Gene Summary

Gene:G6PD; glucose-6-phosphate dehydrogenase
Aliases: G6PD1
Summary:This gene encodes glucose-6-phosphate dehydrogenase. This protein is a cytosolic enzyme encoded by a housekeeping X-linked gene whose main function is to produce NADPH, a key electron donor in the defense against oxidizing agents and in reductive biosynthetic reactions. G6PD is remarkable for its genetic diversity. Many variants of G6PD, mostly produced from missense mutations, have been described with wide ranging levels of enzyme activity and associated clinical symptoms. G6PD deficiency may cause neonatal jaundice, acute hemolysis, or severe chronic non-spherocytic hemolytic anemia. Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2008]
Databases:OMIM, VEGA, HGNC, Ensembl, GeneCard, Gene
Protein:glucose-6-phosphate 1-dehydrogenase
Source:NCBIAccessed: 21 August, 2015


What does this gene/protein do?
Show (26)
Pathways:What pathways are this gene/protein implicaed in?
Show (2)

Cancer Overview

Research Indicators

Publications Per Year (1990-2015)
Graph generated 21 August 2015 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 21 August, 2015 using data from PubMed, MeSH and CancerIndex

Specific Cancers (6)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: G6PD (cancer-related)

Eckers JC, Kalen AL, Sarsour EH, et al.
Forkhead box M1 regulates quiescence-associated radioresistance of human head and neck squamous carcinoma cells.
Radiat Res. 2014; 182(4):420-9 [PubMed] Article available free on PMC after 01/10/2015 Related Publications
Cellular quiescence is a reversible growth arrest in which cells retain their ability to enter into and exit from the proliferative cycle. This study investigates the hypothesis that cell growth-state specific oxidative stress response regulates radiosensitivity of cancer cells. Results showed that quiescent (low proliferative index; >75% G1 phase and lower RNA content) Cal27 and FaDu human head and neck squamous cell carcinoma (HNSCC) are radioresistant compared to proliferating cells. Quiescent cells exhibited a three to tenfold increase in mRNA levels of Mn-superoxide dismutase (MnSOD), dual oxidase 2 (DUOX2) and dual-specificity phosphatase 1 (DUSP1), while mRNA levels of catalase (CAT), peroxiredoxin 3 (PRDX3) and C-C motif ligand 5 (CCL5) were approximately two to threefold lower compared to proliferating cells. mRNA levels of forkhead box M1 (FOXM1) showed the largest decrease in quiescent cells at approximately 18-fold. Surprisingly, radiation treatment resulted in a distinct gene expression pattern that is specific to proliferating and quiescent cells. Specifically, FOXM1 expression increased two to threefold in irradiated quiescent cells, while the same treatment had no net effect on FOXM1 mRNA expression in proliferating cells. RNA interference and pharmacological-based downregulation of FOXM1 abrogated radioresistance of quiescent cells. Furthermore, radioresistance of quiescent cells was associated with an increase in glucose consumption and expression of glucose-6-phosphate dehydrogenase (G6PD). Knockdown of FOXM1 resulted in a significant decrease in G6PD expression, and pharmacological-inhibition of G6PD sensitized quiescent cells to radiation. Taken together, these results suggest that targeting FOXM1 may overcome radioresistance of quiescent HNSCC.

Martín-Bernabé A, Cortés R, Lehmann SG, et al.
Quantitative proteomic approach to understand metabolic adaptation in non-small cell lung cancer.
J Proteome Res. 2014; 13(11):4695-704 [PubMed] Related Publications
KRAS mutations in non-small cell lung cancer (NSCLC) are a predictor of resistance to EGFR-targeted therapies. Because approaches to target RAS signaling have been unsuccessful, targeting lung cancer metabolism might help to develop a new strategy that could overcome drug resistance in such cancer. In this study, we applied a large screening quantitative proteomic analysis to evidence key enzymes involved in metabolic adaptations in lung cancer. We carried out the proteomic analysis of two KRAS-mutated NSCLC cell lines (A549 and NCI-H460) and a non tumoral bronchial cell line (BEAS-2B) using an iTRAQ (isobaric tags for relative and absolute quantitation) approach combined with two-dimensional fractionation (OFFGEL/RP nanoLC) and MALDI-TOF/TOF mass spectrometry analysis. Protein targets identified by our iTRAQ approach were validated by Western blotting analysis. Among 1038 proteins identified and 834 proteins quantified, 49 and 82 proteins were respectively found differently expressed in A549 and NCI-H460 cells compared to the BEAS-2B non tumoral cell line. Regarding the metabolic pathways, enzymes involved in glycolysis (GAPDH/PKM2/LDH-A/LDH-B) and pentose phosphate pathway (PPP) (G6PD/TKT/6PGD) were up-regulated. The up-regulation of enzyme expression in PPP is correlated to their enzyme activity and will be further investigated to confirm those enzymes as promising metabolic targets for the development of new therapeutic treatments or biomarker assay for NSCLC.

Hu H, Ding X, Yang Y, et al.
Changes in glucose-6-phosphate dehydrogenase expression results in altered behavior of HBV-associated liver cancer cells.
Am J Physiol Gastrointest Liver Physiol. 2014; 307(6):G611-22 [PubMed] Related Publications
Hepatocellular carcinoma (HCC) is regarded as a major global health care issue, and chronic hepatitis B virus (HBV) infection is considered to be involved in pathogenesis of HCC. To increase knowledge of HCC pathogenesis, as well as discover potential novel molecules for anti-cancer therapy, mass spectrometry and isobaric tag for relative and absolute quantitation (iTARQ) were employed. The differences between nine HBV-related HCC and adjacent non-HCC tissue specimens were studied. In total, 222 proteins were analyzed for differential expression in the two types of samples. Among these proteins, several were further confirmed by immunohistochemical, immunoblotting, and real-time RT-PCR analysis. RNA interference induced downregulation of glucose-6-phosphate dehydrogenase (G6PD) and decreased HBV replication by fivefold by the IFN pathway. Decreased G6PD expression resulted in decreased hepatoma cell migration and invasion in cell culture. In summary, the investigation provides new information on pathogenesis of HBV infection and suggests G6PD as a novel anti-HCC target. G6PD suppression may contribute to treatment strategies for inhibiting tumor progression.

