Gene Summary

Gene:GPER1; G protein-coupled estrogen receptor 1
Summary:This gene is a member of the G-protein coupled receptor 1 family and encodes a multi-pass membrane protein that localizes to the endoplasmic reticulum. The protein binds estrogen, resulting in intracellular calcium mobilization and synthesis of phosphatidylinositol 3,4,5-trisphosphate in the nucleus. This protein therefore plays a role in the rapid nongenomic signaling events widely observed following stimulation of cells and tissues with estrogen. Alternate transcriptional splice variants which encode the same protein have been characterized. [provided by RefSeq, Jul 2008]
Databases:OMIM, VEGA, HGNC, Ensembl, GeneCard, Gene
Protein:G-protein coupled estrogen receptor 1
Source:NCBIAccessed: 27 February, 2015


What does this gene/protein do?
Show (12)

Cancer Overview

Research Indicators

Publications Per Year (1990-2015)
Graph generated 28 February 2015 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 27 February, 2015 using data from PubMed, MeSH and CancerIndex

Specific Cancers (4)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: GPER1 (cancer-related)

Tao S, He H, Chen Q, Yue W
GPER mediated estradiol reduces miR-148a to promote HLA-G expression in breast cancer.
Biochem Biophys Res Commun. 2014; 451(1):74-8 [PubMed] Related Publications
Breast cancer is the most common malignant diseases in women. miR-148a plays an important role in regulation of cancer cell proliferation and cancer invasion and down-regulation of miR-148a has been reported in both estrogen receptor (ER) positive and triple-negative (TN) breast cancer. However, the regulation mechanism of miR-148a is unclear. The role of estrogen signaling, a signaling pathway is important in development and progression of breast cancer. Therefore, we speculated that E2 may regulate miR-148a through G-protein-coupled estrogen receptor-1 (GPER). To test our hypothesis, we checked the effects of E2 on miR-148a expression in ER positive breast cancer cell MCF-7 and TN cancer cell MDA-MB-231. Then we used GPER inhibitor G15 to investigate whether GPER is involved in regulation of E2 on miR-148a. Furthermore, we analyzed whether E2 affects the expression of HLA-G, which is a miR-148a target gene through GPER. The results showed that E2 induces the level of miR-148a in MCF-7 and MDA-MB-231 cells, GPER mediates the E2-induced increase in miR-148a expression in MCF-7 and MDA-MB-231 cells and E2-GPER regulates the expression of HLA-G by miR-148a. In conclusion, our findings offer important new insights into the ability of estrogenic GPER signaling to trigger HLA-G expression through inhibiting miR-148a that supports immune evasion in breast cancer.

Ortona E, Pierdominici M, Berstein L
Autoantibodies to estrogen receptors and their involvement in autoimmune diseases and cancer.
J Steroid Biochem Mol Biol. 2014; 144 Pt B:260-7 [PubMed] Related Publications
The involvement of estrogens, which influence many physiologic processes, has been shown in the development or progression of several diseases including some cancers, most notably breast cancer, and autoimmune disorders. Estrogenic signal is transferred via estrogen receptors (ER) which have dual localization, predominantly intracellular but also in plasma membrane. The discovery of membrane-associated ER (mER) has greatly expanded our understanding of estrogen action; upon ligand binding, mER rapidly activate different signaling pathways inducing downstream transcription factors. Some target genes of the mER pathway may be activated independently of the intracellular ER. Additionally, intracellular ER action can be modulated by mER-initiated signaling. Most notably, the identification of autoantibodies reacting with ER (ERAB) and their possible pathogenic role in autoimmunity and cancer have opened a new path for the research in the estrogen-related receptor activity. In this review, we briefly recapitulate the localization and function of ER and mostly discuss the possible role of ERAB as novel potential prognostic and/or predictive tools in autoimmunity and cancer.

Kim KC, Choi EH, Lee C
Axl receptor tyrosine kinase is a novel target of apigenin for the inhibition of cell proliferation.
Int J Mol Med. 2014; 34(2):592-8 [PubMed] Related Publications
The Axl receptor tyrosine kinase (RTK), along with Tyro 3 and Mer, belongs to the TAM subfamily that promotes survival, stimulates proliferation and/or inhibits apoptosis. In various types of human cancer, including breast, lung and prostate cancer, Axl expression is increased and correlates with an advanced clinical stage. In this study, we examined whether apigenin has an effect on Axl expression, which in turn can affect cell proliferation. The treatment of the non‑small cell lung cancer (NSCLC) cells, A549 and H460, with apigenin decreased Axl mRNA and protein expression in a dose‑dependent manner. Axl promoter activity was also inhibited by apigenin, indicating that apigenin suppressed Axl expression at the transcriptional level. Upon treatment with apigenin, the viability of both the A549 and H460 cells was gradually decreased and the anti-proliferative effects were further confirmed by the dose‑dependent decrease in the clonogenic ability of the apigenin‑treated cells. Subsequently, we found that the viability and clonogenic ability of the cells treated with apigenin was less or more affected by transfection of the cells with a Axl-expressing plasmid or Axl targeting siRNA, compared to transfection with the empty vector or control siRNA, respectively. In addition, apigenin increased the expression of p21, a cyclin-dependent kinase inhibitor, but reduced the expression of X-linked inhibitor of apoptosis protein (XIAP). These cell cycle arrest and pro-apoptotic effects of apigenin were also attenuated or augmented by the up- or downregulation of Axl expression, respectively, which suggests that Axl is a novel target of apigenin through which it exerts its inhibitory effects on cell proliferation. Taken together, our data indicate that apigenin downregulates Axl expression, which subsequently results in the inhibition of NSCLC cell proliferation through the increase and decrease of p21 and XIAP expression, respectively.

