Gene Summary

Gene:FGF19; fibroblast growth factor 19
Summary:The protein encoded by this gene is a member of the fibroblast growth factor (FGF) family. FGF family members possess broad mitogenic and cell survival activities, and are involved in a variety of biological processes including embryonic development cell growth, morphogenesis, tissue repair, tumor growth and invasion. This growth factor is a high affinity, heparin dependent ligand for FGFR4. Expression of this gene was detected only in fetal but not adult brain tissue. Synergistic interaction of the chick homolog and Wnt-8c has been shown to be required for initiation of inner ear development. [provided by RefSeq, Jul 2008]
Databases:OMIM, VEGA, HGNC, Ensembl, GeneCard, Gene
Protein:fibroblast growth factor 19
Source:NCBIAccessed: 27 February, 2015


What does this gene/protein do?
Show (14)
Pathways:What pathways are this gene/protein implicaed in?
Show (2)

Cancer Overview

Research Indicators

Publications Per Year (1990-2015)
Graph generated 27 February 2015 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 27 February, 2015 using data from PubMed, MeSH and CancerIndex

Specific Cancers (6)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: FGF19 (cancer-related)

Wheler JJ, Parker BA, Lee JJ, et al.
Unique molecular signatures as a hallmark of patients with metastatic breast cancer: implications for current treatment paradigms.
Oncotarget. 2014; 5(9):2349-54 [PubMed] Free Access to Full Article Related Publications
Our analysis of the tumors of 57 women with metastatic breast cancer with next generation sequencing (NGS) demonstrates that each patient's tumor is unique in its molecular fingerprint. We observed 216 somatic aberrations in 70 different genes, including 131 distinct aberrations. The most common gene alterations (in order of decreasing frequency) included: TP53, PIK3CA, CCND1, MYC, HER2 (ERBB2), MCL1, PTEN, FGFR1, GATA3, NF1, PIK3R1, BRCA2, EGFR, IRS2, CDH1, CDKN2A, FGF19, FGF3 and FGF4. Aberrations included mutations (46%), amplifications (45%), deletions (5%), splices (2%), truncations (1%), fusions (0.5%) and rearrangements (0.5%), with multiple distinct variants within the same gene. Many of these aberrations represent druggable targets, either through direct pathway inhibition or through an associated pathway (via 'crosstalk'). The 'molecular individuality' of these tumors suggests that a customized strategy, using an "N-of-One" model of precision medicine, may represent an optimal approach for the treatment of patients with advanced tumors.

Ahn SM, Jang SJ, Shim JH, et al.
Genomic portrait of resectable hepatocellular carcinomas: implications of RB1 and FGF19 aberrations for patient stratification.
Hepatology. 2014; 60(6):1972-82 [PubMed] Related Publications
UNLABELLED: Hepatic resection is the most curative treatment option for early-stage hepatocellular carcinoma, but is associated with a high recurrence rate, which exceeds 50% at 5 years after surgery. Understanding the genetic basis of hepatocellular carcinoma at surgically curable stages may enable the identification of new molecular biomarkers that accurately identify patients in need of additional early therapeutic interventions. Whole exome sequencing and copy number analysis was performed on 231 hepatocellular carcinomas (72% with hepatitis B viral infection) that were classified as early-stage hepatocellular carcinomas, candidates for surgical resection. Recurrent mutations were validated by Sanger sequencing. Unsupervised genomic analyses identified an association between specific genetic aberrations and postoperative clinical outcomes. Recurrent somatic mutations were identified in nine genes, including TP53, CTNNB1, AXIN1, RPS6KA3, and RB1. Recurrent homozygous deletions in FAM123A, RB1, and CDKN2A, and high-copy amplifications in MYC, RSPO2, CCND1, and FGF19 were detected. Pathway analyses of these genes revealed aberrations in the p53, Wnt, PIK3/Ras, cell cycle, and chromatin remodeling pathways. RB1 mutations were significantly associated with cancer-specific and recurrence-free survival after resection (multivariate P = 0.038 and P = 0.012, respectively). FGF19 amplifications, known to activate Wnt signaling, were mutually exclusive with CTNNB1 and AXIN1 mutations, and significantly associated with cirrhosis (P = 0.017).
CONCLUSION: RB1 mutations can be used as a prognostic molecular biomarker for resectable hepatocellular carcinoma. Further study is required to investigate the potential role of FGF19 amplification in driving hepatocarcinogenesis in patients with liver cirrhosis and to investigate the potential of anti-FGF19 treatment in these patients.

Xu YF, Yang XQ, Lu XF, et al.
Fibroblast growth factor receptor 4 promotes progression and correlates to poor prognosis in cholangiocarcinoma.
Biochem Biophys Res Commun. 2014; 446(1):54-60 [PubMed] Related Publications
Fibroblast growth factor receptor 4 (FGFR4) is related to poor prognosis of several cancers, but the correlation between FGFR4 expression and cholangiocarcinoma (CCA) has not been well elucidated. We investigated the expression of FGFR4 in 83 intrahepatic cholangiocarcinomas (IHCCs), 75 perihilar cholangiocarcinomas (PHCCs) and 41 distal cholangiocarcinomas (DCCs) by immunohistochemistry (IHC), and subsequently evaluated association of FGFR4 with clinicopathologic parameters and survival rate. The rate of FGFR4 higher expression was 61.4% (51/83) in IHCCs, 53.3% (40/75) in PHCCs and 56.1% (23/41) in DCCs. FGFR4 expression was significantly related to poor prognosis of IHCC (P=0.002) and PHCC (P=0.019) with univariate analysis, and also identified as an independent prognostic factor in IHCC (P=0.045) and PHCC (P=0.049) with multivariate analysis. Additionally, with functional assays in vitro, we found FGFR4 can induce proliferation, invasion and epithelial-mesenchymal transition (EMT) of CCA cell lines with FGF19 stimulation. Moreover, FGFR4 inhibitor AP24354 can suppress proliferation, invasion and induce apoptosis of CCA cells. In conclusion, FGFR4 expression can be identified as a significant independent prognostic biomarker of IHCC and PHCC. FGFR4 played a pivotal role in proliferation, invasion and EMT of CCA. FGFR4 inhibitor can suppress proliferation, invasion and induce apoptosis of CCA, indicating that FGFR4 may act as a potential therapeutic target.