Sun Y, Gu X, Zhang E, et al.
Estradiol promotes pentose phosphate pathway addiction and cell survival via reactivation of Akt in mTORC1 hyperactive cells.
Cell Death Dis. 2014; 5:e1231 [PubMed] Article available free on PMC after 01/10/2015 Related Publications
Lymphangioleiomyomatosis (LAM) is a female-predominant interstitial lung disease that can lead to respiratory failure. LAM cells typically have inactivating TSC2 mutations, leading to mTORC1 activation. The gender specificity of LAM suggests that estradiol contributes to disease development, yet the underlying pathogenic mechanisms are not completely understood. Using metabolomic profiling, we identified an estradiol-enhanced pentose phosphate pathway signature in Tsc2-deficient cells. Estradiol increased levels of cellular NADPH, decreased levels of reactive oxygen species, and enhanced cell survival under oxidative stress. Mechanistically, estradiol reactivated Akt in TSC2-deficient cells in vitro and in vivo, induced membrane translocation of glucose transporters (GLUT1 or GLUT4), and increased glucose uptake in an Akt-dependent manner. (18)F-FDG-PET imaging demonstrated enhanced glucose uptake in xenograft tumors of Tsc2-deficient cells from estradiol-treated mice. Expression array study identified estradiol-enhanced transcript levels of glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme of the pentose phosphate pathway. Consistent with this, G6PD was abundant in xenograft tumors and lung metastatic lesions of Tsc2-deficient cells from estradiol-treated mice. Molecular depletion of G6PD attenuated estradiol-enhanced survival in vitro, and treatment with 6-aminonicotinamide, a competitive inhibitor of G6PD, reduced lung colonization of Tsc2-deficient cells. Collectively, these data indicate that estradiol promotes glucose metabolism in mTORC1 hyperactive cells through the pentose phosphate pathway via Akt reactivation and G6PD upregulation, thereby enhancing cell survival under oxidative stress. Interestingly, a strong correlation between estrogen exposure and G6PD was also found in breast cancer cells. Targeting the pentose phosphate pathway may have therapeutic benefit for LAM and possibly other hormonally dependent neoplasms.

Cui Y, Nadiminty N, Liu C, et al.
Upregulation of glucose metabolism by NF-κB2/p52 mediates enzalutamide resistance in castration-resistant prostate cancer cells.
Endocr Relat Cancer. 2014; 21(3):435-42 [PubMed] Article available free on PMC after 01/10/2015 Related Publications
Cancer cells reprogram their metabolic pathways to facilitate fast proliferation. Previous studies have shown that overexpression of NF-κB2/p52 (p52) in prostate cancer cells promotes cell growth and leads to castration resistance through aberrant activation of androgen receptor (AR). In addition, these cells become resistant to enzalutamide. In this study, we investigated the effects of p52 activation on glucose metabolism and on response to enzalutamide therapy. Data analysis of gene expression arrays showed that genes including GLUT1 (SLC2A1), PKM2, G6PD, and ME1 involved in the regulation of glucose metabolism were altered in LNCaP cells overexpressing p52 compared with the parental LNCaP cells. We demonstrated an increased amount of glucose flux in the glycolysis pathway, as well as the pentose phosphate pathway (PPP) upon p52 activation. The p52-overexpressing cells increase glucose uptake and are capable of higher ATP and lactate production compared with the parental LNCaP cells. The growth of p52-overexpressing cells depends on glucose in the culture media and is sensitive to glucose deprivation compared with the parental LNCaP cells. Targeting glucose metabolism by the glucose analog 2-deoxy-d-glucose synergistically inhibits cell growth when combined with enzalutamide, and resensitizes p52-overexpressing cells to enzalutamide treatment. These results suggest that p52 modulates glucose metabolism, enhances glucose flux to glycolysis and PPPs, thus facilitating fast proliferation of the cells. Co-targeting glucose metabolism together with AR axis synergistically inhibits cell growth and restores enzalutamide-resistant cells to enzalutamide treatment.

Bi X, Jin Y, Gao X, et al.
Investigation of Pokemon-regulated proteins in hepatocellular carcinoma using mass spectrometry-based multiplex quantitative proteomics.
Eur J Mass Spectrom (Chichester, Eng). 2013; 19(2):111-21 [PubMed] Related Publications
Pokemon is a transcription regulator involved in embryonic development, cellular differentiation and oncogenesis. It is aberrantly overexpressed in multiple human cancers including Hepatocellular carcinoma (HCC) and is considered as a promising biomarker for HCC. In this work, the isobaric tags for relative and absolute quantitation (iTRAQ)-based quantitative proteomics strategy was used to investigate the proteomic profile associated with Pokemon in human HCC cell line QGY7703 and human hepatocyte line HL7702. Samples were labeled with four-plex iTRAQ reagents followed by two-dimensional liquid chromatography coupled with tandem mass spectrometry analysis. A total of 24 differentially expressed proteins were selected as significant. Nine proteins were potentially up-regulated by Pokemon while 15 proteins were potentially down-regulated and many proteins were previously identified as potential biomarkers for HCC. Gene ontology (GO) term enrichment revealed that the listed proteins were mainly involved in DNA metabolism and biosynthesis process. The changes of glucose-6-phosphate 1-dehydrogenase (G6PD, up-regulated) and ribonucleoside-diphosphate reductase large sub-unit (RIM1, down-regulated) were validated by Western blotting analysis and denoted as Pokemon's function of oncogenesis. We also found that Pokemon potentially repressed the expression of highly clustered proteins (MCM3, MCM5, MCM6, MCM7) which played key roles in promoting DNA replication. Altogether, our results may help better understand the role of Pokemon in HCC and promote the clinical applications.

Shimizu T, Inoue K, Hachiya H, et al.
Frequent alteration of the protein synthesis of enzymes for glucose metabolism in hepatocellular carcinomas.
J Gastroenterol. 2014; 49(9):1324-32 [PubMed] Article available free on PMC after 01/10/2015 Related Publications
BACKGROUND: Cancer cells show enhanced glycolysis and inhibition of oxidative phosphorylation, even in the presence of sufficient oxygen (aerobic glycolysis). Glycolysis is much less efficient for energy production than oxidative phosphorylation, and the reason why cancer cells selectively use glycolysis remains unclear.
METHODS: Biospecimens were collected from 45 hepatocellular carcinoma patients. Protein samples were prepared through subcellular localization or whole-cell lysis. Protein synthesis was measured by SDS-PAGE and immunoblotting. mRNA transcription was measured using quantitative RT-PCR. Statistical correlation among immunoblotting data and clinicolaboratory factors were analyzed using SPSS.
RESULTS: Enzymes for oxidative phosphorylation (SDHA and SDHB) were frequently decreased (56 and 48 % of patients, respectively) in hepatocellular carcinomas. The lowered amount of the SDH protein complex was rarely accompanied by stabilization of HIF1α and subsequent activation of the hypoxia response. On the other hand, protein synthesis of G6PD and TKT, enzymes critical for pentose phosphate pathway (PPP), was increased (in 45 and 55 % of patients, respectively), while that of ALDOA, an enzyme for mainstream glycolysis, was eliminated (in 55 % of patients). Alteration of protein synthesis was correlated with gene expression for G6PD and TKT, but not for TKTL1, ALDOA, SDHA or SDHB. Augmented transcription and synthesis of PPP enzymes were accompanied by nuclear accumulation of NRF2.
CONCLUSION: Hepatocellular carcinomas divert glucose metabolism to the anabolic shunt by activating transcription factor NRF2.