Yu T, Liu M, Luo H, et al.
GPER mediates enhanced cell viability and motility via non-genomic signaling induced by 17β-estradiol in triple-negative breast cancer cells.
J Steroid Biochem Mol Biol. 2014; 143:392-403 [PubMed] Related Publications
Triple-negative breast cancer (TNBC) is an aggressive breast cancer with a generally poor prognosis. Due to lack of specific targets for its treatment, an efficient therapy is needed. G protein-coupled estrogen receptor (GPER), a novel estrogen receptor, has been reported to be expressed in TNBC tissues. In this study, we investigated the effects of blocking non-genomic signaling mediated by the estrogen/GPER pathway on cell viability and motility in the TNBC cells. GPER was strongly expressed in the TNBC cell lines MDA-MB-468 and MDA-MB-436, and the estrogen-mediated non-genomic ERK signaling activated by GPER was involved in cell viability and motility of TNBC cells. Treatment with 17β-estradiol (E2), the GPER-specific agonist G-1 and tamoxifen (TAM) led to rapid activation of p-ERK1/2, but not p-Akt. Moreover, estrogen/GPER/ERK signaling was involved in increasing cell growth, survival, and migration/invasion by upregulating expression of cyclinA, cyclinD1, Bcl-2, and c-fos associated with the cell cycle, proliferation, and apoptosis. Immunohistochemical analysis of TNBC specimens showed a significantly different staining of p-ERK1/2 between GPER-positive tissues (58/66, 87.9%) and GPER-negative tissues (13/30, 43.3%). The positivity of GPER and p-ERK1/2 displayed a strong association with large tumor size and poor clinical stage, indicating that GPER/ERK signaling might also contribute to tumor progression in TNBC patients which corresponded with in vitro experimental data. Our findings suggest that inhibition of estrogen/GPER/ERK signaling represents a novel targeted therapy in TNBC.

Santolla MF, De Francesco EM, Lappano R, et al.
Niacin activates the G protein estrogen receptor (GPER)-mediated signalling.
Cell Signal. 2014; 26(7):1466-75 [PubMed] Related Publications
Nicotinic acid, also known as niacin, is the water soluble vitamin B3 used for decades for the treatment of dyslipidemic diseases. Its action is mainly mediated by the G protein-coupled receptor (GPR) 109A; however, certain regulatory effects on lipid levels occur in a GPR109A-independent manner. The amide form of nicotinic acid, named nicotinamide, acts as a vitamin although neither activates the GPR109A nor exhibits the pharmacological properties of nicotinic acid. In the present study, we demonstrate for the first time that nicotinic acid and nicotinamide bind to and activate the GPER-mediated signalling in breast cancer cells and cancer-associated fibroblasts (CAFs). In particular, we show that both molecules are able to promote the up-regulation of well established GPER target genes through the EGFR/ERK transduction pathway. As a biological counterpart, nicotinic acid and nicotinamide induce proliferative and migratory effects in breast cancer cells and CAFs in a GPER-dependent fashion. Moreover, nicotinic acid prevents the up-regulation of ICAM-1 triggered by the pro-inflammatory cytokine TNF-α and stimulates the formation of endothelial tubes through GPER in HUVECs. Together, our findings concerning the agonist activity for GPER displayed by both nicotinic acid and nicotinamide broaden the mechanisms involved in the biological action of these molecules and further support the potential of a ligand to induce different responses mediated in a promiscuous manner by distinct GPCRs.

Ding Y, Wu M, Liu J, et al.
Seed-targeting anti-miR-21 inhibiting malignant progression of retinoblastoma and analysis of their phosphorylation signaling pathways.
Exp Eye Res. 2014; 122:1-8 [PubMed] Related Publications
MiR-21 acts as a ubiquitous oncogene in major classes of human cancers and is a potential target for therapeutic intervention. However, the relative expression of miR-21 in retinoblastoma is poorly understood. Here we detected miR-21 expression in HXO-RB44 cell line human normal retinal tissues and retinoblastoma (Rb) tissue specimens, and studied its function using an 8-mer tiny seed-targeting anti-miR-21 (t-anti-miR-21). RT-PCR revealed that miR-21 was highly overexpressed in HXO-RB44 cells and Rb tissue specimens compared with normal human retinal tissues. The localization and transfection efficiency of t-anti-miR-21 and the cell cycle distribution were detected by confocal microscopy and flow cytometry. In addition, we found that t-anti-miR-21 led to a significant inhibition of retinoblastoma cell proliferation, migration and colony formation in vitro, with a similar effect to anti-miR-21. Anti-miR-21 down-regulated the miR-21 level, whereas both 8-mer t-anti-miR-21 and 15-mer m-anti-miR-21 had no impact on miR-21 expression levels. Finally, the phosphorylation signaling pathway, down-regulated by t-anti-miR-21, was integrated by KEGG assay, which elucidated the potential mechanisms of inhibition of miR-21 in retinoblastoma. Taken together, knockdown of miR-21 in the HXO-RB44 cell is capable of inhibiting cancer progression in retinoblastoma. Seed-targeting t-anti-miR-21 was a novel strategy for mir-21-based therapeutics and drug discovery.

Oji Y, Tatsumi N, Fukuda M, et al.
The translation elongation factor eEF2 is a novel tumor‑associated antigen overexpressed in various types of cancers.
Int J Oncol. 2014; 44(5):1461-9 [PubMed] Free Access to Full Article Related Publications
Recent studies have shown that cancer immunotherapy could be a promising therapeutic approach for the treatment of cancer. In the present study, to identify novel tumor-associated antigens (TAAs), the proteins expressed in a panel of cancer cells were serologically screened by immunoblot analysis and the eukaryotic elongation factor 2 (eEF2) was identified as an antigen that was recognized by IgG autoantibody in sera from a group of patients with head and neck squamous cell carcinoma (HNSCC) or colon cancer. Enzyme-linked immunosorbent assay showed that serum eEF2 IgG Ab levels were significantly higher in colorectal and gastric cancer patients compared to healthy individuals. Immunohistochemistry experiments showed that the eEF2 protein was overexpressed in the majority of lung, esophageal, pancreatic, breast and prostate cancers, HNSCC, glioblastoma multiforme and non-Hodgkin's lymphoma (NHL). Knockdown of eEF2 by short hairpin RNA (shRNA) significantly inhibited the growth in four eEF2-expressing cell lines, PC14 lung cancer, PCI6 pancreatic cancer, HT1080 fibrosarcoma and A172 glioblastoma cells, but not in eEF2-undetectable MCF7 cells. Furthermore, eEF2-derived 9-mer peptides, EF786 (eEF2 786-794 aa) and EF292 (eEF2 292-300 aa), elicited cytotoxic T lymphocyte (CTL) responses in peripheral blood mononuclear cells (PBMCs) from an HLA-A*24:02- and an HLA-A*02:01-positive healthy donor, respectively, in an HLA-A-restricted manner. These results indicated that the eEF2 gene is overexpressed in the majority of several types of cancers and plays an oncogenic role in cancer cell growth. Moreover, the eEF2 gene product is immunogenic and a promising target molecule of cancer immunotherapy for several types of cancers.

