DAB2IP

Gene Summary

Gene:DAB2IP; DAB2 interacting protein
Aliases: AIP1, AIP-1, AF9Q34, DIP1/2
Location:9q33.1-q33.3
Summary:DAB2IP is a Ras (MIM 190020) GTPase-activating protein (GAP) that acts as a tumor suppressor. The DAB2IP gene is inactivated by methylation in prostate and breast cancers (Yano et al., 2005 [PubMed 15386433]).[supplied by OMIM, May 2010]
Databases:OMIM, VEGA, HGNC, Ensembl, GeneCard, Gene
Protein:disabled homolog 2-interacting protein
HPRD
Source:NCBIAccessed: 07 August, 2015

Ontology:

What does this gene/protein do?
Show (38)

Cancer Overview

Research Indicators

Publications Per Year (1990-2015)
Graph generated 07 August 2015 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Cell Proliferation
  • Watchful Waiting (Prostate Ca)
  • Lymphatic Metastasis
  • MicroRNAs
  • Neoplasm Invasiveness
  • Single Nucleotide Polymorphism
  • Genotype
  • Immunohistochemistry
  • Chromosome 9
  • Gene Expression
  • TNF
  • Molecular Sequence Data
  • Apoptosis
  • 5' Untranslated Regions
  • Amino Acid Sequence
  • Lung Cancer
  • p53 Protein
  • ras GTPase-Activating Proteins
  • Prostate Cancer
  • Down-Regulation
  • ras Proteins
  • Promoter Regions
  • RTPCR
  • DNA Methylation
  • Genetic Predisposition
  • Risk Factors
  • Tumor Suppressor Gene
  • Tumor Markers
  • Tumor Suppressor Proteins
  • Base Sequence
  • Radiation Tolerance
  • Cancer Gene Expression Regulation
  • Polycomb Repressive Complex 2
  • Protein Tyrosine Phosphatase, Non-Receptor Type 6
  • Bladder Cancer
  • Breast Cancer
  • Vimentin
  • Western Blotting
  • Young Adult
  • Messenger RNA
  • DNA Sequence Analysis
Tag cloud generated 07 August, 2015 using data from PubMed, MeSH and CancerIndex

Specific Cancers (4)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: DAB2IP (cancer-related)

Xu Y, He J, Wang Y, et al.
miR-889 promotes proliferation of esophageal squamous cell carcinomas through DAB2IP.
FEBS Lett. 2015; 589(10):1127-35 [PubMed] Related Publications
MicroRNAs have been reported to play critical roles in various cancers, but there has been no study on the role of miR-889 in cancers. Here, we report that over-expression of miR-889 leads to rapid proliferation of EC109 and EC9706 cells in vitro and in vivo by inducing cells into S-phase. Using bioinformatics methods, DAB2IP was further confirmed to be a direct target of miR-889. In addition, the expression of DAB2IP, which was negatively correlated with that of miR-889, was significantly associated with clinicopathological features of ESCC patients. In conclusion, miR-889 is an important regulator in ESCC and both miR-889 and DAB2IP may serve as promising biomarkers and therapeutic targets in patients with ESCC.

Lechuga S, Baranwal S, Ivanov AI
Actin-interacting protein 1 controls assembly and permeability of intestinal epithelial apical junctions.
Am J Physiol Gastrointest Liver Physiol. 2015; 308(9):G745-56 [PubMed] Article available free on PMC after 01/05/2016 Related Publications
Adherens junctions (AJs) and tight junctions (TJs) are crucial regulators of the integrity and restitution of the intestinal epithelial barrier. The structure and function of epithelial junctions depend on their association with the cortical actin cytoskeleton that, in polarized epithelial cells, is represented by a prominent perijunctional actomyosin belt. The assembly and stability of the perijunctional cytoskeleton is controlled by constant turnover (disassembly and reassembly) of actin filaments. Actin-interacting protein (Aip) 1 is an emerging regulator of the actin cytoskeleton, playing a critical role in filament disassembly. In this study, we examined the roles of Aip1 in regulating the structure and remodeling of AJs and TJs in human intestinal epithelium. Aip1 was enriched at apical junctions in polarized human intestinal epithelial cells and normal mouse colonic mucosa. Knockdown of Aip1 by RNA interference increased the paracellular permeability of epithelial cell monolayers, decreased recruitment of AJ/TJ proteins to steady-state intercellular contacts, and attenuated junctional reassembly in a calcium-switch model. The observed defects of AJ/TJ structure and functions were accompanied by abnormal organization and dynamics of the perijunctional F-actin cytoskeleton. Moreover, loss of Aip1 impaired the apico-basal polarity of intestinal epithelial cell monolayers and inhibited formation of polarized epithelial cysts in 3-D Matrigel. Our findings demonstrate a previously unanticipated role of Aip1 in regulating the structure and remodeling of intestinal epithelial junctions and early steps of epithelial morphogenesis.