Zhang C, Zhang Z, Zhu Y, Qin S
Glucose-6-phosphate dehydrogenase: a biomarker and potential therapeutic target for cancer.
Anticancer Agents Med Chem. 2014; 14(2):280-9 [PubMed] Related Publications
Re-programming of metabolic pathways is a hallmark of pathological changes in cancer cells. The expression of certain genes that directly control the rate of key metabolic pathways including glycolysis, lipogenesis and nucleotide synthesis is dysregulated for the adaptation and progression of tumor cells to become more aggressive phenotypes. The pentose phosphate pathway controlled by glucose- 6-phosphate dehydrogenase (G6PD) has been appreciated largely to its role as a provider of reducing power and ribose phosphate to the cell for maintenance of redox balance and biosynthesis of nucleotides and lipids. Recently, G6PD has been revealed to be involved in apoptosis, angiogenesis, and the efficacy to anti-cancer therapy, making it as a promising target in cancer therapy. This review summarizes the information about the latest progress relating the activity of the G6PD to cell proliferation, angiogenesis, and resistance to therapy in cancer cells, and discusses the possibility of G6PD as a diagnostic biomarker of cancer and the therapeutic potentials of G6PD inhibitors in cancer treatment. The available data show that G6PD plays a critical role in survival, proliferation, and metastasis of cancer cells. Development of potent and selective G6PD inhibitors would provide novel opportunity for cancer therapy.

Du W, Jiang P, Mancuso A, et al.
TAp73 enhances the pentose phosphate pathway and supports cell proliferation.
Nat Cell Biol. 2013; 15(8):991-1000 [PubMed] Article available free on PMC after 01/10/2015 Related Publications
TAp73 is a structural homologue of the pre-eminent tumour suppressor p53. However, unlike p53, TAp73 is rarely mutated, and instead is frequently overexpressed in human tumours. It remains unclear whether TAp73 affords an advantage to tumour cells and if so, what the underlying mechanism is. Here we show that TAp73 supports the proliferation of human and mouse tumour cells. TAp73 activates the expression of glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme of the pentose phosphate pathway (PPP). By stimulating G6PD, TAp73 increases PPP flux and directs glucose to the production of NADPH and ribose, for the synthesis of macromolecules and detoxification of reactive oxygen species (ROS). The growth defect of TAp73-deficient cells can be rescued by either enforced G6PD expression or the presence of nucleosides plus an ROS scavenger. These findings establish a critical role for TAp73 in regulating metabolism, and connect TAp73 and the PPP to oncogenic cell growth.

Hu T, Zhang C, Tang Q, et al.
Variant G6PD levels promote tumor cell proliferation or apoptosis via the STAT3/5 pathway in the human melanoma xenograft mouse model.
BMC Cancer. 2013; 13:251 [PubMed] Article available free on PMC after 01/10/2015 Related Publications
BACKGROUND: Glucose-6-phosphate dehydrogenase (G6PD), elevated in tumor cells, catalyzes the first reaction in the pentose-phosphate pathway. The regulation mechanism of G6PD and pathological change in human melanoma growth remains unknown.
METHODS: HEM (human epidermal melanocyte) cells and human melanoma cells with the wild-type G6PD gene (A375-WT), G6PD deficiency (A375-G6PD∆), G6PD cDNA overexpression (A375-G6PD∆-G6PD-WT), and mutant G6PD cDNA (A375-G6PD∆-G6PD-G487A) were subcutaneously injected into 5 groups of nude mice. Expressions of G6PD, STAT3, STAT5, cell cycle-related proteins, and apoptotic proteins as well as mechanistic exploration of STAT3/STAT5 were determined by quantitative real-time PCR (qRT-PCR), immunohistochemistry and western blot.
RESULTS: Delayed formation and slowed growth were apparent in A375-G6PD∆ cells, compared to A375-WT cells. Significantly decreased G6PD expression and activity were observed in tumor tissues induced by A375-G6PD∆, along with down-regulated cell cycle proteins cyclin D1, cyclin E, p53, and S100A4. Apoptosis-inhibited factors Bcl-2 and Bcl-xl were up-regulated; however, apoptosis factor Fas was down-regulated, compared to A375-WT cells. Moderate protein expressions were observed in A375-G6PD∆-G6PD-WT and A375-G6PD∆-G6PD-G487A cells.
CONCLUSIONS: G6PD may regulate apoptosis and expression of cell cycle-related proteins through phosphorylation of transcription factors STAT3 and STAT5, thus mediating formation and growth of human melanoma cells. Further study will, however, be required to determine potential clinical applications.

Ye Y, Zhou Y, Zhang L, et al.
EBV-miR-BART1 is involved in regulating metabolism-associated genes in nasopharyngeal carcinoma.
Biochem Biophys Res Commun. 2013; 436(1):19-24 [PubMed] Related Publications
EBV-miR-BART1 has been found to be highly expressed in some cancers including nasopharyngeal carcinoma (NPC), but its exact roles in the pathogenesis of NPC remain unclear. Here, we did RNA deep sequencing to compare the gene expression profile between EBV-miR-BART1-expressing CNE1 cells and the control cells to determine the possible effects of EBV-miR-BART1 in NPC. Gene expression profiling analysis unexpectedly showed a significant number of up- and down-modulated metabolism-associated genes, such as G6PD, SAT1, ASS1, PAST1, FUT1, SGPL1, DHRS3, B4GALT1, PHGDH, IDH2, PISD, UGT8, LDHB and GALNT1, in EBV-miR-BART1-expressing NPC cells, which were next confirmed by RT-qPCR. Moreover, of these metabolism-genes, PSAT1 and PHGDH expression levels were significantly upregulated and most of other genes were obviously up-expressed in NPC specimens compared with chronic nasopharyngitis (CNP) tissues. Collectively, we for the first time found the effects of EBV-miR-BART1 on the expression of mechanism-associated genes in NPC, suggesting a novel role of EBV-miR-BART1 in cancer metabolism, which remains to be fully elucidated.