Di Martino MT, Gullà A, Gallo Cantafio ME, et al.
In vitro and in vivo activity of a novel locked nucleic acid (LNA)-inhibitor-miR-221 against multiple myeloma cells.
PLoS One. 2014; 9(2):e89659 [PubMed] Free Access to Full Article Related Publications
BACKGROUND & AIM: The miR-221/222 cluster is upregulated in malignant plasma cells from multiple myeloma (MM) patients harboring the t(4;14) translocation. We previously reported that silencing of miR-221/222 by an antisense oligonucleotide induces anti-MM activity and upregulates canonical miR-221/222 targets. The in vivo anti-tumor activity occurred when miR-221/222 inhibitors were delivered directly into MM xenografts. The aim of the present study was to evaluate the anti-MM activity of a novel phosphorothioate modified backbone 13-mer locked nucleic acid (LNA)-Inhibitor-miR-221 (LNA-i-miR-221) specifically designed for systemic delivery.
METHODS: In vitro anti-MM activity of LNA-i-miR-221 was evaluated by cell proliferation and BrdU uptake assays. In vivo studies were performed with non-obese diabetic/severe combined immunodeficient (NOD.SCID) mice bearing t(4;14) MM xenografts, which were intraperitoneally or intravenously treated with naked LNA-i-miR-221. RNA extracts from retrieved tumors were analyzed for miR-221 levels and modulation of canonical targets expression. H&E staining and immunohistochemistry were performed on retrieved tumors and mouse vital organs.
RESULTS: In vitro, LNA-i-miR-221 exerted strong antagonistic activity against miR-221 and induced upregulation of the endogenous target p27Kip1. It had a marked anti-proliferative effect on t(4;14)-translocated MM cells but not on MM cells not carrying the translocation and not overexpressing miR-221. In vivo, systemic treatment with LNA-i-miR-221 triggered significant anti-tumor activity against t(4;14) MM xenografts; it also induced miR-221 downregulation, upregulated p27Kip1 and reduced Ki-67. No behavioral changes or organ-related toxicity were observed in mice as a consequence of treatments.
CONCLUSIONS: LNA-i-miR-221 is a highly stable, effective agent against t(4;14) MM cells, and is suitable for systemic use. These data provide the rationale for the clinical development of LNA-i-miR-221 for the treatment of MM.

Weißenborn C, Ignatov T, Ochel HJ, et al.
GPER functions as a tumor suppressor in triple-negative breast cancer cells.
J Cancer Res Clin Oncol. 2014; 140(5):713-23 [PubMed] Related Publications
BACKGROUND: The orphan, membrane-bound estrogen receptor (GPER) is expressed at high levels in a large fraction of breast cancer patients and its expression is favorable for patients' survival.
METHODS: We investigated the role of GPER as a potential tumor suppressor in triple-negative breast cancer cells MDA-MB-231 and MDA-MB-468 using cell cycle analysis and apoptosis assay. The constitutive activity of GPER was investigated.
RESULTS: GPER-specific activation with G-1 agonist inhibited breast cancer cell growth in concentration-dependent manner via induction of the cell cycle arrest in G2/M phase, enhanced phosphorylation of histone H3 and caspase-3-mediated apoptosis. Analysis of the methylation status of the GPER promoter in the triple-negative breast cancer cells and in tissues derived from breast cancer patients revealed that GPER amount is regulated by epigenetic mechanisms and GPER expression is inactivated by promoter methylation. Furthermore, GPER expression was induced by stress factors, such as radiation, and GPER amount inversely correlated with the p53 expression level.
CONCLUSIONS: Overall, our results establish the protective role in breast cancer tumorigenesis, and the cell surface expression of GPER makes it an excellent potential therapeutic target for triple-negative breast cancer.

Bianco S, Brunelle M, Jangal M, et al.
LRH-1 governs vital transcriptional programs in endocrine-sensitive and -resistant breast cancer cells.
Cancer Res. 2014; 74(7):2015-25 [PubMed] Related Publications
Tumor characteristics are decisive in the determination of treatment strategy for patients with breast cancer. Patients with estrogen receptor α (ERα)-positive breast cancer can benefit from long-term hormonal treatment. Nonetheless, the majority of patients will develop resistance to these therapies. Here, we investigated the role of the nuclear receptor liver receptor homolog-1 (LRH-1, NR5A2) in antiestrogen-sensitive and -resistant breast cancer cells. We identified genome-wide LRH-1-binding sites using ChIP-seq (chromatin immunoprecipitation sequencing), uncovering preferential binding to regions distal to transcriptional start sites. We further characterized these LRH-1-binding sites by integrating overlapping layers of specific chromatin marks, revealing that many LRH-1-binding sites are active and could be involved in long-range enhancer-promoter looping. Combined with transcriptome analysis of LRH-1-depleted cells, these results show that LRH-1 regulates specific subsets of genes involved in cell proliferation in antiestrogen-sensitive and antiestrogen-resistant breast cancer cells. Furthermore, the LRH-1 transcriptional program is highly associated with a signature of poor outcome and high-grade breast cancer tumors in vivo. Herein, we report the genome-wide location and molecular function of LRH-1 in breast cancer cells and reveal its therapeutic potential for the treatment of breast cancers, notably for tumors resistant to treatments currently used in therapies.

Weißenborn C, Ignatov T, Poehlmann A, et al.
GPER functions as a tumor suppressor in MCF-7 and SK-BR-3 breast cancer cells.
J Cancer Res Clin Oncol. 2014; 140(4):663-71 [PubMed] Related Publications
PURPOSE: The orphan, membrane-bound estrogen receptor (GPER) is expressed at high levels in a large fraction of breast cancer patients, and its expression is favorable for patients' survival. We investigated the role of GPER as a potential tumor suppressor in MCF-7 and SK-BR-3 breast cancer cells.
METHODS: The effect of GPER agonist G-1 in cell culture was used to determine whether GPER inhibit cell growth. The methylation status of GPER promoter was investigated by methylation-specific PCR.
RESULTS: GPER-specific agonist G-1 inhibited breast cancer cell proliferation in concentration-dependent manner via induction of the cell cycle arrest in M-phase, enhanced phosphorylation of histone 3 and cell apoptosis. Analysis of the methylation status of the GPER promoter in MCF-7 and SK-BR-3 cells revealed that GPER expression is regulated by epigenetic mechanisms and GPER expression is inactivated by promoter methylation. Overall, our results are consistent with our recent findings in triple-negative breast cancer cells, and the cell surface expression of GPER makes it an excellent potential therapeutic target for non-triple-negative breast cancer.