Zhang T, Shen Y, Chen Y, et al.
The ATM inhibitor KU55933 sensitizes radioresistant bladder cancer cells with DAB2IP gene defect.
Int J Radiat Biol. 2015; 91(4):368-78 [PubMed] Related Publications
PURPOSE: Our preliminary results showed that differentially expressed in ovarian cancer-2/disabled homolog 2 (DOC-2/DAB2) interactive protein (DAB2IP), a putative tumor suppressor gene, is down-regulated in bladder cancer (BCa) with aggressive phenotypes. In this study, we investigated how DAB2IP knockdown influenced BCa cell response to ionizing radiation (IR) and discussed possible ways to enhance cell radiosensitivity.
METHODS AND MATERIALS: The small interfering RNA (siRNA) system was implemented to inhibit endogenous DAB2IP expression in two human BCa cell lines, T24 and 5637. Cell sensitivity to IR alone or combined treatment was measured by a colony formation assay (CFA). Western blot was used to determine the phosphorylation levels of ataxia-telangiectasia mutated (ATM), catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs) and related DNA damage repair (DDR) proteins. Immunofluorescence as well as a flow cytometry assay were employed to detect DNA double-strand break (DSB) repair and cell cycle distribution, respectively.
RESULTS: DAB2IP-knockdown of BCa cells (i.e., siDAB2IP) exhibit increased clonogenic survival in response to IR compared with control cells (i.e., siCON) expressing an endogenous level of DAB2IP. The mechanism in siDAB2IP cells could be explained by elevated ATM expression and activation, increased S phase cell distribution as well as faster DSB repair kinetics. 2-morpholin-4-yl-6-thianthren-1-yl-pyran-4-one (KU55933) significantly sensitized siDAB2IP cells to IR due to inhibition of the phosphorylation of ATM and its downstream targets following IR and slower DSB repair kinetics.
CONCLUSIONS: Loss of DAB2IP expression in BCa cells signifies their radioresistance. KU55933, which suppresses ATM phosphorylation upon irradiation, could be applied in the radiotherapy of BCa patients with a DAB2IP gene defect.