Gu DL, Chen YH, Shih JH, et al.
Target genes discovery through copy number alteration analysis in human hepatocellular carcinoma.
World J Gastroenterol. 2013; 19(47):8873-9 [PubMed] Free Access to Full Article Related Publications
High-throughput short-read sequencing of exomes and whole cancer genomes in multiple human hepatocellular carcinoma (HCC) cohorts confirmed previously identified frequently mutated somatic genes, such as TP53, CTNNB1 and AXIN1, and identified several novel genes with moderate mutation frequencies, including ARID1A, ARID2, MLL, MLL2, MLL3, MLL4, IRF2, ATM, CDKN2A, FGF19, PIK3CA, RPS6KA3, JAK1, KEAP1, NFE2L2, C16orf62, LEPR, RAC2, and IL6ST. Functional classification of these mutated genes suggested that alterations in pathways participating in chromatin remodeling, Wnt/β-catenin signaling, JAK/STAT signaling, and oxidative stress play critical roles in HCC tumorigenesis. Nevertheless, because there are few druggable genes used in HCC therapy, the identification of new therapeutic targets through integrated genomic approaches remains an important task. Because a large amount of HCC genomic data genotyped by high density single nucleotide polymorphism arrays is deposited in the public domain, copy number alteration (CNA) analyses of these arrays is a cost-effective way to reveal target genes through profiling of recurrent and overlapping amplicons, homozygous deletions and potentially unbalanced chromosomal translocations accumulated during HCC progression. Moreover, integration of CNAs with other high-throughput genomic data, such as aberrantly coding transcriptomes and non-coding gene expression in human HCC tissues and rodent HCC models, provides lines of evidence that can be used to facilitate the identification of novel HCC target genes with the potential of improving the survival of HCC patients.

Wang D, Zhu W, Li J, et al.
Serum concentrations of fibroblast growth factors 19 and 21 in women with gestational diabetes mellitus: association with insulin resistance, adiponectin, and polycystic ovary syndrome history.
PLoS One. 2013; 8(11):e81190 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Fibroblast growth factor 19 (FGF19) and FGF21 are considered to be novel adipokines that improve glucose tolerance and insulin sensitivity. In the current study, we investigated serum FGF19 and FGF21 levels in patients with gestational diabetes mellitus (GDM) and explored their relationships with anthropometric and endocrine parameters.
METHOD: Serum FGF19 and FGF21 levels were determined by enzyme-linked immunosorbent assay (ELISA) in patients with GDM (n = 30) and healthy pregnant controls (n = 60) matched for maternal and gestational age. Serum FGF19 and FGF21 levels were correlated with anthropometric, metabolic, and endocrine parameters.
RESULTS: Circulating levels of FGF19 were significantly reduced in patients with GDM relative to healthy pregnant subjects, whereas FGF21 levels were increased in GDM patients. Serum FGF19 levels independently and inversely correlated with insulin resistance (increased homeostasis model assessment of insulin resistance, HOMA-IR) and were positively related to serum adiponectin in both groups. In contrast, serum FGF21 levels independently and positively correlated with insulin resistance and serum triglycerides and were inversely related to serum adiponectin. In addition, in the combined population of both groups, those women with preconception polycystic ovary syndrome (PCOS) history had the lowest levels of FGF19, which were significantly lower than those in GDM patients without PCOS history and those in controls without PCOS history.
CONCLUSIONS: Circulating FGF19 levels are reduced in GDM patients, in contrast with FGF21 levels. Both serum FGF19 and FGF21 levels are strongly related to insulin resistance and serum levels of adiponectin. Considering the different situation between FGF19 and FGF21, we suggest that reduced serum FGF19 levels could be involved in the pathophysiology of GDM, while increased serum FGF21 levels could be in a compensatory response to this disease.

Ye YW, Hu S, Shi YQ, et al.
Combination of the FGFR4 inhibitor PD173074 and 5-fluorouracil reduces proliferation and promotes apoptosis in gastric cancer.
Oncol Rep. 2013; 30(6):2777-84 [PubMed] Related Publications
Our previous findings revealed that FGFR4 may be a novel therapeutic target for gastric cancer. The aim of the present study was to explore the effects of a combination of PD173074 (PD) and 5-fluorouracil (5-Fu) on the biological behavior of gastric cancer cell lines and the relevant mechanisms involved. MKN45, a gastric cancer cell line, was treated with each single agent alone or a combination of FGF19, PD and 5-Fu. Then, a series of functional assays were performed using CCK-8 assay and flow cytometry. Western blot analysis was used to determine the expression of signaling pathway and downstream-related molecules in the MKN45 cells following the different treatments. As the concentration of PD and 5-Fu increased, the cell viability gradually decreased; the viability of the combination group was less than the viability following single administration. Western blot analysis showed that FGFR4 expression was weak in the 5-Fu-treated groups when compared with the control. PD markedly increased the apoptosis rate of MKN45 cells when compared to the control; the apoptosis rate in the cells treated with the combination of PD and 5-Fu was higher than that in the cells following single treatment. Furthermore, PD reduced the expression of p-ERK and Bcl-xl and increased caspase-3 expression. Inhibition of the activity of FGFR4 may be the main mechanisms of PD effect while 5-Fu reduced FGFR4 expression. Furthermore, the effects of the combination of 5-Fu and PD in inhibiting proliferation, increasing apoptosis and arresting cell cycle were superior to these effects following the single agent treatments, suggesting that the two drugs applied in combination may contribute to the effective treatment of gastric cancer.

Ezzat S, Zheng L, Florez JC, et al.
The cancer-associated FGFR4-G388R polymorphism enhances pancreatic insulin secretion and modifies the risk of diabetes.
Cell Metab. 2013; 17(6):929-40 [PubMed] Free Access to Full Article Related Publications
The fibroblast growth factor receptor 4 (FGFR4)-R388 single-nucleotide polymorphism has been associated with cancer risk and prognosis. Here we show that the FGFR4-R388 allele yields a receptor variant that preferentially promotes STAT3/5 signaling. This STAT activation transcriptionally induces Grb14 in pancreatic endocrine cells to promote insulin secretion. Knockin mice with the FGFR4 variant allele develop pancreatic islets that secrete more insulin, a feature that is reversed through Grb14 deletion and enhanced with FGF19 administration. We also show in humans that the FGFR4-R388 allele enhances islet function and may protect against type 2 diabetes. These data support a common genetic link underlying cancer and hyperinsulinemia.