Sumarheni S, Hong SS, Josserand V, et al.
Human full-length coagulation factor X and a GLA domain-derived 40-mer polypeptide bind to different regions of the adenovirus serotype 5 hexon capsomer.
Hum Gene Ther. 2014; 25(4):339-49 [PubMed] Article available free on PMC after 01/04/2015 Related Publications
The interaction of human adenovirus (HAdV)-C5 and many other adenoviruses with blood coagulation factors (e.g., human factor X, FX) involves the binding of their GLA domain to the hexon capsomers, resulting in high levels of hepatotropism and potential hepatotoxicity. In this study, we tested the possibility of preventing these undesirable effects by using a GLA-mimicking peptide as a competitor. An FX GLA domain-derived, 40-mer polypeptide carrying 12 carboxyglutamate residues was synthesized (GLA(mim)). Surface plasmon resistance (SPR) analysis showed that GLA(mim) reacted with free and capsid-embedded hexon with a nanomolar affinity. Unexpectedly, GLA(mim) failed to compete with FX for hexon binding, and instead significantly increased the formation of FX-hexon or FX-adenovirion complexes. This observation was confirmed by in vitro cell transduction experiments using HAdV-C5-Luciferase vector (HAdV5-Luc), as preincubation of HAdV5-Luc with GLA(mim) before FX addition resulted in a higher transgene expression compared with FX alone. HAdV-C5 virions complexed with GLA(mim) were analyzed by cryoelectron microscopy. Image reconstruction demonstrated the bona fide hexon-GLA(mim) interaction, as for the full-length FX, although with considerable differences in stoichiometry and relative location on the hexon capsomer. Three extra densities were found at the periphery of each hexon, whereas one single FX molecule occupied the central cavity of the hexon trimeric capsomer. A refined analysis indicated that each extra density is found at the expected location of one highly variable loop 1 of the hexon, involved in scavenger receptor recognition. HAdV5-Luc complexed with a bifunctional GLA(mim)RGD peptide showed a lesser hepatotropism, compared with control HAdV5-Luc alone, and efficiently targeted αβ-integrin-overexpressing tumor cells in an in vivo mouse tumor model. Collectively, our findings open new perspectives in the design of adenoviral vectors for biotherapy.

Nishida S, Koido S, Takeda Y, et al.
Wilms tumor gene (WT1) peptide-based cancer vaccine combined with gemcitabine for patients with advanced pancreatic cancer.
J Immunother. 2014 Feb-Mar; 37(2):105-14 [PubMed] Article available free on PMC after 01/04/2015 Related Publications
Wilms tumor gene (WT1) protein is an attractive target for cancer immunotherapy. We aimed to investigate the feasibility of a combination therapy consisting of gemcitabine and WT1 peptide-based vaccine for patients with advanced pancreatic cancer and to make initial assessments of its clinical efficacy and immunologic response. Thirty-two HLA-A*24:02 patients with advanced pancreatic cancer were enrolled. Patients received HLA-A*24:02-restricted, modified 9-mer WT1 peptide (3 mg/body) emulsified with Montanide ISA51 adjuvant (WT1 vaccine) intradermally biweekly and gemcitabine (1000 mg/m) on days 1, 8, and 15 of a 28-day cycle. This combination therapy was well tolerated. The frequencies of grade 3-4 adverse events for this combination therapy were similar to those for gemcitabine alone. Objective response rate was 20.0% (6/30 evaluable patients). Median survival time and 1-year survival rate were 8.1 months and 29%, respectively. The association between longer survival and positive delayed-type hypersensitivity to WT1 peptide was statistically significant, and longer survivors featured a higher frequency of memory-phenotype WT1-specific cytotoxic T lymphocytes both before and after treatment. WT1 vaccine in combination with gemcitabine was well tolerated for patients with advanced pancreatic cancer. Delayed-type hypersensitivity-positivity to WT1 peptide and a higher frequency of memory-phenotype WT1-specific cytotoxic T lymphocytes could be useful prognostic markers for survival in the combination therapy with gemcitabine and WT1 vaccine. Further clinical investigation is warranted to determine the effectiveness of this combination therapy.

Azuma K, Komatsu N, Hattori S, et al.
Humoral immune responses to EGFR-derived peptides predict progression-free and overall survival of non-small cell lung cancer patients receiving gefitinib.
PLoS One. 2014; 9(1):e86667 [PubMed] Article available free on PMC after 01/04/2015 Related Publications
Somatic mutations in the epidermal growth factor receptor (EGFR) gene are associated with clinical response to EGFR tyrosine kinase inhibitors (TKIs), such as gefitinib, in patients with non-small cell lung cancer (NSCLC). However, humoral immune responses to EGFR in NSCLC patients have not been well studied. In this study, we investigated the clinical significance of immunoglobulin G (IgG) responses to EGFR-derived peptides in NSCLC patients receiving gefitinib. Plasma IgG titers to each of 60 different EGFR-derived 20-mer peptides were measured by the Luminex system in 42 NSCLC patients receiving gefitinib therapy. The relationships between the peptide-specific IgG titers and presence of EGFR mutations or patient survival were evaluated statistically. IgG titers against the egfr_481-500, egfr_721-740, and egfr_741-760 peptides were significantly higher in patients with exon 21 mutation than in those without it. On the other hand, IgG titers against the egfr_841-860 and egfr_1001-1020 peptides were significantly lower and higher, respectively, in patients with deletion in exon 19. Multivariate Cox regression analysis showed that IgG responses to egfr_41_ 60, egfr_61_80 and egfr_481_500 were significantly prognostic for progression-free survival independent of other clinicopathological characteristics, whereas those to the egfr_41_60 and egfr_481_500 peptides were significantly prognostic for overall survival. Detection of IgG responses to EGFR-derived peptides may be a promising method for prognostication of NSCLC patients receiving gefitinib. Our results may provide new insight for better understanding of humoral responses to EGFR in NSCLC patients.

