma (LUAD) to relapse are poorly understood. In this study, we show how differential expression of a network of extracellular matrix (ECM) molecules and their interacting proteins contributes to risk of relapse in distinct LUAD subtypes. Overexpression of the hyaluronan receptor HMMR in primary LUAD was associated with an inflammatory molecular signature and poor prognosis. Attenuating HMMR in LUAD cells diminished their ability to initiate lung tumors and distant metastases. HMMR upregulation was not required for dissemination

Virga J, Bognár L, Hortobágyi T, et al.
Tumor Grade versus Expression of Invasion-Related Molecules in Astrocytoma.
Pathol Oncol Res. 2018; 24(1):35-43 [PubMed] Related Publications
Peritumoral infiltration is characteristic of astrocytomas even in low-grade tumors. Tumor cells migrate to neighbouring tissue and cause recurrence. The extracellular matrix (ECM) plays a role in tumor invasion; expression levels of its components' have been linked to tumor invasion. This study determines the mRNA and protein expression of 20 invasion-related ECM components by examining non-tumor brain; grade I-II-III astrocytoma and glioblastoma samples. Expression levels were measured by QRT-PCR and mass-spectroscopy. The connection between the expression pattern and tumor grade is statistically analyzed. During the analysis of data, key molecules (brevican, cadherin-12, fibronectin and integrin-β1) correlating the most with tumor grade were selected. While the mRNA level of brevican, ErbB2, fibronectin, integrin-β1 and versican discriminates low-grade from high-grade gliomas, of proteins RHAMM, integrin-α1 and MMP2 seems important. The expression pattern was found to be distinctive for tumor grade, as statistical classifiers are capable of identifying an unknown sample's grade using them. Furthermore, normal brain and glioma expression patterns, along with low-grade astrocytoma and glioblastoma samples, differ the most. Determining the invasion-related molecules' expression profile provides extra information regarding the tumor's clinical behavior. Additionally, identifying molecules playing a key role in glioma invasion could uncover potential therapeutic targets in the future.

Thangavel C, Boopathi E, Liu Y, et al.
RB Loss Promotes Prostate Cancer Metastasis.
Cancer Res. 2017; 77(4):982-995 [PubMed] Free Access to Full Article Related Publications
RB loss occurs commonly in neoplasia but its contributions to advanced cancer have not been assessed directly. Here we show that RB loss in multiple murine models of cancer produces a prometastatic phenotype. Gene expression analyses showed that regulation of the cell motility receptor RHAMM by the RB/E2F pathway was critical for epithelial-mesenchymal transition, motility, and invasion by cancer cells. Genetic modulation or pharmacologic inhibition of RHAMM activity was sufficient and necessary for metastatic phenotypes induced by RB loss in prostate cancer. Mechanistic studies in this setting established that RHAMM stabilized F-actin polymerization by controlling ROCK signaling. Collectively, our findings show how RB loss drives metastatic capacity and highlight RHAMM as a candidate therapeutic target for treating advanced prostate cancer.

Šmahelová J, Kaštánková I, Poláková KM, et al.
Expression of genes encoding centrosomal proteins and the humoral response against these proteins in chronic myeloid leukemia.
Oncol Rep. 2017; 37(1):547-554 [PubMed] Related Publications
As the extent of centrosome abnormalities in chronic myeloid leukemia (CML) correlates with disease stage and karyotype alterations, abnormal expression of genes encoding centrosomal proteins may be an early prognostic marker of disease progression. In the present study, we showed that in comparison with healthy controls, the expression of four centrosomal genes (AURKA, HMMR, PLK1 and ESPL1) in the peripheral blood of CML patients was significantly enhanced at diagnosis and decreased to the basal level in most patients treated with imatinib mesylate for three months. In the remaining patients (17%), this decrease was delayed and was associated with worse overall survival. The detection of antibodies in sera showed that patients with higher overall antibody production had superior outcomes in terms of achieving major molecular response and failure-free survival. These data suggest that the dynamics of the response of centrosomal genes should be considered as a risk factor and immunity against centrosomal proteins may contribute to treatment response.