Feng S, Dakhova O, Creighton CJ, Ittmann M
Endocrine fibroblast growth factor FGF19 promotes prostate cancer progression.
Cancer Res. 2013; 73(8):2551-62 [PubMed] Free Access to Full Article Related Publications
Prostate cancer is the most common visceral malignancy and the second leading cause of cancer deaths in US men. There is broad evidence that fibroblast growth factor (FGF) receptors are important in prostate cancer initiation and progression, but the contribution of particular FGFs in this disease is not fully understood. The FGF family members FGF19, FGF21, and FGF23 comprise a distinct subfamily that circulate in serum and act in an endocrine manner. These endocrine FGFs require α-Klotho (KL) and/or β-Klotho (KLB), two related single-pass transmembrane proteins restricted in their tissue distribution, to act as coreceptors along with classic FGF receptors (FGFR) to mediate potent biologic activity. Here we show that FGF19 is expressed in primary and metastatic prostate cancer tissues, where it functions as an autocrine growth factor. Exogenous FGF19 promoted the growth, invasion, adhesion, and colony formation of prostate cancer cells at low ligand concentrations. FGF19 silencing in prostate cancer cells expressing autocrine FGF19 decreased invasion and proliferation in vitro and tumor growth in vivo. Consistent with these observations, KL and/or KLB were expressed in prostate cancer cells in vitro and in vivo, raising the possibility that additional endocrine FGFs may also exert biologic effects in prostate cancer. Our findings support the concept that therapies targeting FGFR signaling may have efficacy in prostate cancer and highlight FGF19 as a relevant endocrine FGF in this setting.

Latasa MU, Salis F, Urtasun R, et al.
Regulation of amphiregulin gene expression by β-catenin signaling in human hepatocellular carcinoma cells: a novel crosstalk between FGF19 and the EGFR system.
PLoS One. 2012; 7(12):e52711 [PubMed] Free Access to Full Article Related Publications
Hepatocellular carcinoma (HCC) is the most prevalent liver tumor and a deadly disease with limited therapeutic options. Dysregulation of cell signaling pathways is a common denominator in tumorigenesis, including hepatocarcinogenesis. The epidermal growth factor receptor (EGFR) signaling system is commonly activated in HCC, and is currently being evaluated as a therapeutic target in combination therapies. We and others have identified a central role for the EGFR ligand amphiregulin (AR) in the proliferation, survival and drug resistance of HCC cells. AR expression is frequently up-regulated in HCC tissues and cells through mechanisms not completely known. Here we identify the β-catenin signaling pathway as a novel mechanism leading to transcriptional activation of the AR gene in human HCC cells. Activation of β-catenin signaling, or expression of the T41A β-catenin active mutant, led to the induction of AR expression involving three specific β-catenin-Tcf responsive elements in its proximal promoter. We demonstrate that HCC cells expressing the T41A β-catenin active mutant show enhanced proliferation that is dependent in part on AR expression and EGFR signaling. We also demonstrate here a novel cross-talk of the EGFR system with fibroblast growth factor 19 (FGF19). FGF19 is a recently identified driver gene in hepatocarcinogenesis and an activator of β-catenin signaling in HCC and colon cancer cells. We show that FGF19 induced AR gene expression through the β-catenin pathway in human HCC cells. Importantly, AR up-regulation and EGFR signaling participated in the induction of cyclin D1 and cell proliferation elicited by FGF19. Finally, we demonstrate a positive correlation between FGF19 and AR expression in human HCC tissues, therefore supporting in clinical samples our experimental observations. These findings identify the AR/EGFR system as a key mediator of FGF19 responses in HCC cells involving β-catenin signaling, and suggest that combined targeting of FGF19 and AR/EGFR may enhance therapeutic efficacy.

Hillbertz NS, Hirsch JM, Jalouli J, et al.
Viral and molecular aspects of oral cancer.
Anticancer Res. 2012; 32(10):4201-12 [PubMed] Related Publications
Squamous cell carcinoma (SCC) is the most common epithelial malignancy in the oral cavity. SCCs and their variants constitute over 90% of oral malignancies, and the disease is associated with poor prognosis. OSCC is a complex malignancy where environmental factors, virus infections, and genetic alterations most likely interact, and thus give rise to the malignant condition. Herein, we review the available literature regarding high-risk factors such as alcohol and tobacco usage; discuss the roles of human papillomaviruses (HPV), the Epstein-Barr virus, and the human herpes simplex virus (HSV); and evaluate several candidate genes associated with the condition: p53, p16(INK4) and p21(WAF1/CIPI), survivin, B-cell lymphoma-2 (BCL-2), keratins, Fibroblast growth factor 3 (FGF3), FGF4, FGF19, Oral cancer overexpressed gene 1 (ORAOV1), and Cyclin D1 (CCND1).

Guagnano V, Kauffmann A, Wöhrle S, et al.
FGFR genetic alterations predict for sensitivity to NVP-BGJ398, a selective pan-FGFR inhibitor.
Cancer Discov. 2012; 2(12):1118-33 [PubMed] Related Publications
UNLABELLED: Patient stratification biomarkers that enable the translation of cancer genetic knowledge into clinical use are essential for the successful and rapid development of emerging targeted anticancer therapeutics. Here, we describe the identification of patient stratification biomarkers for NVP-BGJ398, a novel and selective fibroblast growth factor receptor (FGFR) inhibitor. By intersecting genome-wide gene expression and genomic alteration data with cell line-sensitivity data across an annotated collection of cancer cell lines called the Cancer Cell Line Encyclopedia, we show that genetic alterations for FGFR family members predict for sensitivity to NVP-BGJ398. For the first time, we report oncogenic FGFR1 amplification in osteosarcoma as a potential patient selection biomarker. Furthermore, we show that cancer cell lines harboring FGF19 copy number gain at the 11q13 amplicon are sensitive to NVP-BGJ398 only when concomitant expression of β-klotho occurs. Thus, our findings provide the rationale for the clinical development of FGFR inhibitors in selected patients with cancer harboring tumors with the identified predictors of sensitivity.
SIGNIFICANCE: The success of a personalized medicine approach using targeted therapies ultimately depends on being able to identify the patients who will benefit the most from any given drug. To this end, we have integrated the molecular profiles for more than 500 cancer cell lines with sensitivity data for the novel anticancer drug NVP-BGJ398 and showed that FGFR genetic alterations are the most significant predictors for sensitivity. This work has ultimately endorsed the incorporation of specific patient selection biomakers in the clinical trials for NVP-BGJ398.