Luo H, Yang G, Yu T, et al.
GPER-mediated proliferation and estradiol production in breast cancer-associated fibroblasts.
Endocr Relat Cancer. 2014; 21(2):355-69 [PubMed] Article available free on PMC after 01/04/2015 Related Publications
Cancer-associated fibroblasts (CAFs) are crucial co-mediators of breast cancer progression. Estrogen is the predominant driving force in the cyclic regulation of the mammary extracellular matrix, thus potentially affecting the tumor-associated stroma. Recently, a third estrogen receptor, estrogen (G-protein-coupled) receptor (GPER), has been reported to be expressed in breast CAFs. In this study, GPER was detected by immunohistochemical analysis in stromal fibroblasts of 41.8% (59/141) of the primary breast cancer samples. GPER expression in CAFs isolated from primary breast cancer tissues was confirmed by immunostaining and RT-PCR analyses. Tamoxifen (TAM) in addition to 17β-estradiol (E₂) and the GPER agonist G1 activated GPER, resulting in transient increases in cell index, intracellular calcium, and ERK1/2 phosphorylation. Furthermore, TAM, E₂, and G1 promoted CAF proliferation and cell-cycle progression, both of which were blocked by GPER interference, the selective GPER antagonist G15, the epidermal growth factor receptor (EGFR) inhibitor AG1478, and the ERK1/2 inhibitor U0126. Importantly, TAM as well as G1 increased E₂ production in breast CAFs via GPER/EGFR/ERK signaling when the substrate of E₂, testosterone, was added to the medium. GPER-induced aromatase upregulation was probably responsible for this phenomenon, as TAM- and G1-induced CYP19A1 gene expression was reduced by GPER knockdown and G15, AG1478, and U0126 administration. Accordingly, GPER-mediated CAF-dependent estrogenic effects on the tumor-associated stroma are conceivable, and CAF is likely to contribute to breast cancer progression, especially TAM resistance, via a positive feedback loop involving GPER/EGFR/ERK signaling and E₂ production.

Chevalier N, Paul-Bellon R, Camparo P, et al.
Genetic variants of GPER/GPR30, a novel estrogen-related G protein receptor, are associated with human seminoma.
Int J Mol Sci. 2014; 15(1):1574-89 [PubMed] Article available free on PMC after 01/04/2015 Related Publications
Testicular germ cell tumors (TGCTs) are the most common solid cancers in young men, with an increasing incidence over several years. However, their pathogenesis remains a matter of debate. Some epidemiological data suggest the involvement of both environmental and genetic factors. We reported two distinct effects of estrogens and/or xeno-estrogens on in vitro human seminoma-derived cells proliferation: (1) an antiproliferative effect via a classical estrogen receptor beta-dependent pathway, and (2) a promotive effect via a non-classical membrane G-protein-coupled receptor, GPR30/GPER, which is only overexpressed in seminomas, the most common TGCT. In order to explain this overexpression, we investigated the possible association of polymorphisms in the GPER gene by using allele-specific tetra-primer polymerase chain reaction performed on tissue samples from 150 paraffin-embedded TGCT specimens (131 seminomas, 19 non seminomas). Compared to control population, loss of homozygous ancestral genotype GG in two polymorphisms located in the promoter region of GPER (rs3808350 and rs3808351) was more frequent in seminomas but not in non-seminomas (respectively, OR = 1.960 (1.172-3.277) and 7.000 (2.747-17.840); p < 0.01). These polymorphisms may explain GPER overexpression and represent a genetic factor of susceptibility supporting the contribution of environmental GPER ligands in testicular carcinogenesis.

Chen Y, Li Z, He Y, et al.
Estrogen and pure antiestrogen fulvestrant (ICI 182 780) augment cell-matrigel adhesion of MCF-7 breast cancer cells through a novel G protein coupled estrogen receptor (GPR30)-to-calpain signaling axis.
Toxicol Appl Pharmacol. 2014; 275(2):176-81 [PubMed] Related Publications
Fulvestrant (ICI 182 780, ICI) has been used in treating patients with hormone-sensitive breast cancer, yet initial or acquired resistance to endocrine therapies frequently arises and, in particular, cancer recurs as metastasis. We demonstrate here that both 17-beta-estradiol (E2) and ICI enhance cell adhesion to matrigel in MCF-7 breast cancer cells, with increased autolysis of calpain 1 (large subunit) and proteolysis of focal adhesion kinase (FAK), indicating calpain activation. Additionally, either E2 or ICI induced down-regulation of estrogen receptor α without affecting G protein coupled estrogen receptor 30 (GPR30) expression. Interestingly, GPR30 agonist G1 triggered calpain 1 autolysis but not calpain 2, whereas ER agonist diethylstilbestrol caused no apparent calpain autolysis. Furthermore, the actions of E2 and ICI on calpain and cell adhesion were tremendously suppressed by G15, or knockdown of GPR30. E2 and ICI also induced phosphorylation of extracellular regulated protein kinases 1 and 2 (ERK1/2), and suppression of ERK1/2 phosphorylation by U0126 profoundly impeded calpain activation triggered by estrogenic and antiestrogenic stimulations indicating implication of ERK1/2 in the GPR30-mediated action. Lastly, the E2- or ICI-induced cell adhesion was dramatically impaired by calpain-specific inhibitors, ALLN or calpeptin, suggesting requirement of calpain in the GPR30-associated action. These data show that enhanced cell adhesion by E2 and ICI occurs via a novel GPR30-ERK1/2-calpain pathway. Our results indicate that targeting the GPR30 signaling may be a potential strategy to reduce metastasis and improve the efficacy of antiestrogens in treatment of advanced breast cancer.

Zhang X, Zhang X, Liu C, et al.
MiR‑224 promotes colorectal cancer cells proliferation via downregulation of P21WAF1/CIP1.
Mol Med Rep. 2014; 9(3):941-6 [PubMed] Related Publications
MicroRNAs (miRNAs) are between 19 and 25 mer non‑coding RNAs involved in cancer cell proliferation, apoptosis, stress responses and maintenance of stem cell potency. In the present study, miR‑224 was observed to be upregulated in colorectal cancer (CRC) tissue. Overexpression of miR‑224 facilitated proliferation of the CRC cell lines, HCT‑116 and SW‑480. Bioinformatics analysis revealed a putative miR‑224 binding site in the 3'‑untranslated region of CDKI1A (P21WAF1/CIP1). Western blot analysis and the luciferase reporter assay proved that miR‑224 represses P21WAF1/CIP1 expression and promotes cell cycle G1/S transition. These results suggest that the downregulation of miR‑224 in CRC is a novel potential therapeutic strategy.