Wang D, Narula N, Azzopardi S, et al.
Expression of the receptor for hyaluronic acid mediated motility (RHAMM) is associated with poor prognosis and metastasis in non-small cell lung carcinoma.
Oncotarget. 2016; 7(26):39957-39969 [PubMed] Free Access to Full Article Related Publications
The receptor for hyaluronic acid-mediated motility (RHAMM) is upregulated in various cancers, but its role in primary and metastatic non-small cell lung carcinoma (NSCLC) remains to be determined. Here, we investigate the clinical relevance of RHAMM expression in NSCLC. RHAMM protein expression correlates with histological differentiation stages and extent of the primary tumor (T stages) in 156 patients with primary NSCLC. Importantly, while focal RHAMM staining pattern is present in 57% of primary NSCLC, intense RHAMM protein expression is present in 96% of metastatic NSCLC cases. In a publicly available database, The Cancer Genome Atlas (TCGA), RHAMM mRNA expression is 12- and 10-fold higher in lung adenocarcinoma and squamous lung carcinoma than in matched normal lung tissues, respectively. RHAMM mRNA expression correlates with stages of differentiation and inferior survival in more than 400 cases of lung adenocarcinoma in the Director's Challenge cohort. Of 4 RHAMM splice variants, RHAMMv3 (also known as RHAMMB) is the dominant variant in NSCLC. Moreover, shRNA-mediated knockdown of RHAMM reduced the migratory ability of two lung adenocarcinoma cell lines, H1975 and H3255. Taken together, RHAMM, most likely RHAMMv3 (RHAMMB), can serve as a prognostic factor for lung adenocarcinomas and a potential therapeutic target in NSCLC to inhibit tumor migration.

Willemen Y, Van den Bergh JM, Bonte SM, et al.
The tumor-associated antigen RHAMM (HMMR/CD168) is expressed by monocyte-derived dendritic cells and presented to T cells.
Oncotarget. 2016; 7(45):73960-73970 [PubMed] Free Access to Full Article Related Publications
We formerly demonstrated that vaccination with Wilms' tumor 1 (WT1)-loaded autologous monocyte-derived dendritic cells (mo-DCs) can be a well-tolerated effective treatment in acute myeloid leukemia (AML) patients. Here, we investigated whether we could introduce the receptor for hyaluronic acid-mediated motility (RHAMM/HMMR/CD168), another clinically relevant tumor-associated antigen, into these mo-DCs through mRNA electroporation and elicit RHAMM-specific immune responses. While RHAMM mRNA electroporation significantly increased RHAMM protein expression by mo-DCs, our data indicate that classical mo-DCs already express and present RHAMM at sufficient levels to activate RHAMM-specific T cells, regardless of electroporation. Moreover, we found that RHAMM-specific T cells are present at vaccination sites in AML patients. Our findings implicate that we and others who are using classical mo-DCs for cancer immunotherapy are already vaccinating against RHAMM.

Schütze A, Vogeley C, Gorges T, et al.
RHAMM splice variants confer radiosensitivity in human breast cancer cell lines.
Oncotarget. 2016; 7(16):21428-40 [PubMed] Free Access to Full Article Related Publications
Biomarkers for prognosis in radiotherapy-treated breast cancer patients are urgently needed and important to stratify patients for adjuvant therapies. Recently, a role of the receptor of hyaluronan-mediated motility (RHAMM) has been suggested for tumor progression. Our aim was (i) to investigate the prognostic value of RHAMM in breast cancer and (ii) to unravel its potential function in the radiosusceptibility of breast cancer cells. We demonstrate that RHAMM mRNA expression in breast cancer biopsies is inversely correlated with tumor grade and overall survival. Radiosusceptibility in vitro was evaluated by sub-G1 analysis (apoptosis) and determination of the proliferation rate. The potential role of RHAMM was addressed by short interfering RNAs against RHAMM and its splice variants. High expression of RHAMMv1/v2 in p53 wild type cells (MCF-7) induced cellular apoptosis in response to ionizing radiation. In comparison, in p53 mutated cells (MDA-MB-231) RHAMMv1/v2 was expressed sparsely resulting in resistance towards irradiation induced apoptosis. Proliferation capacity was not altered by ionizing radiation in both cell lines. Importantly, pharmacological inhibition of the major ligand of RHAMM, hyaluronan, sensitized both cell lines towards radiation induced cell death. Based on the present data, we conclude that the detection of RHAMM splice variants in correlation with the p53 mutation status could help to predict the susceptibility of breast cancer cells to radiotherapy. Additionally, our studies raise the possibility that the response to radiotherapy in selected cohorts may be improved by pharmaceutical strategies against RHAMM and its ligand hyaluronan.