Herraez E, Gonzalez-Sanchez E, Vaquero J, et al.
Cisplatin-induced chemoresistance in colon cancer cells involves FXR-dependent and FXR-independent up-regulation of ABC proteins.
Mol Pharm. 2012; 9(9):2565-76 [PubMed] Related Publications
Export pumps often limit the usefulness of anticancer drugs. Here we investigated the effect of cisplatin on the expression of ABC proteins in human colon cancer cells. Short-term incubation of Caco-2 and LS174T cells with cisplatin resulted in up-regulation of several ABC pumps, in particular MRP2 and BCRP. In partially cisplatin-resistant cells (LS174T/R) obtained by long-term exposure to cisplatin, MRP2 and BCRP up-regulation was more marked. This was further enhanced when these cells were cultured under maintained stimulation with cisplatin. The MRP2 promoter (MRP2pr) was cloned, and partially deleted constructs linked to reporter genes were generated. Transfection of LS174T and LS174T/R cells with these constructs revealed the ability of cisplatin to activate MRP2pr. The intensity of this response was dependent on the conserved MRP2pr region. Basal MRP2pr activity was higher in LS174T/R cells, in which the expression of the transcription factors c/EBPβ, HNF1α, HNF3β, and HNF4α, but not PXR, p53, c-Myc, AP1, YB-1, NRF2, and RARα was enhanced. Up-regulation was particularly high for FXR (200-fold) and SHP (50-fold). In LS174T/R cells, GW4064 induced the expression of FGF19, SHP, OSTα/β, but not MRP2 and BCRP, although the sensitivity of these cells to cisplatin was further reduced. In LS174T cells, GW4064-induced chemoresistance was seen only after being transfected with FXR+RXR, when BCRP, but not MRP2, was up-regulated. Protection of LS174T cells against cisplatin was mimicked by transfection with BCRP. In conclusion, in colon cancer cells, cisplatin treatment enhances chemoresistance through FXR-dependent and FXR-independent mechanisms involving the expression of BCRP and MRP2, respectively.

Ying J, Shan L, Li J, et al.
Genome-wide screening for genetic alterations in esophageal cancer by aCGH identifies 11q13 amplification oncogenes associated with nodal metastasis.
PLoS One. 2012; 7(6):e39797 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is highly prevalent in China and other Asian countries, as a major cause of cancer-related mortality. ESCC displays complex chromosomal abnormalities, including multiple structural and numerical aberrations. Chromosomal abnormalities, such as recurrent amplifications and homozygous deletions, directly contribute to tumorigenesis through altering the expression of key oncogenes and tumor suppressor genes.
METHODOLOGY/PRINCIPLE FINDINGS: To understand the role of genetic alterations in ESCC pathogenesis and identify critical amplification/deletion targets, we performed genome-wide 1-Mb array comparative genomic hybridization (aCGH) analysis for 10 commonly used ESCC cell lines. Recurrent chromosomal gains were frequently detected on 3q26-27, 5p15-14, 8p12, 8p22-24, 11q13, 13q21-31, 18p11 and 20q11-13, with frequent losses also found on 8p23-22, 11q22, 14q32 and 18q11-23. Gain of 11q13.3-13.4 was the most frequent alteration in ESCC. Within this region, CCND1 oncogene was identified with high level of amplification and overexpression in ESCC, while FGF19 and SHANK2 was also remarkably over-expressed. Moreover, a high concordance (91.5%) of gene amplification and protein overexpression of CCND1 was observed in primary ESCC tumors. CCND1 amplification/overexpression was also significantly correlated with the lymph node metastasis of ESCC.
CONCLUSION: These findings suggest that genomic gain of 11q13 is the major mechanism contributing to the amplification. Novel oncogenes identified within the 11q13 amplicon including FGF19 and SHANK2 may play important roles in ESCC tumorigenesis.

Eberl M, Klingler S, Mangelberger D, et al.
Hedgehog-EGFR cooperation response genes determine the oncogenic phenotype of basal cell carcinoma and tumour-initiating pancreatic cancer cells.
EMBO Mol Med. 2012; 4(3):218-33 [PubMed] Free Access to Full Article Related Publications
Inhibition of Hedgehog (HH)/GLI signalling in cancer is a promising therapeutic approach. Interactions between HH/GLI and other oncogenic pathways affect the strength and tumourigenicity of HH/GLI. Cooperation of HH/GLI with epidermal growth factor receptor (EGFR) signalling promotes transformation and cancer cell proliferation in vitro. However, the in vivo relevance of HH-EGFR signal integration and the critical downstream mediators are largely undefined. In this report we show that genetic and pharmacologic inhibition of EGFR signalling reduces tumour growth in mouse models of HH/GLI driven basal cell carcinoma (BCC). We describe HH-EGFR cooperation response genes including SOX2, SOX9, JUN, CXCR4 and FGF19 that are synergistically activated by HH-EGFR signal integration and required for in vivo growth of BCC cells and tumour-initiating pancreatic cancer cells. The data validate EGFR signalling as drug target in HH/GLI driven cancers and shed light on the molecular processes controlled by HH-EGFR signal cooperation, providing new therapeutic strategies based on combined targeting of HH-EGFR signalling and selected downstream target genes.

Karlsson E, Waltersson MA, Bostner J, et al.
High-resolution genomic analysis of the 11q13 amplicon in breast cancers identifies synergy with 8p12 amplification, involving the mTOR targets S6K2 and 4EBP1.
Genes Chromosomes Cancer. 2011; 50(10):775-87 [PubMed] Related Publications
The chromosomal region 11q13 is amplified in 15-20% of breast cancers; an event not only associated with estrogen receptor (ER) expression but also implicated in resistance to endocrine therapy. Coamplifications of the 11q13 and 8p12 regions are common, suggesting synergy between the amplicons. The aim was to identify candidate oncogenes in the 11q13 region based on recurrent amplification patterns and correlations to mRNA expression levels. Furthermore, the 11q13/8p12 coamplification and its prognostic value, was evaluated at the DNA and the mRNA levels. Affymetrix 250K NspI arrays were used for whole-genome screening of DNA copy number changes in 29 breast tumors. To identify amplicon cores at 11q13 and 8p12, genomic identification of significant targets in cancer (GISTIC) was applied. The mRNA expression levels of candidate oncogenes in the amplicons [RAD9A, RPS6KB2 (S6K2), CCND1, FGF19, FGF4, FGF3, PAK1, GAB2 (11q13); EIF4EBP1 (4EBP1), PPAPDC1B, and FGFR1 (8p12)] were evaluated using real-time PCR. Resulting data revealed three main amplification cores at 11q13. ER expression was associated with the central 11q13 amplification core, encompassing CCND1, whereas 8p12 amplification/gene expression correlated to S6K2 in a proximal 11q13 core. Amplification of 8p12 and high expression of 4EBP1 or FGFR1 was associated with a poor outcome in the group. In conclusion, single nucleotide polymorphism arrays have enabled mapping of the 11q13 amplicon in breast tumors with high resolution. A proximal 11q13 core including S6K2 was identified as involved in the coamplification/coexpression with 8p12, suggesting synergy between the mTOR targets S6K2 and 4EBP1 in breast cancer development and progression.