Manganelli G, Masullo U, Passarelli S, Filosa S
Glucose-6-phosphate dehydrogenase deficiency: disadvantages and possible benefits.
Cardiovasc Hematol Disord Drug Targets. 2013; 13(1):73-82 [PubMed] Related Publications
We review here some recent data about Glucose-6-phosphate dehydrogenase (G6PD), the housekeeping X-linked gene encoding the first enzyme of the pentose phosphate pathway (PPP), a NADPH-producing dehydrogenase. This enzyme has been popular among clinicians, biochemists, geneticists and molecular biologists because it is the most common form of red blood cell enzymopathy. G6PD deficient erythrocytes do not generate NADPH in any other way than through the PPP and for this reason they are more susceptible than any other cells to oxidative damage. Moreover, this enzyme has also been of crucial importance in many significant discoveries; indeed, G6PD polymorphisms have been instrumental in studying X-inactivation in the human species, as well as in establishing the clonal nature of certain tumors. G6PD deficiency, generally considered as a mild and benign condition, is significantly disadvantageous in certain environmental conditions like in presence of certain drugs. Nevertheless, G6PD deficiency has been positively selected by malaria, and recent knowledge seems to show that it also confers an advantage against the development of cancer, reduces the risk of coronary diseases and has a beneficial effect in terms of longevity.

Ho HY, Cheng ML, Shiao MS, Chiu DT
Characterization of global metabolic responses of glucose-6-phosphate dehydrogenase-deficient hepatoma cells to diamide-induced oxidative stress.
Free Radic Biol Med. 2013; 54:71-84 [PubMed] Related Publications
Glucose-6-phosphate dehydrogenase (G6PD) is crucial to NADPH generation and redox homeostasis. We have recently shown that G6PD deficiency predisposes cells to oxidant-induced cell death, and it is associated with the impairment of glutathione regeneration. It remains unclear what other metabolic pathways are affected by G6PD deficiency and whether the altered metabolism disturbs cellular redox homeostasis and underlies increased susceptibility to oxidants. In this study, we examined the effects of diamide on global metabolite profiles of SK-Hep1-derived SK-i-Gi and SK-i-Sc cells, which could inducibly express short hairpin RNA (shRNA) against G6PD (Gi) and control shRNA (Sc), respectively. There was no significant difference in their metabolite profiles under uninduced conditions. Doxycycline (Dox) addition resulted in over 70% decrease in G6PD activity in SK-i-Gi cells. This was accompanied by relatively minor changes in the metabolome of SK-i-Gi cells. Upon further diamide treatment, the metabolite profiles of both SK-i-Gi and SK-i-Sc cells changed in a time-dependent manner. A number of metabolic pathways, including those involved in energy metabolism and metabolism of amino acids and glutathione, were affected. However, the changes in the metabolite profile of Dox-treated SK-i-Gi cells were distinct from those of control cells (i.e., Dox-treated SK-i-Sc, SK-i-Gi, and SK-i-Sc cells). Cellular glutathione was depleted, whereas its disulfide form increased significantly in diamide, Dox-treated SK-i-Gi cells. Metabolites related to energy metabolism, such as AMP, ADP, and acetylcarnitine, increased to a greater extent in these cells than in diamide-treated control cells. In contrast, NAD and glutathione dropped to lower levels in SK-i-Gi cells than in control cells. The NAD(+) depletion in SK-i-Gi cells was accompanied by a significant increase in NAD kinase activity. Targeted analyses revealed that NADP(+) and NADPH increased significantly in diamide, Dox-treated SK-i-Gi cells compared with similarly treated control cells. Our results suggest that diamide induces oxidation and depletion of glutathione in SK-i-Gi cells under conditions of G6PD shRNA induction and subsequently induces conversion of NAD(+) to NADP(+) through enhanced NAD kinase activity. This may represent a compensatory mechanism to restore cellular NADPH reserve in G6PD-deficient cells. It is accompanied by alteration in pathways of cellular energy metabolism, such as glycolysis and β-oxidation.

Shelton P, Jaiswal AK
The transcription factor NF-E2-related factor 2 (Nrf2): a protooncogene?
FASEB J. 2013; 27(2):414-23 [PubMed] Article available free on PMC after 01/10/2015 Related Publications
The transcription factor Nrf2 is responsible for regulating a battery of antioxidant and cellular protective genes, primarily in response to oxidative stress. A member of the cap 'n' collar family of transcription factors, Nrf2 activation is tightly controlled by a series of signaling events. These events can be separated into the basal state, a preinduction response, gene induction, and finally a postinduction response, culminating in the restoration of redox homeostasis. However, despite the immensely intricate level of control the cellular environment imposes on Nrf2 activity, there are many opportunities for perturbations to arise in the signaling events that favor carcinogenesis and, therefore, implicate Nrf2 as both a tumor suppressor and a protooncogene. Herein, we highlight the ways in which Nrf2 is regulated, and discuss some of the Nrf2-inducible antioxidant (NQO1, NQO2, HO-1, GCLC), antiapoptotic (Bcl-2), metabolic (G6PD, TKT, PPARγ), and drug efflux transporter (ABCG2, MRP3, MRP4) genes. In addition, we focus on how Nrf2 functions as a tumor suppressor under normal conditions and how its ability to detoxify the cellular environment makes it an attractive target for other oncogenes either via stabilization or degradation of the transcription factor. Finally, we discuss some of the ways in which Nrf2 is being considered as a therapeutic target for cancer treatment.

Huang Y, Bell LN, Okamura J, et al.
Phospho-ΔNp63α/SREBF1 protein interactions: bridging cell metabolism and cisplatin chemoresistance.
Cell Cycle. 2012; 11(20):3810-27 [PubMed] Article available free on PMC after 01/10/2015 Related Publications
Tumor protein (TP)-p53 family members (TP63, TP63 and TP73) are guardians of the genome and key players in orchestrating the cellular response to cisplatin treatment. Cisplatin-induced phosphorylation of ΔNp63α was shown to have a role in regulating intracellular ΔNp63α protein levels. We previously found that squamous cell carcinoma (SCC) cells exposed to cisplatin displayed the ATM-dependent phosphorylation of ΔNp63α (p-ΔNp63α), which is critical for the transcriptional regulation of specific downstream mRNAs and microRNAs and is likely to underlie the chemoresistance of SCC cells. However, SCC cells expressing non-p-ΔNp63α became more cisplatin-resistant. We also found that p-ΔNp63α forms complexes with a number of proteins involved in cell death response through regulation of cell cycle arrest, apoptosis, autophagy, RNA splicing and chromatin modifications. Here, we showed that p-ΔNp63α induced ARG1, GAPDH, and CPT2 gene transcription in cisplatin-sensitive SCC cells, while non-p-ΔNp63α increased a transcription of CAD, G6PD and FASN genes in cisplatin-resistant SCC cells. We report that the p-ΔNp63α-dependent regulatory mechanisms implicated in the modulation of plethora of pathways, including amino acid, carbohydrate, lipid and nucleotide metabolisms, thereby affect tumor cell response to cisplatin-induced cell death, suggesting that the ATM-dependent ΔNp63α pathway plays a role in the resistance of tumor cells to platinum therapy.