Li P, Xiang T, Li H, et al.
Hyaluronan synthase 2 overexpression is correlated with the tumorigenesis and metastasis of human breast cancer.
Int J Clin Exp Pathol. 2015; 8(10):12101-14 [PubMed] Free Access to Full Article Related Publications
Extracellular matrix (ECM) is closely correlated with the malignant behavior of breast cancer cells. Hyaluronan (HA) is one of the main components of ECM, and actively regulates cell adhesion, migration and proliferation by interacting with specific cell surface receptors such as CD44 and RHAMM. HA synthase 2 (HAS2) catalyzes the synthesis of HA, but its role in breast tumorigenesis remains unclear. This study assessed the roles of HAS2 in malignant behavior of human breast cancer and sought to provide mechanistic insights into the biological and pivotal roles of HAS2. We observed HAS2 was overexpressed in breast cancer cell lines and invasive duct cancer tissues, compared with the nonmalignant breast cell lines and normal breast tissues. In addition, a high level of HAS2 expression was statistically correlated with lymph node metastasis. Functional assays showed that knockdown of HAS2 expression inhibited breast tumor cell proliferation in vivo and in vitro, through the induction of apoptosis or cell cycle arrest. Further studies showed that the HA were elevated in breast cancer, and HAS2 could upregulate HA expression. In conclusion, HAS2-HA system influences the biological characteristics of human breast cancer cells, and HAS2 may be a potential prognostic marker and therapeutic target in breast cancer.

Katona É, Juhász T, Somogyi CS, et al.
PP2B and ERK1/2 regulate hyaluronan synthesis of HT168 and WM35 human melanoma cell lines.
Int J Oncol. 2016; 48(3):983-97 [PubMed] Free Access to Full Article Related Publications
Hyaluronan (HA) is the major glycosaminoglycan component of the extracellular matrix in either normal or malignant tissues and it may affect proliferation, motility and differentiation of various cell types. Three isoforms of plasma membrane-bound hyaluronan synthases (HAS 1, 2 and 3) secrete and simultaneously bind pericellular HA. HAS enzymes are subjects of post-translational protein phosphorylation which is believed to regulate their enzymatic activity. In this study, we investigated the HA homeostasis of normal human epidermal melanocytes, HT168 and WM35 human melanoma cell lines and melanoma metastases. HAS2 and HAS3 were detected in all the samples, while the expression of HAS1 was not detectable in any case. Malignant tissue samples and melanoma cell lines contained extra- and intracellular HA abundantly but not normal melanocytes. Applying HA as a chemoattractant facilitated the migration of melanoma cells in Boyden chamber. The amount of HA was reduced upon the inhibition of calcineurin with cyclosporine A (CsA), while the inhibition of ERK1/2 with PD098059 elevated it in both cell lines. The signals of Ser/Thr phosphoproteins at 57 kD were stronger after CsA treatment, while a markedly weaker signal was detected upon inhibition of the MAPK pathway. Our results suggest opposing effects of the two investigated enzymes on the HA homeostasis of melanoma cells. We propose that the dephosphorylation of HAS enzymes targeted by PP2B augments HA production, while their phosphorylation by the activity of MAPK pathway reduces HA synthesis. As the expression of the HA receptor RHAMM was also significantly enhanced by PD098059, the MAPK pathway exerted a complex attenuating effect on HA signalling in the investigated melanoma cells. This observation suggests that the application of MAPK-ERK pathway inhibitors requires a careful therapeutic design in melanoma treatment.