Brown J, Bothma H, Veale R, Willem P
Genomic imbalances in esophageal carcinoma cell lines involve Wnt pathway genes.
World J Gastroenterol. 2011; 17(24):2909-23 [PubMed] Free Access to Full Article Related Publications
AIM: To identify molecular markers shared across South African esophageal squamous cell carcinoma (ESCC) cell lines using cytogenetics, fluorescence in situ hybridization (FISH) and single nucleotide polymorphism (SNP) array copy number analysis.
METHODS: We used conventional cytogenetics, FISH, and multicolor FISH to characterize the chromosomal rearrangements of five ESCC cell lines established in South Africa. The whole genome copy number profile was established from 250K SNP arrays, and data was analyzed with the CNAT 4.0 and GISTIC software.
RESULTS: We detected common translocation breakpoints involving chromosomes 1p11-12 and 3p11.2, the latter correlated with the deletion, or interruption of the EPHA3 gene. The most significant amplifications involved the following chromosomal regions and genes: 11q13.3 (CCND1, FGF3, FGF4, FGF19, MYEOV), 8q24.21(C-MYC, FAM84B), 11q22.1-q22.3 (BIRC2, BIRC3), 5p15.2 (CTNND2), 3q11.2-q12.2 (MINA) and 18p11.32 (TYMS, YES1). The significant deletions included 1p31.2-p31.1 (CTH, GADD45α, DIRAS3), 2q22.1 (LRP1B), 3p12.1-p14.2 (FHIT), 4q22.1-q32.1 (CASP6, SMAD1), 8p23.2-q11.1 (BNIP3L) and 18q21.1-q21.2 (SMAD4, DCC). The 3p11.2 translocation breakpoint was shared across four cell lines, supporting a role for genes involved at this site, in particular, the EPHA3 gene which has previously been reported to be deleted in ESCC.
CONCLUSION: The finding that a significant number of genes that were amplified (FGF3, FGF4, FGF19, CCND1 and C-MYC) or deleted (SFRP2 gene) are involved in the Wnt and fibroblast growth factor signaling pathways, suggests that these pathways may be activated in these cell lines.

Sawey ET, Chanrion M, Cai C, et al.
Identification of a therapeutic strategy targeting amplified FGF19 in liver cancer by Oncogenomic screening.
Cancer Cell. 2011; 19(3):347-58 [PubMed] Free Access to Full Article Related Publications
We screened 124 genes that are amplified in human hepatocellular carcinoma (HCC) using a mouse hepatoblast model and identified 18 tumor-promoting genes, including CCND1 and its neighbor on 11q13.3, FGF19. Although it is widely assumed that CCND1 is the main driving oncogene of this common amplicon (15% frequency in HCC), both forward-transformation assays and RNAi-mediated inhibition in human HCC cells established that FGF19 is an equally important driver gene in HCC. Furthermore, clonal growth and tumorigenicity of HCC cells harboring the 11q13.3 amplicon were selectively inhibited by RNAi-mediated knockdown of CCND1 or FGF19, as well as by an anti-FGF19 antibody. These results show that 11q13.3 amplification could be an effective biomarker for patients most likely to respond to anti-FGF19 therapy.

Motoda N, Matsuda Y, Onda M, et al.
Overexpression of fibroblast growth factor receptor 4 in high-grade pancreatic intraepithelial neoplasia and pancreatic ductal adenocarcinoma.
Int J Oncol. 2011; 38(1):133-43 [PubMed] Related Publications
The overexpression of fibroblast growth factor receptor (FGFR) 4 has been reported in various human cancers, but it has not been studied in pancreatic ductal adenocarcinoma (PDAC) or its precursor lesion, pancreatic intraepithelial neoplasia (PanIN). Moreover, there is controversy as to whether FGFR4 has a mitogenic role in carcinogenesis or other functions. Therefore, the expression and roles of FGFR4 in pancreatic cancer were investigated. Immunohistochemical staining was performed using an anti-FGFR4 antibody in PDAC and PanIN cases. The expression levels of FGFR4 mRNA and protein were investigated in PDAC cell lines by qRT-PCR and Western blot, respectively. Changes were analyzed in cell morphology, proliferation, migration, invasion and attachment in PDAC cell lines with or without the stimulation of FGFR4 by FGF19, as a known specific ligand. The changes in mRNA levels associated with transformation and tumorigenesis as a result of FGF19 administration were also evaluated. FGFR4 was expressed in 39 of 53 PDAC cases (73.6%) and its expression tended to be related to longer overall survival (P=0.068). Moreover, it was frequently expressed in high-grade PanIN lesions [10 of 11 lesions (90.9%)], whereas it was hardly expressed in low-grade PanIN lesions [1 of 10 lesions (10.0%)] (P=0.0003). FGFR4 stimulation of PDAC cells resulted in significantly increased cell adhesion to laminin and fibronectin (P<0.05) and decreased cell migration (P<0.05). The results of PCR array analysis indicated that this was a result of up-regulation of the integrin α4 family. In contrast, cell morphology or proliferation in PDAC cells was not affected. We showed that FGFR4 expression is markedly increased in high-grade PanIN and PDAC compared with that in normal and low-grade PanIN, and that FGFR4 stimulation by FGF19 of PDAC cells contributes to tumor suppression by increasing cell adhesion to extracellular matrix.

Itoh N
Hormone-like (endocrine) Fgfs: their evolutionary history and roles in development, metabolism, and disease.
Cell Tissue Res. 2010; 342(1):1-11 [PubMed] Free Access to Full Article Related Publications
Fibroblast growth factors (Fgfs) are proteins with diverse functions in development, repair, and metabolism. The human Fgf gene family with 22 members can be classified into three groups, canonical, intracellular, and hormone-like Fgf genes. In contrast to canonical and intracellular Fgfs identified in invertebrates and vertebrates, hormone-like Fgfs, Fgf15/19, Fgf21, and Fgf23, are vertebrate-specific. The ancestral gene of hormone-like Fgfs was generated from the ancestral gene of canonical Fgfs by gene duplication early in vertebrate evolution. Later, Fgf15/19, Fgf21, and Fgf23 were generated from the ancestral gene by genome duplication events. Canonical Fgfs act as autocrine/paracrine factors in an Fgf receptor (Fgfr)-dependent manner. In contrast, hormone-like Fgfs act as endocrine factors in an Fgfr-dependent manner. Canonical Fgfs have a heparin-binding site necessary for the stable binding of Fgfrs and local signaling. In contrast, hormone-like Fgfs acquired endocrine functions by reducing their heparin-binding affinity during their evolution. Fgf15/19 and Fgf23 require βKlotho and αKlotho as cofactors, respectively. However, Fgf21 might physiologically require neither. Hormone-like Fgfs play roles in metabolism at postnatal stages, although they also play roles in development at embryonic stages. Fgf15/19 regulates bile acid metabolism in the liver. Fgf21 regulates lipid metabolism in the white adipose tissue. Fgf23 regulates serum phosphate and active vitamin D levels. Fgf23 signaling disorders caused by hereditary diseases or tumors result in metabolic disorders. In addition, serum Fgf19 or Fgf21 levels are significantly increased by metabolic disorders. Hormone-like Fgfs are newly emerging and quite unique in their evolution and function.