Zwenger A, Rabassa M, Demichelis S, et al.
High expression of sLex associated with poor survival in Argentinian colorectal cancer patients.
Int J Biol Markers. 2014 Jan-Mar; 29(1):e30-9 [PubMed] Related Publications
AIM: Colorectal cancer (CRC) is one of the most prevalent malignancies in Argentina with 11,043 new cases and 6,596 deaths estimated to have occurred in 2008. The present study was developed to clarify the differential expression of MUC1, MUC2, sLex, and sLea in colorectal cancer patients and their relationship with survival and clinical and histological features.
METHODS: Ninety primary tumor samples and 43 metastatic lymph nodes from CRC patients were studied; follow-up was documented. Twenty-six adenoma and 68 histological normal mucosa specimens were analyzed. An immunohistochemical approach was applied and statistical analysis was performed.
RESULTS: In tumor samples, MUC1, sLea, and sLex were highly expressed (94%, 67%, and 91%, respectively); also, we found a significantly increased expression of the 3 antigens in primary tumors and metastatic lymph nodes compared with normal mucosa and adenomas. MUC2 was expressed in 52% of both normal mucosa and CRC samples; this reactivity significantly decreased in metastatic lymph nodes (p<0.05). A multiple comparison analysis showed that MUC1 and sLex discriminated among 3 groups: normal, adenoma, and CRC tissues. The increase of sLex expression showed an association with recurrence, and survival analysis showed that a high sLex staining was significantly associated with a poor survival. By multivariate analysis MUC1 inmunoreactivity correlated positively and significantly with tumor size, while MUC2 expression showed the opposite correlation.
CONCLUSIONS: The correlation of sLex overexpression in primary tumors and metastatic lymph nodes, the discrimination among the normal, adenoma, and CRC groups based on sLex expression, as well as its association with recurrence and survival, all suggest a prognostic role of sLex in Argentinian CRC patients.

Saheb A, Patterson S, Josowicz M
Probing for DNA methylation with a voltammetric DNA detector.
Analyst. 2014; 139(4):786-92 [PubMed] Article available free on PMC after 01/04/2015 Related Publications
A label-free electrochemical detection of DNA hybridization is used for probing synthetic methylated ssDNA 27-mer or 33-mer targets from the GSTP1-gene. The method is based on electrostatic modulation of the anion-exchange kinetics of a polypyrrole bilayer film deposited on platinum-microelectrodes to which a synthetic single-stranded 15-mer GSTP-1 promoter probe DNA has been attached (DNA detector). The effect of the contact of this DNA-detector with non-methylated and methylated complementary DNA sequences in Tris-buffer is compared using cyclic voltammetry (CV). The DNA-hybridization taking place at the electrode surface leads to a significant decrease of the CV area recorded after exposure to complementary target DNA in comparison to the CV change recorded for non-complementary DNA target. The performance of this miniaturized DNA detector was optimized with respect to hybridization time, temperature, and concentration of the target. It was also evaluated with respect to selectivity, sensitivity, and reproducibility. These results are significant for their possible use as a screening test for hypermethylated DNA sequences.

Pupo M, Pisano A, Abonante S, et al.
GPER activates Notch signaling in breast cancer cells and cancer-associated fibroblasts (CAFs).
Int J Biochem Cell Biol. 2014; 46:56-67 [PubMed] Related Publications
The G protein-coupled receptor GPR30/GPER has been shown to mediate rapid effects of 17β-estradiol (E2) in diverse types of cancer cells. Here, we provide evidence for a novel crosstalk between GPER and the Notch signaling pathway in breast cancer cells and cancer-associated fibroblasts (CAFs). We show that E2 and the GPER selective ligand G-1 induce both the γ-secretase-dependent activation of Notch-1 and the expression of the Notch target gene Hes-1. These inductions are prevented by knocking down GPER or by using a dominant-negative mutant of the Notch transcriptional co-activator Master-mind like-1 (DN-MAML-1), hence suggesting the involvement of GPER in the Notch-dependent transcription. By performing chromatin-immunoprecipitation experiments and luciferase assays, we also demonstrate that E2 and G-1 induce the recruitment of the intracellular domain of Notch-1 (N1ICD) to the Hes-1 promoter and the transactivation of a Hes-1-reporter gene, respectively. Functionally, the E2 and G-1-induced migration of breast cancer cells and CAFs is abolished in presence of the γ-secretase inhibitor GSI or DN-MAML-1, which both inhibit the Notch signaling pathway. In addition, we demonstrate that E2 and G-1 prevent the expression of VE-Cadherin, while both compounds induce the expression of Snail, a Notch target gene acting as a repressor of cadherins expression. Notably, both GSI and DN-MAML-1 abolish the up-regulation of Snail-1 by E2 and G-1, whereas the use of GSI rescues VE-Cadherin expression. Taken together, our results prove the involvement of the Notch signaling pathway in mediating the effects of estrogenic GPER signaling in breast cancer cells and CAFs.

Zhao H, Dong T, Zhou H, et al.
miR-320a suppresses colorectal cancer progression by targeting Rac1.
Carcinogenesis. 2014; 35(4):886-95 [PubMed] Related Publications
MicroRNAs (miRNAs) have emerged as critical epigenetic regulators involved in cancer progression. miR-320a has been identified to be a novel tumour suppressive miRNA in colorectal cancer (CRC). However, the detailed molecular mechanisms are not fully understood. Here, we reported that miR-320a inversely associated with CRC aggressiveness in both cell lines and clinical specimens. Functional studies demonstrated that miR-320a significantly decreased the capability of cell migration/invasion and induced G0/G1 growth arrest in vitro and in vivo. Furthermore, Rac1 was identified as one of the direct downstream targets of miR-320a and miR-320a specifically binds to the conserved 8-mer at position 1140-1147 of Rac1 3'-untranslated region to regulate Rac1 protein expression. Over-expression of miR-320a in SW620 cells inhibited Rac1 expression, whereas reduction of miR-320a by anti-miR-320a in SW480 cells enhanced Rac1 expression. Re-expression of Rac1 in the SW620/miR-320a cells restored the cell migration/invasion inhibited by miR-320a, whereas knockdown of Rac1 in the SW480/anti-miR-320a cells repressed these cellular functions elevated by anti-miR-320a. Conclusively, our results demonstrate that miR-320a functions as a tumour-suppressive miRNA through targeting Rac1 in CRC.

Lemke G
Biology of the TAM receptors.
Cold Spring Harb Perspect Biol. 2013; 5(11):a009076 [PubMed] Related Publications
The TAM receptors--Tyro3, Axl, and Mer--comprise a unique family of receptor tyrosine kinases, in that as a group they play no essential role in embryonic development. Instead, they function as homeostatic regulators in adult tissues and organ systems that are subject to continuous challenge and renewal throughout life. Their regulatory roles are prominent in the mature immune, reproductive, hematopoietic, vascular, and nervous systems. The TAMs and their ligands--Gas6 and Protein S--are essential for the efficient phagocytosis of apoptotic cells and membranes in these tissues; and in the immune system, they act as pleiotropic inhibitors of the innate inflammatory response to pathogens. Deficiencies in TAM signaling are thought to contribute to chronic inflammatory and autoimmune disease in humans, and aberrantly elevated TAM signaling is strongly associated with cancer progression, metastasis, and resistance to targeted therapies.