Zhou W, Yin M, Cui H, et al.
Identification of potential therapeutic target genes and mechanisms in non-small-cell lung carcinoma in non-smoking women based on bioinformatics analysis.
Eur Rev Med Pharmacol Sci. 2015; 19(18):3375-84 [PubMed] Related Publications
OBJECTIVE: The study was aimed to explore the underlying mechanisms and identify the potential target genes by bioinformatics analysis for non-small-cell lung carcinoma (NSCLC) treatment in non-smoking women.
MATERIALS AND METHODS: The microarray data of GSE19804 was downloaded from Gene Expression Omnibus (GEO) database. Paired samples (from the same patient) of tumor and normal lung tissues from 60 non-smoking female NSCLC patients were used to identify differentially expressed genes (DEGs). The functional enrichment analysis was performed. Furthermore, the protein-protein interaction (PPI) network of the DEGs was constructed by Cytoscape software. The module analysis was performed.
RESULTS: Totally, 817 DEGs including 273 up- and 544 down-regulated genes were identified. The up-regulated genes were mainly enriched in extracellular matrix (ECM)-receptor interaction, focal adhesion and cell cycle functions, while down-regulated genes were mainly enriched in the cytokine-cytokine receptor interaction pathway. DEGs including hyaluronan-mediated motility receptor (HMMR), collagen, type I alpha 2 (COL1A2), cyclin A2 (CCNA2), MAD2 mitotic arrest deficient-like 1 (MAD2L1), interleukin 6 (IL6) and interleukin 1, beta (IL1B) were identified in these functions. These genes were hub nodes in PPI networks. Besides, there were 3 up-regulated modules and 1 down-regulated module. The significant pathways were ECM-receptor interaction and focal adhesion in up-regulated modules, while in down-regulated module, the significant pathway was mitogen-activated protein kinase (MAPK) signaling pathway.
CONCLUSIONS: The ECM-receptor interaction, focal adhesion, cell cycle and cytokine-cytokine receptor interaction functions may be associated with NSCLC development. Genes such as HMMR, COL1A2, CCNA2, MAD2L1, IL6 and IL1B may be potential therapeutic target genes for NSCLC.

Stangeland B, Mughal AA, Grieg Z, et al.
Combined expressional analysis, bioinformatics and targeted proteomics identify new potential therapeutic targets in glioblastoma stem cells.
Oncotarget. 2015; 6(28):26192-215 [PubMed] Free Access to Full Article Related Publications
Glioblastoma (GBM) is both the most common and the most lethal primary brain tumor. It is thought that GBM stem cells (GSCs) are critically important in resistance to therapy. Therefore, there is a strong rationale to target these cells in order to develop new molecular therapies.To identify molecular targets in GSCs, we compared gene expression in GSCs to that in neural stem cells (NSCs) from the adult human brain, using microarrays. Bioinformatic filtering identified 20 genes (PBK/TOPK, CENPA, KIF15, DEPDC1, CDC6, DLG7/DLGAP5/HURP, KIF18A, EZH2, HMMR/RHAMM/CD168, NOL4, MPP6, MDM1, RAPGEF4, RHBDD1, FNDC3B, FILIP1L, MCC, ATXN7L4/ATXN7L1, P2RY5/LPAR6 and FAM118A) that were consistently expressed in GSC cultures and consistently not expressed in NSC cultures. The expression of these genes was confirmed in clinical samples (TCGA and REMBRANDT). The first nine genes were highly co-expressed in all GBM subtypes and were part of the same protein-protein interaction network. Furthermore, their combined up-regulation correlated negatively with patient survival in the mesenchymal GBM subtype. Using targeted proteomics and the COGNOSCENTE database we linked these genes to GBM signalling pathways.Nine genes: PBK, CENPA, KIF15, DEPDC1, CDC6, DLG7, KIF18A, EZH2 and HMMR should be further explored as targets for treatment of GBM.