Roidl A, Foo P, Wong W, et al.
The FGFR4 Y367C mutant is a dominant oncogene in MDA-MB453 breast cancer cells.
Oncogene. 2010; 29(10):1543-52 [PubMed] Related Publications
Mutational analysis of oncogenes is critical for our understanding of cancer development. Oncogenome screening has identified a fibroblast growth factor receptor 4 (FGFR4) Y367C mutation in the human breast cancer cell line MDA-MB453. Here, we investigate the consequence of this missense mutation in cancer cells. We show that MDA-MB453 cells harbouring the mutation are insensitive to FGFR4-specific ligand stimulation or inhibition with an antagonistic antibody. Furthermore, the FGFR4 mutant elicits constitutive phosphorylation leading to an activation of the mitogen-activated protein kinase cascade as shown by an enhanced Erk1/2 phosphorylation. Cloning and ectopic expression of the FGFR4 Y367C mutant in HEK293 cells revealed high pErk levels and enhanced cell proliferation. Based on these findings, we propose that FGFR4 may be a driver of tumour growth, particularly when highly expressed or stabilized and constitutively activated through genetic alterations. As such, FGFR4 presents an option for further mutational screening in tumours and is an attractive cancer target with the therapeutic potential.

Lázár V, Ecsedi S, Szöllosi AG, et al.
Characterization of candidate gene copy number alterations in the 11q13 region along with BRAF and NRAS mutations in human melanoma.
Mod Pathol. 2009; 22(10):1367-78 [PubMed] Related Publications
Amplification of the 11q13 chromosomal region is a common event in primary melanomas. Several candidate genes are localized at this sequence; however, their role in melanoma has not been clearly defined. The aim of this study was to develop an accurate method for determining the amplification pattern of six candidate genes that map to this amplicon core and to elucidate the possible relationship between BRAF, NRAS mutations and CCND1 copy number alterations, all of which are key components of the MAP kinase pathway. Characterization of gene copy numbers was performed by quantitative PCR and, as an alternative method, fluorescence in situ hybridization was used to define the CCND1 amplification pattern at the single cell level. Samples with amplified CCND1 (32%) were further analyzed for copy number alterations for the TAOS1, FGF3, FGF19, FGF4 and EMS1 genes. Co-amplification of the CCND1 and TAOS1 was present in 15% of tumors and was more frequent in ulcerated lesions (P=0.017). Furthermore, 56% of primary melanomas had either BRAF or NRAS mutations, but these two mutations were not present in any of the lesions analyzed. Of these cases, 34% also had CCND1 amplification. There was a significant relationship between NRAS activating mutations and UV exposure (P=0.005). We did not find correlations between CCND1 gene amplification status and any of the patients' clinicopathological parameters. However, CCND1 amplification simultaneously with either BRAF or NRAS activation mutations was observed mainly in primary tumors with ulcerated surfaces (P=0.028). We assume that co-amplification of these candidate genes in the 11q13 region or CCND1 gene alterations along with either BRAF or NRAS mutations might be more important for prognosis than the presence of these alterations alone.

Falvella FS, Frullanti E, Galvan A, et al.
FGFR4 Gly388Arg polymorphism may affect the clinical stage of patients with lung cancer by modulating the transcriptional profile of normal lung.
Int J Cancer. 2009; 124(12):2880-5 [PubMed] Related Publications
The association of the fibroblast growth factor receptor 4 (FGFR4) Gly388Arg polymorphism with clinical stage and overall survival in a series of 541 Italian lung adenocarcinoma (ADCA) patients indicated a significantly decreased survival in patients carrying the rare Arg388 allele as compared to that in Gly/Gly homozygous patients [hazard ratio (HR) = 1.5; 95% confidence interval (CI) 1.1-1.9], with the decrease related to the association of the same polymorphism with clinical stage (HR = 1.8, 95% CI 1.3-2.6). By contrast, no significant association was detected in small series of either Norwegian lung ADCA patients or Italian lung squamous cell carcinoma (SQCC) patients. Single nucleotide polymorphisms of known FGFR4 ligands expressed in lung (FGF9, FGF18 and FGF19) were not associated with clinical stage or survival and showed no interaction with FGFR4. Analysis of gene expression profile in normal lungs according to FGFR4 genotype indicated a specific transcript pattern associated with the allele carrier status, suggesting a functional role for the FGFR4 polymorphism already detectable in normal lung. These findings confirm the significant association of the FGFR4 Gly388Arg polymorphism with clinical stage and overall survival in an Italian lung ADCA population and demonstrate a FGFR4 genotype-dependent transcriptional profile present in normal lung tissue.

Schaap FG, van der Gaag NA, Gouma DJ, Jansen PL
High expression of the bile salt-homeostatic hormone fibroblast growth factor 19 in the liver of patients with extrahepatic cholestasis.
Hepatology. 2009; 49(4):1228-35 [PubMed] Related Publications
UNLABELLED: Fibroblast growth factor 19 (FGF19) is an endocrine factor produced by the small intestine in response to uptake of luminal bile salts. In the liver, FGF19 binds to FGF receptor-4, resulting in down-regulation of cytochrome P (CYP) 7A1 and reduced bile salt synthesis. Down-regulation of CYP7A1 under cholestatic conditions has been attributed to bile salt-mediated induction of the transcriptional repressor short heterodimer partner (SHP), because the interrupted enterohepatic cycle of bile salts is thought to abrogate intestinal FGF19 production and thus result in lowering of plasma FGF19 levels. Unexpectedly, we observed marked elevation of plasma FGF19 in patients with extrahepatic cholestasis caused by a pancreatic tumor (2.3 +/- 2.3 in cholestatic versus 0.40 +/- 0.25 ng/mL and 0.29 +/- 0.12 ng/mL in postcholestatic patients who received preoperative drainage by biliary stenting, P = 0.004, and noncholestatic control patients, P = 0.04, respectively). Although FGF19 messenger RNA (mRNA) is virtually absent in normal liver, FGF19 mRNA was strongly increased (31-fold to 374-fold, P < 0.001) in the liver of cholestatic patients in comparison with drained and control patients. In the absence of changes in SHP mRNA, CYP7A1 mRNA was strongly reduced (7.2-fold to 24-fold, P < 0.005) in the liver of cholestatic patients in comparison with drained and control patients, indicating an alternative regulatory pathway. Alterations in transcripts encoding hepatobiliary transporters [adenosine triphosphate-binding cassette, subfamily C, member 3 (ABCC3)/multidrug resistance protein 3 (MRP3), organic solute transporter alpha/beta (OSTalpha/beta), organic anion-transporting polypeptide (OATP1B1)] further suggest that bile salts are secreted via a nonbiliary route in patients with extrahepatic cholestasis.
CONCLUSION: The liver expresses FGF19 under conditions of extrahepatic cholestasis. This is accompanied by a number of adaptations aimed at protecting the liver against bile salt toxicity. FGF19 signaling may be involved in some of these adaptations.