Conway K, Edmiston SN, May R, et al.
DNA methylation profiling in the Carolina Breast Cancer Study defines cancer subclasses differing in clinicopathologic characteristics and survival.
Breast Cancer Res. 2014; 16(5):450 [PubMed] Article available free on PMC after 01/05/2016 Related Publications
INTRODUCTION: Breast cancer is a heterogeneous disease, with several intrinsic subtypes differing by hormone receptor (HR) status, molecular profiles, and prognosis. However, the role of DNA methylation in breast cancer development and progression and its relationship with the intrinsic tumor subtypes are not fully understood.
METHODS: A microarray targeting promoters of cancer-related genes was used to evaluate DNA methylation at 935 CpG sites in 517 breast tumors from the Carolina Breast Cancer Study, a population-based study of invasive breast cancer.
RESULTS: Consensus clustering using methylation (β) values for the 167 most variant CpG loci defined four clusters differing most distinctly in HR status, intrinsic subtype (luminal versus basal-like), and p53 mutation status. Supervised analyses for HR status, subtype, and p53 status identified 266 differentially methylated CpG loci with considerable overlap. Genes relatively hypermethylated in HR+, luminal A, or p53 wild-type breast cancers included FABP3, FGF2, FZD9, GAS7, HDAC9, HOXA11, MME, PAX6, POMC, PTGS2, RASSF1, RBP1, and SCGB3A1, whereas those more highly methylated in HR-, basal-like, or p53 mutant tumors included BCR, C4B, DAB2IP, MEST, RARA, SEPT5, TFF1, THY1, and SERPINA5. Clustering also defined a hypermethylated luminal-enriched tumor cluster 3 that gene ontology analysis revealed to be enriched for homeobox and other developmental genes (ASCL2, DLK1, EYA4, GAS7, HOXA5, HOXA9, HOXB13, IHH, IPF1, ISL1, PAX6, TBX1, SOX1, and SOX17). Although basal-enriched cluster 2 showed worse short-term survival, the luminal-enriched cluster 3 showed worse long-term survival but was not independently prognostic in multivariate Cox proportional hazard analysis, likely due to the mostly early stage cases in this dataset.
CONCLUSIONS: This study demonstrates that epigenetic patterns are strongly associated with HR status, subtype, and p53 mutation status and may show heterogeneity within tumor subclass. Among HR+ breast tumors, a subset exhibiting a gene signature characterized by hypermethylation of developmental genes and poorer clinicopathologic features may have prognostic value and requires further study. Genes differentially methylated between clinically important tumor subsets have roles in differentiation, development, and tumor growth and may be critical to establishing and maintaining tumor phenotypes and clinical outcomes.

Lai CH, Chang CS, Liu HH, et al.
Sensitization of radio-resistant prostate cancer cells with a unique cytolethal distending toxin.
Oncotarget. 2014; 5(14):5523-34 [PubMed] Article available free on PMC after 01/05/2016 Related Publications
Cytolethal distending toxin (CDT) produced by Campylobacter jejuni is a genotoxin that induces cell-cycle arrest and apoptosis in mammalian cells. Recent studies have demonstrated that prostate cancer (PCa) cells can acquire radio-resistance when DOC-2/DAB2 interactive protein (DAB2IP) is downregulated. In this study, we showed that CDT could induce cell death in DAB2IP-deficient PCa cells. A combination of CDT and radiotherapy significantly elicited cell death in DAB2IP-deficient PCa cells by inhibiting the repair of ionizing radiation (IR)-induced DNA double-strand break (DSB) during G2/M arrest, which is triggered by ataxia telangiectasia mutated (ATM)-dependent DNA damage checkpoint responses. We also found that CDT administration significantly increased the efficacy of radiotherapy in a xenograft mouse model. These results indicate that CDT can be a potent therapeutic agent for radio-resistant PCa.

Dai X, North BJ, Inuzuka H
Negative regulation of DAB2IP by Akt and SCFFbw7 pathways.
Oncotarget. 2014; 5(10):3307-15 [PubMed] Article available free on PMC after 01/05/2016 Related Publications
Deletion of ovarian carcinoma 2/disabled homolog 2 (DOC-2/DAB2) interacting protein (DAB2IP), is a tumor suppressor that serves as a scaffold protein involved in coordinately regulating cell proliferation, survival and apoptotic pathways. DAB2IP is epigenetically down-regulated in a variety of tumors through the action of the histone methyltransferase EZH2. Although DAB2IP is transcriptionally down-regulated in a variety of tumors, it remains unclear if other mechanisms contribute to functional inactivation of DAB2IP. Here we demonstrate that DAB2IP can be functionally down-regulated by two independent mechanisms. First, we identified that Akt1 can phosphorylate DAB2IP on S847, which regulates the interaction between DAB2IP and its effector molecules H-Ras and TRAF2. Second, we demonstrated that DAB2IP can be degraded in part through ubiquitin-proteasome pathway by SCF(Fbw7). DAB2IP harbors two Fbw7 phosho-degron motifs, which can be regulated by the kinase, CK1δ. Our data hence indicate that in addition to epigenetic down-regulation, two additional pathways can functional inactivate DAB2IP. Given that DAB2IP has previously been identified to possess direct causal role in tumorigenesis and metastasis, our data indicate that a variety of pathways may pass through DAB2IP to govern cancer development, and therefore highlight DAB2IP agonists as potential therapeutic approaches for future anti-cancer drug development.