Tzankov A, Leu N, Muenst S, et al.
Multiparameter analysis of homogeneously R-CHOP-treated diffuse large B cell lymphomas identifies CD5 and FOXP1 as relevant prognostic biomarkers: report of the prospective SAKK 38/07 study.
J Hematol Oncol. 2015; 8:70 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The prognostic role of tumor-related parameters in diffuse large B cell lymphoma (DLBCL) is a matter of controversy.
METHODS: We investigated the prognostic value of phenotypic and genotypic profiles in DLBCL in clinical trial (NCT00544219) patients homogenously treated with six cycles of rituximab, cyclophosphamide, hydroxydaunorubicin, vincristine, prednisone (R-CHOP), followed by two cycles of R (R-CHOP-14). The primary endpoint was event-free survival at 2 years (EFS). Secondary endpoints were progression-free (PFS) and overall survival (OS). Immunohistochemical (bcl2, bcl6, CD5, CD10, CD20, CD95, CD168, cyclin E, FOXP1, GCET, Ki-67, LMO2, MUM1p, pSTAT3) and in situ hybridization analyses (BCL2 break apart probe, C-MYC break apart probe and C-MYC/IGH double-fusion probe, and Epstein-Barr virus probe) were performed and correlated with the endpoints.
RESULTS: One hundred twenty-three patients (median age 58 years) were evaluable. Immunohistochemical assessment succeeded in all cases. Fluorescence in situ hybridization was successful in 82 instances. According to the Tally algorithm, 81 cases (66%) were classified as non-germinal center (GC) DLBCL, while 42 cases (34%) were GC DLBCL. BCL2 gene breaks were observed in 7/82 cases (9%) and C-MYC breaks in 6/82 cases (8%). "Double-hit" cases with BCL2 and C-MYC rearrangements were not observed. Within the median follow-up of 53 months, there were 51 events, including 16 lethal events and 12 relapses. Factors able to predict worse EFS in univariable models were failure to achieve response according to international criteria, failure to achieve positron emission tomography response (p < 0.005), expression of CD5 (p = 0.02), and higher stage (p = 0.021). Factors predicting inferior PFS were failure to achieve response according to international criteria (p < 0.005), higher stage (p = 0.005), higher International Prognostic Index (IPI; p = 0.006), and presence of either C-MYC or BCL2 gene rearrangements (p = 0.033). Factors predicting inferior OS were failure to achieve response according to international criteria and expression of FOXP1 (p < 0.005), cyclin E, CD5, bcl2, CD95, and pSTAT3 (p = 0.005, 0.007, 0.016, and 0.025, respectively). Multivariable analyses revealed that expression of CD5 (p = 0.044) and FOXP1 (p = 0.004) are independent prognostic factors for EFS and OS, respectively.
CONCLUSION: Phenotypic studies with carefully selected biomarkers like CD5 and FOXP1 are able to prognosticate DLBCL course at diagnosis, independent of stage and IPI and independent of response to R-CHOP.

Blanco I, Kuchenbaecker K, Cuadras D, et al.
Assessing associations between the AURKA-HMMR-TPX2-TUBG1 functional module and breast cancer risk in BRCA1/2 mutation carriers.
PLoS One. 2015; 10(4):e0120020 [PubMed] Free Access to Full Article Related Publications
While interplay between BRCA1 and AURKA-RHAMM-TPX2-TUBG1 regulates mammary epithelial polarization, common genetic variation in HMMR (gene product RHAMM) may be associated with risk of breast cancer in BRCA1 mutation carriers. Following on these observations, we further assessed the link between the AURKA-HMMR-TPX2-TUBG1 functional module and risk of breast cancer in BRCA1 or BRCA2 mutation carriers. Forty-one single nucleotide polymorphisms (SNPs) were genotyped in 15,252 BRCA1 and 8,211 BRCA2 mutation carriers and subsequently analyzed using a retrospective likelihood approach. The association of HMMR rs299290 with breast cancer risk in BRCA1 mutation carriers was confirmed: per-allele hazard ratio (HR) = 1.10, 95% confidence interval (CI) 1.04-1.15, p = 1.9 x 10(-4) (false discovery rate (FDR)-adjusted p = 0.043). Variation in CSTF1, located next to AURKA, was also found to be associated with breast cancer risk in BRCA2 mutation carriers: rs2426618 per-allele HR = 1.10, 95% CI 1.03-1.16, p = 0.005 (FDR-adjusted p = 0.045). Assessment of pairwise interactions provided suggestions (FDR-adjusted pinteraction values > 0.05) for deviations from the multiplicative model for rs299290 and CSTF1 rs6064391, and rs299290 and TUBG1 rs11649877 in both BRCA1 and BRCA2 mutation carriers. Following these suggestions, the expression of HMMR and AURKA or TUBG1 in sporadic breast tumors was found to potentially interact, influencing patients' survival. Together, the results of this study support the hypothesis of a causative link between altered function of AURKA-HMMR-TPX2-TUBG1 and breast carcinogenesis in BRCA1/2 mutation carriers.