Song KH, Li T, Owsley E, et al.
Bile acids activate fibroblast growth factor 19 signaling in human hepatocytes to inhibit cholesterol 7alpha-hydroxylase gene expression.
Hepatology. 2009; 49(1):297-305 [PubMed] Free Access to Full Article Related Publications
UNLABELLED: Mouse fibroblast growth factor 15 (FGF15) and human ortholog FGF19 have been identified as the bile acid-induced intestinal factors that mediate bile acid feedback inhibition of cholesterol 7alpha-hydroxylase gene (C YP7A1) transcription in mouse liver. The mechanism underlying FGF15/FGF19 inhibition of bile acid synthesis in hepatocytes remains unclear. Chenodeoxycholic acid (CDCA) and the farnesoid X receptor (FXR)-specific agonist GW4064 strongly induced FGF19 but inhibited CYP7A1 messenger RNA (mRNA) levels in primary human hepatocytes. FGF19 strongly and rapidly repressed CYP7A1 but not small heterodimer partner (SHP) mRNA levels. Kinase inhibition and phosphorylation assays revealed that the mitogen-activated protein kinase/extracellular signal-regulated kinase 1/2 (MAPK/Erk1/2) pathway played a major role in mediating FGF19 inhibition of CYP7A1. However, small interfering RNA (siRNA) knockdown of SHP did not affect FGF19 inhibition of CYP7A1. Interestingly, CDCA stimulated tyrosine phosphorylation of the FGF receptor 4 (FGFR4) in hepatocytes. FGF19 antibody and siRNA specific to FGFR4 abrogated GW4064 inhibition of CYP7A1. These results suggest that bile acid-activated FXR is able to induce FGF19 in hepatocytes to inhibit CYP7A1 by an autocrine/paracrine mechanism.
CONCLUSION: The hepatic FGF19/FGFR4/Erk1/2 pathway may inhibit CYP7A1 independent of SHP. In addition to inducing FGF19 in the intestine, bile acids in hepatocytes may activate the liver FGF19/FGFR4 signaling pathway to inhibit bile acid synthesis and prevent accumulation of toxic bile acid in human livers.

Ho HK, Pok S, Streit S, et al.
Fibroblast growth factor receptor 4 regulates proliferation, anti-apoptosis and alpha-fetoprotein secretion during hepatocellular carcinoma progression and represents a potential target for therapeutic intervention.
J Hepatol. 2009; 50(1):118-27 [PubMed] Related Publications
BACKGROUND/AIMS: FGFR4, a member of the fibroblast growth factor receptor family, has been recently associated with progression of melanoma, breast and head and neck carcinoma. Given its uniquely high expression in the liver, we investigated its contributory role to hepatocellular carcinoma (HCC).
METHODS: We performed a comprehensive sequencing of full-length FGFR4 transcript in 57 tumor/normal HCC tissue pairs, and quantified their mRNA expressions. Notable mutations and expression patterns were correlated with patient data. Clinically significant trends were examined in in vitro models.
RESULTS: We found eight genetic alterations including two highly frequent polymorphisms (V10I and G338R). Secretion of alpha-fetoprotein (AFP), a HCC biomarker, was increased among patients bearing homozygous Arg388 alleles. One-third of these patients exhibited increased FGFR4 mRNA expression in the matched tumor/normal tissue. Subsequent in vitro perturbation of FGFR4 signaling through both FGF19-stimulation and FGFR4 silencing confirmed a mechanistic link between FGFR4 activities and tumor aggressiveness. More importantly, inhibition of FGFR activity with PD173074 exquisitely blocked HuH7 (high FGFR4 expression) proliferation as compared to control cell lines.
CONCLUSIONS: FGFR4 contributes significantly to HCC progression by modulating AFP secretion, proliferation and anti-apoptosis. Its frequent overexpression in patients renders its inhibition a novel and much needed pharmacological approach against HCC.

Pai R, Dunlap D, Qing J, et al.
Inhibition of fibroblast growth factor 19 reduces tumor growth by modulating beta-catenin signaling.
Cancer Res. 2008; 68(13):5086-95 [PubMed] Related Publications
Fibroblast growth factors (FGF) play important roles in development, angiogenesis, and cancer. FGF19 uniquely binds to FGF receptor 4 (FGFR4). Our previous study has shown that FGF19 transgenic tumors have an activated Wnt-pathway phenotype. Wnt signaling is implicated in initiating or promoting FGF signaling in various cell types and organs. In this study, we examined whether FGF19 or inhibition of FGF19 affects the beta-catenin signaling pathway using human colon cancer cell lines (HCT116, Colo201). Our results show that FGF19 increases tyrosine phosphorylation of beta-catenin and causes loss of beta-catenin-E-cadherin binding. FGF19 increases p-GSK3beta and active beta-catenin levels and anti-FGF19 antibody (1A6) treatment abrogates this effect of FGF19. Anti-FGF19 antibody treatment increases S33/S37/T41 phosphorylation and ubiquitination of beta-catenin. Ion-trap mass spectrometric analysis confirmed that 1A6 increases phosphorylation of beta-catenin in the NH(2) terminus. Using HCT116-paired beta-catenin knockout cells, we show that FGF19 induces TCF/LEF reporter activity in parental (WT/Delta45) and in WT/--but not in mutant (-/Delta45) cells, and that inhibition of endogenous FGF19 reduces this reporter activity, indicating that wild-type beta-catenin is accessible for modulation. FGFR4 knockdown using inducible short hairpin RNA significantly reduces the colony-forming ability in vitro and tumor growth in vivo. Although cleaved caspase-3 immunoreactivity remains unchanged, the number of ki67-positive nuclei is reduced in FGFR4 knockdown tumor xenograft tissues. Consistent with the reduced beta-catenin activation, Taqman analyses show that FGF19/FGFR4 inhibition reduced beta-catenin target gene (cyclin D1, CD44, c-jun, Cox-2, UPAR) expression. These findings highlight that FGF19/FGFR4 cross-talk with beta-catenin and that pathway intervention reduces tumor growth.