McBrayer SK, Yarrington M, Qian J, et al.
Integrative gene expression profiling reveals G6PD-mediated resistance to RNA-directed nucleoside analogues in B-cell neoplasms.
PLoS One. 2012; 7(7):e41455 [PubMed] Article available free on PMC after 01/10/2015 Related Publications
The nucleoside analogues 8-amino-adenosine and 8-chloro-adenosine have been investigated in the context of B-lineage lymphoid malignancies by our laboratories due to the selective cytotoxicity they exhibit toward multiple myeloma (MM), chronic lymphocytic leukemia (CLL), and mantle cell lymphoma (MCL) cell lines and primary cells. Encouraging pharmacokinetic and pharmacodynamic properties of 8-chloro-adenosine being documented in an ongoing Phase I trial in CLL provide additional impetus for the study of these promising drugs. In order to foster a deeper understanding of the commonalities between their mechanisms of action and gain insight into specific patient cohorts positioned to achieve maximal benefit from treatment, we devised a novel two-tiered chemoinformatic screen to identify molecular determinants of responsiveness to these compounds. This screen entailed: 1) the elucidation of gene expression patterns highly associated with the anti-tumor activity of 8-chloro-adenosine in the NCI-60 cell line panel, 2) characterization of altered transcript abundances between paired MM and MCL cell lines exhibiting differential susceptibility to 8-amino-adenosine, and 3) integration of the resulting datasets. This approach generated a signature of seven unique genes including G6PD which encodes the rate-determining enzyme of the pentose phosphate pathway (PPP), glucose-6-phosphate dehydrogenase. Bioinformatic analysis of primary cell gene expression data demonstrated that G6PD is frequently overexpressed in MM and CLL, highlighting the potential clinical implications of this finding. Utilizing the paired sensitive and resistant MM and MCL cell lines as a model system, we go on to demonstrate through loss-of-function and gain-of-function studies that elevated G6PD expression is necessary to maintain resistance to 8-amino- and 8-chloro-adenosine but insufficient to induce de novo resistance in sensitive cells. Taken together, these results indicate that G6PD activity antagonizes the cytotoxicity of 8-substituted adenosine analogues and suggests that administration of these agents to patients with B-cell malignancies exhibiting normal levels of G6PD expression may be particularly efficacious.

Sukhatme VP, Chan B
Glycolytic cancer cells lacking 6-phosphogluconate dehydrogenase metabolize glucose to induce senescence.
FEBS Lett. 2012; 586(16):2389-95 [PubMed] Related Publications
We show that knockdown of 6-phosphogluconate dehydrogenase (6PGD) of the pentose phosphate pathway (PPP) inhibits growth of lung cancer cells by senescence induction. This inhibition is not due to a defect in the oxidative PPP per se. NADPH and ribose phosphate production are normal in 6PGD knockdown cells and shutdown of PPP by knockdown of glucose-6-phosphate dehydrogenase (G6PD) has little effect on cell growth. Moreover, 6PGD knockdown cells can proliferate when the PPP is bypassed by using fructose instead of glucose in medium. Significantly, G6PD knockdown rescues proliferation of cells lacking 6PGD, suggesting an accumulation of growth inhibitory glucose metabolics in cells lacking 6PGD. Therefore, 6PGD inhibition may provide a novel strategy to treat glycolyic tumors such as lung cancer.

Cheng ML, Shiao MS, Chiu DT, et al.
Biochemical disorders associated with antiproliferative effect of dehydroepiandrosterone in hepatoma cells as revealed by LC-based metabolomics.
Biochem Pharmacol. 2011; 82(11):1549-61 [PubMed] Related Publications
DHEA is known to have chemopreventive and antiproliferative activities, and was initially thought to be mediated by inhibition of G6PD. Our previous study has shown that DHEA may act through interference with energy metabolism. To study the effect of pharmacological dose of DHEA on cellular metabolism, and to further delineate the mechanism underlying its antiproliferative effect, we applied a metabolomic approach to globally profile the changes in metabolites in SK-Hep1 cells underexpressing G6PD (Sk-Gi) and control cells (Sk-Sc) after DHEA treatment. RRLC-TOF-MS was used to identify metabolites, and tandem mass spectrometry was used to confirm their identity. DHEA induced changes in glutathione metabolism, lipid metabolism, s-adenosylmethionine (SAM) metabolism, as well as lysine metabolism. Elevation in level of glutathione disulfide, together with a concomitant decrease in level of reduced glutathione, was indicative of increased oxidative stress. Depletion of carnitine and its acyl derivatives reflected decline in fatty acid catabolism. These changes were associated with mitochondrial malfunction and reduction in cellular ATP content. Cardiolipin (CL) and phosphatidylcholine (PC) levels decreased significantly, suggesting that alterations in lipid composition are causally related to decline in mitochondrial function after DHEA treatment. The decline in cellular SAM content was accompanied by decreased expression of methionine adenosyltransferase genes MAT2A and MAT2B. SAM supplementation partially rescued cells from DHEA-induced growth stagnation. Our findings suggest that DHEA causes perturbation of multiple pathways in cellular metabolism. Decreased SAM production, and cardiolipin depletion and the resulting mitochondrial dysfunction underlie the antiproliferative effect of DHEA.

Jiang P, Du W, Wang X, et al.
p53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase.
Nat Cell Biol. 2011; 13(3):310-6 [PubMed] Article available free on PMC after 01/10/2015 Related Publications
Cancer cells consume large quantities of glucose and primarily use glycolysis for ATP production, even in the presence of adequate oxygen. This metabolic signature (aerobic glycolysis or the Warburg effect) enables cancer cells to direct glucose to biosynthesis, supporting their rapid growth and proliferation. However, both causes of the Warburg effect and its connection to biosynthesis are not well understood. Here we show that the tumour suppressor p53, the most frequently mutated gene in human tumours, inhibits the pentose phosphate pathway (PPP). Through the PPP, p53 suppresses glucose consumption, NADPH production and biosynthesis. The p53 protein binds to glucose-6-phosphate dehydrogenase (G6PD), the first and rate-limiting enzyme of the PPP, and prevents the formation of the active dimer. Tumour-associated p53 mutants lack the G6PD-inhibitory activity. Therefore, enhanced PPP glucose flux due to p53 inactivation may increase glucose consumption and direct glucose towards biosynthesis in tumour cells.