Martínez-Ramos C, Lebourg M
Three-dimensional constructs using hyaluronan cell carrier as a tool for the study of cancer stem cells.
J Biomed Mater Res B Appl Biomater. 2015; 103(6):1249-57 [PubMed] Related Publications
BACKGROUND: Cancer research focuses increasingly on cancer stem cell study as those cells are thought to be the root of chemo and radioresistance of the most aggressive cancer types. Nevertheless, two-dimensional (2D) cell culture and even three-dimensional (3D) spheroid models, with their limited ability to reflect cell-extracellular matrix interactions, are not ideal for the study of cancer stem cells (CSCs). In this study, we establish a 3D in vitro cancer model using a synthetic and natural scaffold with tunable features and show that U87 cells cultured in this system acquire a stem-cell like phenotype.
METHODS: U87 astrocytoma cells were grown on polycaprolactone (PCL)-2D flat substrates (2D) and PCL-3D scaffolds (3D) eventually containing hyaluronic acid (3D-HA). Cell viability, growth patterns, morphology, and cell surface marker expression (CD44, RHAMM and CD133) were studied to assess the effect of 3D culture and presence of HA.
RESULTS: 3D scaffold, but most prominently presence of HA induced changes in cell morphology and marker expression; 3D-HA cultures showed features of aggregates; moreover, markedly increased expression of Nestin, CD44, RHAMM, and CD133 in 3D-HA scaffolds were found.
CONCLUSIONS: the behavior of U87 in our 3D-HA model is more similar to tumor growth in vivo and a stem-like phenotype is promoted. Thus, the 3D-HA scaffold could provide a useful model for CSCs study and anti-cancer therapeutics research in vitro and may have preclinical application for the screening of drug candidates.

Huan JL, Gao X, Xing L, et al.
Screening for key genes associated with invasive ductal carcinoma of the breast via microarray data analysis.
Genet Mol Res. 2014; 13(3):7919-25 [PubMed] Related Publications
The aim of this study was to identify key genes related to invasive ductal carcinoma (IDC) of the breast by analyzing gene expression data with bioinformatic tools. Microarray data set GSE31138 was downloaded from Gene Expression Omnibus, including 3 breast cancer tissue samples and 3 normal controls. Differentially expressed genes (DEGs) between breast cancer and normal control were screened out (FDR < 0.05 and |logFC| > 2). Coexpression between genes was examined with String, and a network was then constructed. Relevant pathways and diseases were retrieved with KOBAS. A total of 56 DEGs were obtained in the IDC of the breast compared with normal controls. A gene coexpression network including 27 pairs of genes was constructed and all the genes in the network were upregulated. Further study indicated that most of the genes in the coexpression network were enriched in ECM-receptor interaction (COL4A2, FN1, and HMMR) and nucleotide excision repair (CETN2 and PCNA) pathways, and that the most significantly related disease was autoimmune lymphoproliferative syndromes. A number of DEGs were acquired through comparative analysis of gene expression data. These findings are beneficial in promoting the understanding of the molecular mechanisms in breast cancer. More importantly, some key genes were revealed via gene coexpression network analysis, which could be potential biomarkers for IDC of the breast.