Wistuba W, Gnewuch C, Liebisch G, et al.
Lithocholic acid induction of the FGF19 promoter in intestinal cells is mediated by PXR.
World J Gastroenterol. 2007; 13(31):4230-5 [PubMed] Free Access to Full Article Related Publications
AIM: To study the effect of the toxic secondary bile acid lithocholic acid (LCA) on the expression of fibroblast growth factor 19 (FGF19) in intestinal cells and to characterize the pregnane-X-receptor (PXR) response of the FGF19 promoter region.
METHODS: The intestinal cell line LS174T was stimulated with various concentrations of chenodeoxy-cholic acid and lithocholic acid for several time points. FGF19 mRNA levels were determined with quantitative realtime RT-PCR. FGF19 deletion promoter constructs were generated and the LCA response was analzyed in reporter assays. Co-transfections with PXR and RXR were carried out to study FGF19 regulation by these factors.
RESULTS: LCA and CDCA strongly up-regulate FGF19 mRNA expression in LS174T cells in a time and dose dependent manner. Using reporter gene assays with several deletion constructs we found that the LCA responsive element in the human FGF19 promoter maps to the proximal regulatory region containing two potential binding sites for PXR. Overexpression of PXR and its dimerization partner retinoid X receptor (RXR) and stimulation with LCA or the potent PXR ligand rifampicin leads to a significant induction of FGF19 promoter activity in intestinal cells.
CONCLUSION: LCA induced feedback inhibition of bile acid synthesis in the liver is likely to be regulated by PXR inducing intestinal FGF19 expression.

Desnoyers LR, Pai R, Ferrando RE, et al.
Targeting FGF19 inhibits tumor growth in colon cancer xenograft and FGF19 transgenic hepatocellular carcinoma models.
Oncogene. 2008; 27(1):85-97 [PubMed] Related Publications
Although fibroblast growth factor 19 (FGF19) can promote liver carcinogenesis in mice its involvement in human cancer is not well characterized. Here we report that FGF19 and its cognate receptor FGF receptor 4 (FGFR4) are coexpressed in primary human liver, lung and colon tumors and in a subset of human colon cancer cell lines. To test the importance of FGF19 for tumor growth, we developed an anti-FGF19 monoclonal antibody that selectively blocks the interaction of FGF19 with FGFR4. This antibody abolished FGF19-mediated activity in vitro and inhibited growth of colon tumor xenografts in vivo and effectively prevented hepatocellular carcinomas in FGF19 transgenic mice. The efficacy of the antibody in these models was linked to inhibition of FGF19-dependent activation of FGFR4, FRS2, ERK and beta-catenin. These findings suggest that the inactivation of FGF19 could be beneficial for the treatment of colon cancer, liver cancer and other malignancies involving interaction of FGF19 and FGFR4.

Huang X, Godfrey TE, Gooding WE, et al.
Comprehensive genome and transcriptome analysis of the 11q13 amplicon in human oral cancer and synteny to the 7F5 amplicon in murine oral carcinoma.
Genes Chromosomes Cancer. 2006; 45(11):1058-69 [PubMed] Related Publications
11q13 amplification occurs in a wide variety of tumors, including almost half of oral squamous cell carcinomas (OSCC) where it has been correlated with a poor outcome. In this study, we compiled 3.6 Mb of DNA sequence in the 11q13 amplicon core and refined the physical map of the amplicon. In the process, we determined the genomic structure and normal tissue expression patterns of two recently identified genes, TAOS2/TMEM16A and MRGF, which reside in the amplicon core. We then quantified DNA copy number and mRNA expression of all genes in the 11q13 amplicon in cell lines and primary tumors from OSCC. With the exception of FGF3, FGF4, FGF19, and MRGF, all genes were overexpressed in most tumors with genomic amplification. Furthermore, we found that the expression of genes in the amplicon appeared to be highly coordinated, making it difficult to determine which gene or genes are driving amplification. However, in nonamplified primary tumors, three genes, TAOS2/TMEM16A, OCIM, and TPCN2, are frequently overexpressed, whereas CCND1 and EMS1 are not. These results suggest that in addition to CCND1 and EMS1, other important genes also may be target genes driving 11q13 amplification. We hypothesize that 11q13 amplification may be driven by a cassette of genes that provide growth or metastatic advantage to cancer cells. This is supported by the finding that the human 11q13 amplicon core is syntenic to mouse chromosomal band 7F5, which is frequently amplified in chemically induced murine OSCC. This article contains Supplementary Material available at http://www.interscience.wiley.com/jpages/1045-2257/suppmat

Gutierrez A, Ratliff EP, Andres AM, et al.
Bile acids decrease hepatic paraoxonase 1 expression and plasma high-density lipoprotein levels via FXR-mediated signaling of FGFR4.
Arterioscler Thromb Vasc Biol. 2006; 26(2):301-6 [PubMed] Related Publications
OBJECTIVE: The purpose of this research was to determine how dietary bile acids repress hepatic expression of paraoxonase 1 (PON1).
METHODS AND RESULTS: C57BL/6 mice and C3H/HeJ mice, having different susceptibilities to atherosclerosis, were fed a chow diet and an atherogenic diet containing taurocholate. Compared with the more atherosclerosis-susceptible C57BL/6 mice, C3H/HeJ mice display resistance to dietary bile acid repression of hepatic PON1 mRNA and decreased high-density lipoprotein cholesterol. Whereas knockout of toll receptor 4 did not affect response to taurocholate, deletion of either FXR or FGFR4 blocked taurocholate repression of PON1 and CYP7A1. FGF19, an activator of FGFR4 expressed in human ileum, decreased expression of both PON1 and CYP7A1 expression by human hepatoma cells. In all of the mice studied, dietary taurocholate increased ileal expression of FGF15, a FXR-inducible murine homologue of human FGF19.
CONCLUSIONS: Hepatic PON1 and CYP7A1 mRNA expression is repressed by bile acids via FXR-mediated induction of FGF15. Thus, the inability of C3H/HeJ mice to display taurocholate repression of PON1 and CYP7A1 mRNAs was not because of a lack of induction of FGF15 but rather signaling events distal to FGF15-FGFR4 association.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. FGF19, Cancer Genetics Web: http://www.cancer-genetics.org/FGF19.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 27 February, 2015     Cancer Genetics Web, Established 1999