Giessrigl B, Schmidt WM, Kalipciyan M, et al.
Fulvestrant induces resistance by modulating GPER and CDK6 expression: implication of methyltransferases, deacetylases and the hSWI/SNF chromatin remodelling complex.
Br J Cancer. 2013; 109(10):2751-62 [PubMed] Article available free on PMC after 01/04/2015 Related Publications
BACKGROUND: Breast cancer is the leading cause of cancer death in women living in the western hemisphere. Despite major advances in first-line endocrine therapy of advanced oestrogen receptor (ER)-positive breast cancer, the frequent recurrence of resistant cancer cells represents a serious obstacle to successful treatment. Understanding the mechanisms leading to acquired resistance, therefore, could pave the way to the development of second-line therapeutics. To this end, we generated an ER-positive breast cancer cell line (MCF-7) with resistance to the therapeutic anti-oestrogen fulvestrant (FUL) and studied the molecular changes involved in resistance.
METHODS: Naive MCF-7 cells were treated with increasing FUL concentrations and the gene expression profile of the resulting FUL-resistant strain (FR.MCF-7) was compared with that of naive cells using GeneChip arrays. After validation by real-time PCR and/or western blotting, selected resistance-associated genes were functionally studied by siRNA-mediated silencing or pharmacological inhibition. Furthermore, general mechanisms causing aberrant gene expression were investigated.
RESULTS: Fulvestrant resistance was associated with repression of GPER and the overexpression of CDK6, whereas ERBB2, ABCG2, ER and ER-related genes (GREB1, RERG) or genes expressed in resistant breast cancer (BCAR1, BCAR3) did not contribute to resistance. Aberrant GPER and CDK6 expression was most likely caused by modification of DNA methylation and histone acetylation, respectively. Therefore, part of the resistance mechanism was loss of RB1 control. The hSWI/SNF (human SWItch/Sucrose NonFermentable) chromatin remodelling complex, which is tightly linked to nucleosome acetylation and repositioning, was also affected, because as a stress response to FUL treatment-naive cells altered the expression of five subunits within a few hours (BRG1, BAF250A, BAF170, BAF155, BAF47). The aberrant constitutive expression of BAF250A, BAF170 and BAF155 and a deviant stress response of BRG1, BAF170 and BAF47 in FR.MCF-7 cells to FUL treatment accompanied acquired FUL resistance. The regular and aberrant expression profiles of BAF155 correlated directly with that of CDK6 in naive and in FR.MCF-7 cells corroborating the finding that CDK6 overexpression was due to nucleosome alterations.
CONCLUSION: The study revealed that FUL resistance is associated with the dysregulation of GPER and CDK6. A mechanism leading to aberrant gene expression was most likely unscheduled chromatin remodelling by hSWI/SNF. Hence, three targets should be conceptually addressed in a second-line adjuvant therapy: the catalytic centre of SWI/SNF (BRG1) to delay the development of FUL resistance, GPER to increase sensitivity to FUL and the reconstitution of the RB1 pathway to overcome resistance.

Murphy BL, Obad S, Bihannic L, et al.
Silencing of the miR-17~92 cluster family inhibits medulloblastoma progression.
Cancer Res. 2013; 73(23):7068-78 [PubMed] Article available free on PMC after 01/04/2015 Related Publications
Medulloblastoma, originating in the cerebellum, is the most common malignant brain tumor in children. Medulloblastoma consists of four major groups where constitutive activation of the Sonic Hedgehog (SHH) signaling pathway is a hallmark of one group. Mouse and human SHH medulloblastomas exhibit increased expression of microRNAs encoded by the miR-17~92 and miR-106b~25 clusters compared with granule progenitors and postmitotic granule neurons. Here, we assessed the therapeutic potential of 8-mer seed-targeting locked nucleic acid (LNA)-modified anti-miR oligonucleotides, termed tiny LNAs, that inhibit microRNA seed families expressed by miR-17~92 and miR-106b~25 in two mouse models of SHH medulloblastomas. We found that tumor cells (medulloblastoma cells) passively took up 8-mer LNA-anti-miRs and specifically inhibited targeted microRNA seed-sharing family members. Inhibition of miR-17 and miR-19a seed families by anti-miR-17 and anti-miR-19, respectively, resulted in diminished tumor cell proliferation in vitro. Treatment of mice with systemic delivery of anti-miR-17 and anti-miR-19 reduced tumor growth in flank and brain allografts in vivo and prolonged the survival of mice with intracranial transplants, suggesting that inhibition of the miR-17~92 cluster family by 8-mer LNA-anti-miRs might be considered for the treatment of SHH medulloblastomas.

Wang C, Lv X, He C, et al.
The G-protein-coupled estrogen receptor agonist G-1 suppresses proliferation of ovarian cancer cells by blocking tubulin polymerization.
Cell Death Dis. 2013; 4:e869 [PubMed] Article available free on PMC after 01/04/2015 Related Publications
The G-protein-coupled estrogen receptor 1 (GPER) has recently been reported to mediate the non-genomic action of estrogen in different types of cells and tissues. G-1 (1-[4-(6-bromobenzo[1,3] dioxol-5yl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinolin-8-yl]-ethanone) was developed as a potent and selective agonist for GPER. G-1 has been shown to induce the expression of genes and activate pathways that facilitate cancer cell proliferation by activating GPER. Here we demonstrate that G-1 has an anticancer potential with a mechanism similar to vinca alkaloids, the commonly used chemotherapy drugs. We found that G-1 blocks tubulin polymerization and thereby interrupts microtubule assembly in ovarian cancer cells leading to the arrest of cell cycle in the prophase of mitosis and the suppression of ovarian cancer cell proliferation. G-1 treatment also induces apoptosis of ovarian cancer cells. The ability of G-1 to target microtubules to suppress ovarian cancer cell proliferation makes it a promising candidate drug for treatment of ovarian cancer.