Hatfield KJ, Reikvam H, Bruserud Ø
Identification of a subset of patients with acute myeloid leukemia characterized by long-term in vitro proliferation and altered cell cycle regulation of the leukemic cells.
Expert Opin Ther Targets. 2014; 18(11):1237-51 [PubMed] Related Publications
OBJECTIVE: The malignant cell population of acute myeloid leukemia (AML) includes a small population of stem/progenitor cells with long-term in vitro proliferation. We wanted to compare long-term AML cell proliferation for unselected patients, investigate the influence of endothelial cells on AML cell proliferation and identify biological characteristics associated with clonogenic capacity.
METHODS: Cells were cultured in medium supplemented with recombinant growth factors FMS-like tyrosine kinase-3 ligand, stem cell factor, IL-3, G-CSF and thrombopoietin. The colony-forming unit assay was used to estimate the number of progenitors in AML cell populations after 35 days of culture, and microarray was used to study global gene expression profiles between AML patients.
RESULTS: Long-term cell proliferation was observed in 7 of 31 patients, whereas 3 additional patients showed long-term proliferation after endothelial cell coculture. Patient-specific differences in constitutive cytokine release were maintained during cell culture. Patients with long-term proliferation showed altered expression in six cell cycle-related genes (HMMR, BUB1, NUSAP1, AURKB, CCNF, DLGAP5), two genes involved in DNA replication (TOP2A, RFC3) and one gene with unknown function (LHFPL2).
CONCLUSION: We identified a subset of AML patients characterized by long-term in vitro cell proliferation and altered expression of cell cycle regulators that may be potential candidates for treatment of AML.

Man Y, Cao J, Jin S, et al.
Newly identified biomarkers for detecting circulating tumor cells in lung adenocarcinoma.
Tohoku J Exp Med. 2014; 234(1):29-40 [PubMed] Related Publications
Circulating tumor cells (CTCs) have been implicated in cancer prognosis and follow up. Detection of CTCs was considered significant in cancer evaluation. However, due to the heterogeneity and rareness of CTCs, detecting them with a single maker is usually challenged with low specificity and sensitivity. Previous studies concerning CTCs detection in lung cancer mainly focused on non-small cell lung carcinoma. Currently, there is no report yet describing the CTC detection with multiple markers in lung adenocarcinoma. In this study, by employing quantitative real-time PCR, we identified four candidate genes (mRNA) that were significantly elevated in peripheral blood mononuclear cells and biopsy tissue samples from patients with lung adenocarcinoma: cytokeratin 7 (CK7), Ca(2+)-activated chloride channel-2 (CLCA2), hyaluronan-mediated motility receptor (HMMR), and human telomerase catalytic subunit (hTERT). Then, the four markers were used for CTC detection; namely, positive detection was defined if at least one of the four markers was elevated. The positive CTC detection rate was 74.0% in patients with lung adenocarcinoma while 2.2% for healthy controls, 6.3% for benign lung disease, and 48.0% for non-adenocarcinoma non-small cell lung carcinoma. Furthermore, in a three-year follow-up study, patients with an increase in the detection markers of CTCs (CK7, CLCA2, HMMR or hTERT) on day 90 after first detection had shorter survival time compared to those with a decrease. These results demonstrate that the combination of the four markers with specificity and sensitivity is of great value in lung adenocarcinoma prognosis and follow up.

Keane M, Craig T, Alföldi J, et al.
The Naked Mole Rat Genome Resource: facilitating analyses of cancer and longevity-related adaptations.
Bioinformatics. 2014; 30(24):3558-60 [PubMed] Free Access to Full Article Related Publications
MOTIVATION: The naked mole rat (Heterocephalus glaber) is an exceptionally long-lived and cancer-resistant rodent native to East Africa. Although its genome was previously sequenced, here we report a new assembly sequenced by us with substantially higher N50 values for scaffolds and contigs.
RESULTS: We analyzed the annotation of this new improved assembly and identified candidate genomic adaptations which may have contributed to the evolution of the naked mole rat's extraordinary traits, including in regions of p53, and the hyaluronan receptors CD44 and HMMR (RHAMM). Furthermore, we developed a freely available web portal, the Naked Mole Rat Genome Resource (http://www.naked-mole-rat.org), featuring the data and results of our analysis, to assist researchers interested in the genome and genes of the naked mole rat, and also to facilitate further studies on this fascinating species.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. HMMR, Cancer Genetics Web: http://www.cancer-genetics.org/HMMR.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 01 September, 2019     Cancer Genetics Web, Established 1999