Nna E, Tothill IE, Ludeman L, Bailey T
Endogenous control genes in prostate cells: evaluation of gene expression using 'real-time' quantitative polymerase chain reaction.
Med Princ Pract. 2010; 19(6):433-9 [PubMed] Related Publications
OBJECTIVE: Our aims were to measure the level of expression of Abelson (ABL1), β-glucuronidase (GUS) and glucose-6-phosphate dehydrogenase (G6PD) genes in exfoliated urine cells from healthy and transrectal ultrasound biopsy patients with elevated prostate-specific antigen levels and/or abnormal digital rectal examinations or urinary symptoms indicative of prostate problems, as well as in archived formalin-fixed paraffin-embedded prostate materials.
MATERIALS AND METHODS: Real-time quantitative polymerase chain reaction (RQ-PCR) was used to evaluate the suitability of the 3 control genes, i.e. ABL1, GUS and G6PD, as control genes for prostate cancer cells. Exfoliated urine cells from 30 healthy males, 53 male patients, 138 cases of archived paraffin-embedded prostate tissues and 3 prostate cell lines were sampled. All cells were lysed in guanidine isothiocyanate buffer from which RNA was extracted and converted to cDNA by random hexamer priming. RQ-PCR was performed using TaqMan chemistries.
RESULTS: There was no significant difference in the level of expression for each of the 3 control genes in the cell lines. There was a significant difference in GUS transcript level between patients and healthy controls in both urine and prostate tissue sections (p < 0.05). G6PD transcript numbers also differed significantly from those of GUS in the prostate cell lines and tissue sections (p < 0.05). The transcript numbers of all the control genes were significantly reduced in aged samples (p < 0.001).
CONCLUSION: The ABL1 gene was the most stable control gene in both clinical specimens and cell lines. Therefore, we recommend its use to enable standardization and interlaboratory comparisons for the RQ-PCR of prostatic tumour markers.

Geraci G, D'Elia I, del Gaudio R, Di Giaimo R
Evidence of genetic instability in tumors and normal nearby tissues.
PLoS One. 2010; 5(2):e9343 [PubMed] Article available free on PMC after 01/10/2015 Related Publications
BACKGROUND: Comprehensive analyses have recently been performed on many human cancer tissues, leading to the identification of a number of mutated genes but providing no information on the variety of mutations present in each of them. This information is of interest to understand the possible origin of gene mutations that cause tumors.
METHODOLOGY/PRINCIPAL FINDINGS: We have analyzed the sequence heterogeneity of the transcripts of the human HPRT and G6PD single copy genes that are not considered tumor markers. Analyses have been performed on different colon cancers and on the nearby histologically normal tissues of two male patients. Several copies of each cDNA, which were produced by cloning the RT-PCR-amplified fragments of the specific mRNA, have been sequenced. Similar analyses have been performed on blood samples of two ostensibly healthy males as reference controls. The sequence heterogeneity of the HPRT and G6PD genes was also determined on DNA from tumor tissues. The employed analytical approach revealed the presence of low-frequency mutations not detectable by other procedures. The results show that genetic heterogeneity is detectable in HPRT and G6PD transcripts in both tumors and nearby healthy tissues of the two studied colon tumors. Similar frequencies of mutations are observed in patient genomic DNA, indicating that mutations have a somatic origin. HPRT transcripts show genetic heterogeneity also in healthy individuals, in agreement with previous results on human T-cells, while G6PD transcript heterogeneity is a characteristic of the patient tissues. Interestingly, data on TP53 show little, if any, heterogeneity in the same tissues.
CONCLUSIONS/SIGNIFICANCE: These findings show that genetic heterogeneity is a peculiarity not only of cancer cells but also of the normal tissue where a tumor arises.

Furuta E, Okuda H, Kobayashi A, Watabe K
Metabolic genes in cancer: their roles in tumor progression and clinical implications.
Biochim Biophys Acta. 2010; 1805(2):141-52 [PubMed] Article available free on PMC after 01/10/2015 Related Publications
Re-programming of metabolic pathways is a hallmark of physiological changes in cancer cells. The expression of certain genes that directly control the rate of key metabolic pathways including glycolysis, lipogenesis and nucleotide synthesis are drastically altered at different stages of tumor progression. These alterations are generally considered as an adaptation of tumor cells; however, they also contribute to the progression of tumor cells to become more aggressive phenotypes. This review summarizes the recent information about the mechanistic link of these genes to oncogenesis and their potential utility as diagnostic markers as well as for therapeutic targets. We particularly focus on three groups of genes; GLUT1, G6PD, TKTL1 and PGI/AMF in glycolytic pathway, ACLY, ACC1 and FAS in lipogenesis and RRM2, p53R2 and TYMS for nucleotide synthesis. All these genes are highly up-regulated in a variety of tumor cells in cancer patients, and they play active roles in tumor progression rather than expressing merely as a consequence of phenotypic change of the cancer cells. Molecular dissection of their orchestrated networks and understanding the exact mechanism of their expression will provide a window of opportunity to target these genes for specific cancer therapy. We also reviewed existing database of gene microarray to validate the utility of these genes for cancer diagnosis.