Tsai CL, Wu HM, Lin CY, et al.
Estradiol and tamoxifen induce cell migration through GPR30 and activation of focal adhesion kinase (FAK) in endometrial cancers with low or without nuclear estrogen receptor α (ERα).
PLoS One. 2013; 8(9):e72999 [PubMed] Article available free on PMC after 01/04/2015 Related Publications
Estrogens and tamoxifen (an antiestrogen) exert their actions by activation of estrogen receptor (ER) through genomic and non-genomic mechanisms and are implicated in the development of endometrial cancer. Previous reports have demonstrated that estradiol and tamoxifen induce proliferation of human endometrial cancer cells through GPR30 (non-genomic ER) signaling pathway. Herein, we demonstrate that phosphorylation of focal adhesion kinase (FAK) is involved in cell migration induced by estradiol, tamoxifen and G1 (a GPR30 agonist) through the transmembrane ER (GPR30) in endometrial cancer cell lines with or without ERα (Ishikawa and RL95-2). Additionally, the GPR30-mediated cell migration was further abolished by administration of either specific RNA interference targeting GPR30 or an FAK inhibitor. Moreover, we have validated that the signaling between GPR30 and phosphorylated FAK is indeed mediated by the EGFR/PI3K/ERK pathway. Clinically, a significant correlation between levels of GPR30 and phophorylated FAK (pFAK) observed in human endometrial cancer tissues with low or without ERα further suggested that estrogen-induced phosphorylation of FAK and cell migration were most likely triggered by GPR30 activation. These results provided new insights for understanding the pathophysiological functions of GPR30 in human endometrial cancers.

Christoph S, Deryckere D, Schlegel J, et al.
UNC569, a novel small-molecule mer inhibitor with efficacy against acute lymphoblastic leukemia in vitro and in vivo.
Mol Cancer Ther. 2013; 12(11):2367-77 [PubMed] Article available free on PMC after 01/04/2015 Related Publications
Acute lymphoblastic leukemia (ALL) is the most common malignancy in children. Although survival rates have improved, patients with certain biologic subtypes still have suboptimal outcomes. Current chemotherapeutic regimens are associated with short- and long-term toxicities and novel, less toxic therapeutic strategies are needed. Mer receptor tyrosine kinase is ectopically expressed in ALL patient samples and cell lines. Inhibition of Mer expression reduces prosurvival signaling, increases chemosensitivity, and delays development of leukemia in vivo, suggesting that Mer tyrosine kinase inhibitors are excellent candidates for targeted therapies. Brain and spinal tumors are the second most common malignancies in childhood. Multiple chemotherapy approaches and radiotherapies have been attempted, yet overall survival remains dismal. Mer is also abnormally expressed in atypical teratoid/rhabdoid tumors (AT/RT), providing a rationale for targeting Mer as a therapeutic strategy. We have previously described UNC569, the first small-molecule Mer inhibitor. This article describes the biochemical and biologic effects of UNC569 in ALL and AT/RT. UNC569 inhibited Mer activation and downstream signaling through ERK1/2 and AKT, determined by Western blot analysis. Treatment with UNC569 reduced proliferation/survival in liquid culture, decreased colony formation in methylcellulose/soft agar, and increased sensitivity to cytotoxic chemotherapies. MYC transgenic zebrafish with T-ALL were treated with UNC569 (4 μmol/L for two weeks). Fluorescence was quantified as indicator of the distribution of lymphoblasts, which express Mer and enhanced GFP. UNC569 induced more than 50% reduction in tumor burden compared with vehicle- and mock-treated fish. These data support further development of Mer inhibitors as effective therapies in ALL and AT/RT.

Ben-Batalla I, Schultze A, Wroblewski M, et al.
Axl, a prognostic and therapeutic target in acute myeloid leukemia mediates paracrine crosstalk of leukemia cells with bone marrow stroma.
Blood. 2013; 122(14):2443-52 [PubMed] Related Publications
Acute myeloid leukemia (AML) represents a clonal disease of hematopoietic progenitors characterized by acquired heterogenous genetic changes that alter normal mechanisms of proliferation, self-renewal, and differentiation.(1) Although 40% to 45% of patients younger than 65 years of age can be cured with current therapies, only 10% of older patients reach long-term survival.(1) Because only very few novel AML drugs were approved in the past 2 decades, there is an urgent need to identify novel targets and therapeutic strategies to treat underserved AML patients. We report here that Axl, a member of the Tyro3, Axl, Mer receptor tyrosine kinase family,(2-4) represents an independent prognostic marker and therapeutic target in AML. AML cells induce expression and secretion of the Axl ligand growth arrest-specific gene 6 (Gas6) by bone marrow-derived stromal cells (BMDSCs). Gas6 in turn mediates proliferation, survival, and chemoresistance of Axl-expressing AML cells. This Gas6-Axl paracrine axis between AML cells and BMDSCs establishes a chemoprotective tumor cell niche that can be abrogated by Axl-targeting approaches. Axl inhibition is active in FLT3-mutated and FLT3 wild-type AML, improves clinically relevant end points, and its efficacy depends on presence of Gas6 and Axl. Axl inhibition alone or in combination with chemotherapy might represent a novel therapeutic avenue for AML.

Qin B, Chen Z, Jin W, Cheng K
Development of cholesteryl peptide micelles for siRNA delivery.
J Control Release. 2013; 172(1):159-68 [PubMed] Article available free on PMC after 01/04/2015 Related Publications
Despite the rapid progress in the siRNA field, developing a safe and efficient delivery system of siRNA remains to be an obstacle in the therapeutical application of siRNA. The purpose of this study is to develop an efficient peptide-based siRNA delivery system for cancer therapy. To this end, cholesterol was conjugated to a series of peptides composed of lysine and histidine residues. The resultant cholesteryl peptides were characterized, and their potential for siRNA delivery was evaluated. Our results indicate that short peptides (11-21 mer) composed of various numbers of lysine and histidine residues alone are not sufficient to mediate efficient siRNA delivery. However, the amphiphilic cholesteryl peptides can self-assemble to form a micelle-like structure in aqueous solutions, which significantly promotes the siRNA condensation capability of the peptides. The cholesteryl peptides form stable complex with siRNA and effectively protect siRNA from degradation in rat serum up to three days. Furthermore, the cholesteryl peptides efficiently transfect siRNA into different cancer cells and trigger potent gene silencing effect, whereas peptides without cholesterol modification cannot deliver siRNA into the cells. In addition, one of the cholesteryl peptides Chol-H3K2s displays comparable cellular uptake and gene silencing effect but less cytotoxicity compared with branched polyethylenimine (bPEI) and Lipofectamine-2000. Our results reveal that the cholesteryl peptides possess great potential as an efficient siRNA delivery system.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. GPER, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 27 February, 2015     Cancer Genetics Web, Established 1999