Li D, Zhu Y, Tang Q, et al.
A new G6PD knockdown tumor-cell line with reduced proliferation and increased susceptibility to oxidative stress.
Cancer Biother Radiopharm. 2009; 24(1):81-90 [PubMed] Related Publications
Glucose-6-phosphate dehydrogenase (G6PD) has been implicated in the regulation of cellular antioxidative mechanisms. Tumor cells often lose the balance of oxidation and antioxidation, but the role of G6PD in such an imbalance is still largely unknown. To investigate the related function of G6PD in tumor cells, we established a stable line of A375 human melanoma cells with G6PD gene knockdown by a shRNA lentiviral cloning and expression system. The A375-G6PDDelta cells displayed the stable GFP coexpression after repeated freeze-thaw cycles and multiple passages, accompanied by an 88.83% suppression of the endogenous G6PD expression and a 78.47% decrease in G6PD activity. In comparison with the A375-WT cells, they were characterized by a reduced proliferation with the MTT proliferation assay, a 25% decrease in colony-forming efficiency, and an up to 40% increase of apoptotic rate with flow cytometry analysis. When further challenged by diamide-induced oxidative stress, these cells showed that a median lethal dose (LD(50)) of 1.2 mM decreased from that of the A375-WT cells (1.8 mM), and levels of NADPH and GSH decreased by 2.4-, 8.8-fold, respectively, with a 7.3-fold increase of H(2)O(2), as those of A375-WT cells. These results demonstrated that A375-G6PDDelta is a new, stable G6PD-deficient human tumor cell line, and that silencing G6PD expression decreased tumor-cell proliferation and enhanced apoptosis. In addition, G6PD gene knockdown rendered tumor cells more susceptible to diamide-induced oxidative stress. Together, our data support the important functions of G6PD in the regulation of cell growth and antioxidative capacity of tumor cells.

Ho HY, Cheng ML, Chiu HY, et al.
Dehydroepiandrosterone induces growth arrest of hepatoma cells via alteration of mitochondrial gene expression and function.
Int J Oncol. 2008; 33(5):969-77 [PubMed] Related Publications
DHEA is known to have anti-proliferative effect. The mechanism is not completely understood. We investigated the mechanism underlying DHEA-induced growth arrest of hepatoma cells. Growth inhibition was associated with increased G6PD activity, and insensitive to reversal by mevalonate. Thus, DHEA does not act via inhibition of G6PD and HMGR. Instead, growth stagnation was accompanied by reduced expression of nucleus-encoded mitochondrial genes; morphological and functional alterations of mitochondria; and depletion of intracellular ATP. Conversely, pyruvate supplementation alleviated DHEA-induced growth inhibition. It is likely that DHEA suppresses cell growth by altering mitochondrial gene expression, morphology and functions.

Bao BY, Ting HJ, Hsu JW, Lee YF
Protective role of 1 alpha, 25-dihydroxyvitamin D3 against oxidative stress in nonmalignant human prostate epithelial cells.
Int J Cancer. 2008; 122(12):2699-706 [PubMed] Related Publications
Overproduction of reactive oxygen species (ROS), through either endogenous or exogenous sources, could induce DNA damage, and accumulation of DNA damage might lead to multistep carcinogenesis. The antioxidative effects of vitamin D have been suggested by epidemiological and many in vitro and in vivo laboratory studies. While exploring the antioxidative effects of vitamin D in prostate cells, we found that the active form of vitamin D, 1 alpha, 25-dihydroxyvitamin D(3) (1,25-VD), can protect nonmalignant human prostate epithelial cell lines, BPH-1 and RWPE-1, but not malignant human prostate epithelial cells, CWR22R and DU 145, from oxidative stress-induced cell death. Glucose-6-phosphate dehydrogenase (G6PD), a key antioxidant enzyme, was dose- and time-dependently induced by 1,25-VD. Mechanistic studies using chromatin immunoprecipitation (ChIP) assay revealed that a direct repeat-3 (DR3) vitamin D response element located in the first intron of the G6PD genome can be bound by liganded vitamin D receptor, thereby regulating G6PD gene expression. Increasing G6PD activity and glutathione level by 1,25-VD can scavenge cellular ROS. Moreover, the protective effects of 1,25-VD were abolished by dehydroepiandrosterone, a noncompetitive inhibitor of G6PD activity. Together, our results showed that 1,25-VD can protect nonmalignant prostate cells from oxidative stress-induced cell death by elimination of ROS-induced cellular injuries through transcriptional activation of G6PD activity. The antioxidative effect of vitamin D strengthens its roles in cancer chemoprevention and adds to a growing list of beneficial effects of vitamin D against cancer.

Langbein S, Frederiks WM, zur Hausen A, et al.
Metastasis is promoted by a bioenergetic switch: new targets for progressive renal cell cancer.
Int J Cancer. 2008; 122(11):2422-8 [PubMed] Related Publications
Targeted therapies have demonstrated clinical benefit with limited impact on long-term disease specific survival in the treatment of renal cell cancer (RCC). New opportunities for the treatment of tumors that are resistant or have relapsed, are needed. Increased anaerobic glucose fermentation to lactate (aerobic glycolysis), leading to oxygen- and mitochondria-independent ATP generation is a hallmark of aggressive cancer growth. This metabolic shift results in increased lactate production via cycling through the pentose phosphate pathway (PPP), and plays an important role in tumor immune escape, progression and resistance to immune-, radiation- and chemo-therapy. This study explored the activity and impact of the oxidative and nonoxidative branches of the PPP on RCC to evaluate new therapeutic options. Activity was determined in the oxidative branch by glucose-6-phosphate-dehydrogenase (G6PD) activity, and in the nonoxidative branch by the total transketolase activity and the specific expression of the transketolase-like-1 (TKTL1) protein. Transketolase and G6PD activity were intensely elevated in tumor tissues. Transketolase, but not G6PD activity, was more elevated in metastasizing tumors and TKTL1 protein was significantly overexpressed in progressing tumors (p = 0.03). Lethal tumors, where surrogate parameters such as grading and staging had failed to predict progression, showed intensive TKTL1 protein expression. RCC was found to have activated oxidative and nonoxidative glucose metabolism through the PPP, displaying a bioenergetic shift toward nonoxidative glucose fermentation in progressing tumors. The coexistence of cancer cells with differentially regulated energy supplies provides new insights in carcinogenesis and novel anticancer targets.

Ribeiro-Silva A, Zhang H, Jeffrey SS
RNA extraction from ten year old formalin-fixed paraffin-embedded breast cancer samples: a comparison of column purification and magnetic bead-based technologies.
BMC Mol Biol. 2007; 8:118 [PubMed] Article available free on PMC after 01/10/2015 Related Publications
BACKGROUND: The development of protocols for RNA extraction from paraffin-embedded samples facilitates gene expression studies on archival samples with known clinical outcome. Older samples are particularly valuable because they are associated with longer clinical follow up. RNA extracted from formalin-fixed paraffin-embedded (FFPE) tissue is problematic due to chemical modifications and continued degradation over time. We compared quantity and quality of RNA extracted by four different protocols from 14 ten year old and 14 recently archived (three to ten months old) FFPE breast cancer tissues. Using three spin column purification-based protocols and one magnetic bead-based protocol, total RNA was extracted in triplicate, generating 336 RNA extraction experiments. RNA fragment size was assayed by reverse transcription-polymerase chain reaction (RT-PCR) for the housekeeping gene glucose-6-phosphate dehydrogenase (G6PD), testing primer sets designed to target RNA fragment sizes of 67 bp, 151 bp, and 242 bp.
RESULTS: Biologically useful RNA (minimum RNA integrity number, RIN, 1.4) was extracted in at least one of three attempts of each protocol in 86-100% of older and 100% of recently archived ("months old") samples. Short RNA fragments up to 151 bp were assayable by RT-PCR for G6PD in all ten year old and months old tissues tested, but none of the ten year old and only 43% of months old samples showed amplification if the targeted fragment was 242 bp.
CONCLUSION: All protocols extracted RNA from ten year old FFPE samples with a minimum RIN of 1.4. Gene expression of G6PD could be measured in all samples, old and recent, using RT-PCR primers designed for RNA fragments up to 151 bp. RNA quality from ten year old FFPE samples was similar to that extracted from months old samples, but quantity and success rate were generally higher for the months old group. We preferred the magnetic bead-based protocol because of its speed and higher quantity of extracted RNA, although it produced similar quality RNA to other protocols. If a chosen protocol fails to extract biologically useful RNA from a given sample in a first attempt, another attempt and then another protocol should be tried before excluding the case from molecular analysis.

Sriram G, Rahib L, He JS, et al.
Global metabolic effects of glycerol kinase overexpression in rat hepatoma cells.
Mol Genet Metab. 2008; 93(2):145-59 [PubMed] Article available free on PMC after 01/10/2015 Related Publications
Glycerol kinase has several diverse activities in mammalian cells. Glycerol kinase deficiency is a complex, single-gene, inborn error of metabolism wherein no genotype-phenotype correlation has been established. Since glycerol kinase has been suggested to exhibit additional activities than glycerol phosphorylation, expression level perturbation in this enzyme may affect cellular physiology globally. To investigate this possibility, we conducted metabolic investigations of wild-type and two glycerol kinase-overexpressing H4IIE rat hepatoma cell lines constructed in this study. The glycerol kinase-overexpressing cell lines exhibited a significantly higher consumption of carbon sources per cell, suggesting excess carbon expenditure. Furthermore, we quantified intracellular metabolic fluxes by employing stable isotope 13C labeling with a mathematically designed substrate mixture, gas chromatography-mass spectrometry, and comprehensive isotopomer balancing. This flux analysis revealed that the pentose phosphate pathway flux in the glycerol kinase-overexpressing cell lines was 2-fold higher than that in the wild-type, in addition to subtler flux changes in other pathways of carbohydrate metabolism. Furthermore, the activity and transcript level of the lipogenic enzyme glucose-6-phosphate dehydrogenase, the rate-limiting enzyme of the pentose phosphate pathway, were also about 2-fold higher than that of the wild-type; these data corroborate the flux analysis results. This study shows that glycerol kinase affects carbon metabolism globally, possibly through its additional functions, and highlights glycerol kinase's multifaceted role in cellular physiology.

Thakur A, Rahman KW, Wu J, et al.
Aberrant expression of X-linked genes RbAp46, Rsk4, and Cldn2 in breast cancer.
Mol Cancer Res. 2007; 5(2):171-81 [PubMed] Related Publications
The consequence of activation status or gain/loss of an X-chromosome in terms of the expression of tumor suppressor genes or oncogenes in breast cancer has not been clearly addressed. In this study, we investigated the activation status of the X-chromosomes in a panel of human breast cancer cell lines, human breast carcinoma, and adjacent mammary tissues and a panel of murine mammary epithelial sublines ranging from low to high invasive potentials. Results show that most human breast cancer cell lines were homozygous, but both benign cell lines were heterozygous for highly polymorphic X-loci (IDS and G6PD). On the other hand, 60% of human breast carcinoma cases were heterozygous for either IDS or G6PD markers. Investigation of the activation status of heterozygous cell lines revealed the presence of only one active X-chromosome, whereas most heterozygous human breast carcinoma cases had two active X-chromosomes. Furthermore, we determined whether or not an additional active X-chromosome affects expression levels of tumor suppressor genes and oncogenes. Reverse transcription-PCR data show high expression of putative tumor suppressor genes Rsk4 and RbAp46 in 47% and 79% of breast carcinoma cases, respectively, whereas Cldn2 was down-regulated in 52% of breast cancer cases compared with normal adjacent tissues. Consistent with mRNA expression, immunostaining for these proteins also showed a similar pattern. In conclusion, our data suggest that high expression of RbAp46 is likely to have a role in the development or progression of human breast cancer. The activation status of the X-chromosome may influence the expression levels of X-linked oncogenes or tumor suppressor genes.

Eisele L, Klein-Hitpass L, Chatzimanolis N, et al.
Differential expression of drug-resistance-related genes between sensitive and resistant blasts in acute myeloid leukemia.
Acta Haematol. 2007; 117(1):8-15 [PubMed] Related Publications
Drug resistance constitutes a considerable problem in the therapy of acute myeloid leukemia (AML). In order to identify genes which might be related to drug resistance, we retrospectively studied gene expression patterns in blast populations of 14 patients with de novo AML, focusing on known or potential resistance mechanisms against cytosine arabinoside and anthracyclines. Following induction and postremission chemotherapy, 7 patients achieved a complete remission (CR) for more than 1 year, while 7 patients showed blast persistence (BP) after induction and salvage chemotherapy. Gene expression analysis was performed using RNA extracted from archived guanidine extracts and Affymetrix HGU133A gene chips. We utilized the Gene Ontology category Biological Process to select genes implicated in DNA metabolism, nucleoside and nucleotide metabolism and transport, reactive oxygen species metabolism, apoptosis and response to drugs and identified 32 differentially expressed genes. From this functional perspective, we found differences between the CR and BP groups with regard to nucleotide metabolism (PBEF1, G6PD; p = 0.048), apoptosis (TNFAIP3, TNFAIP8, MPO, BCL2A1, BAX, SON, BNIP3L; p = 0.039) and reactive oxygen species metabolism (SOD2, KIAA0179; p = 0.048). However, the attempt to construct a predictive model of chemoresistance failed. BP samples had a 2-fold higher expression of CD34 than CR samples. Thus, our findings are in line with reports describing differences in apoptosis resistance between CD34+ and CD34- blast populations. Taken together, our results suggest that drug resistance in AML is a heterogenous phenomenon that might be better defined by means of disturbed biological processes than by focusing on the alteration of the expression of distinct genes.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. G6PD, Cancer Genetics Web: http://www.cancer-genetics.org/G6PD.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 21 August, 2015     Cancer Genetics Web, Established 1999