Maertens O, Cichowski K
An expanding role for RAS GTPase activating proteins (RAS GAPs) in cancer.
Adv Biol Regul. 2014; 55:1-14 [PubMed] Related Publications
The RAS pathway is one of the most commonly deregulated pathways in human cancer. Mutations in RAS genes occur in nearly 30% of all human tumors. However in some tumor types RAS mutations are conspicuously absent or rare, despite the fact that RAS and downstream effector pathways are hyperactivated. Recently, RAS GTPase Activating Proteins (RAS GAPs) have emerged as an expanding class of tumor suppressors that, when inactivated, provide an alternative mechanism of activating RAS. RAS GAPs normally turn off RAS by catalyzing the hydrolysis of RAS-GTP. As such, the loss of a RAS GAP would be expected to promote excessive RAS activation. Indeed, this is the case for the NF1 gene, which plays an established role in a familial tumor predisposition syndrome and a variety of sporadic cancers. However, there are 13 additional RAS GAP family members in the human genome. We are only now beginning to understand why there are so many RAS GAPs, how they differentially function, and what their potential role(s) in human cancer are. This review will focus on our current understanding of RAS GAPs in human disease and will highlight important outstanding questions.

Ding L, Chen S, Liu P, et al.
CBP loss cooperates with PTEN haploinsufficiency to drive prostate cancer: implications for epigenetic therapy.
Cancer Res. 2014; 74(7):2050-61 [PubMed] Article available free on PMC after 01/05/2016 Related Publications
Despite the high incidence and mortality of prostate cancer, the etiology of this disease is not fully understood. In this study, we develop functional evidence for CBP and PTEN interaction in prostate cancer based on findings of their correlate expression in the human disease. Cbp(pc-/-);Pten(pc+/-) mice exhibited higher cell proliferation in the prostate and an early onset of high-grade prostatic intraepithelial neoplasia. Levels of EZH2 methyltransferase were increased along with its Thr350 phosphorylation in both mouse Cbp(-/-); Pten(+/-) and human prostate cancer cells. CBP loss and PTEN deficiency cooperated to trigger a switch from K27-acetylated histone H3 to K27-trimethylated bulk histones in a manner associated with decreased expression of the growth inhibitory EZH2 target genes DAB2IP, p27(KIP1), and p21(CIP1). Conversely, treatment with the histone deacetylase inhibitor panobinostat reversed this switch, in a manner associated with tumor suppression in Cbp(pc-/-);Pten(pc+/-) mice. Our findings show how CBP and PTEN interact to mediate tumor suppression in the prostate, establishing a central role for histone modification in the etiology of prostate cancer and providing a rationale for clinical evaluation of epigenetic-targeted therapy in patients with prostate cancer.

Tamgue O, Chai CS, Hao L, et al.
Triptolide inhibits histone methyltransferase EZH2 and modulates the expression of its target genes in prostate cancer cells.
Asian Pac J Cancer Prev. 2013; 14(10):5663-9 [PubMed] Related Publications
The histone methyltransferase EZH2 (enhancer of zeste homolog 2) plays critical roles in prostate cancer (PCa) development and is a potential target for PCa treatment. Triptolide possesses anti-tumor activity, but it is unknown whether its therapeutic effect relates with EZH2 in PCa. Here we described EZH2 as a target for Triptolide in PCa cells. Our data showed that Triptolide suppressed PCa cell growth and reduced the expression of EZH2. Overexpression of EZH2 attenuated the Triptolide induced cell growth inhibition. Moreover, Triptolide treatment of PC-3 cells resulted in elevated mRNA levels of target genes (ADRB2, CDH1, CDKN2A and DAB2IP) negatively regulated by EZH2 as well as reduced mRNA levelsan of EZH2 positively regulated gene (cyclin D1). Our findings suggest the PCa cell growth inhibition mediated by Triptolide might be associated with downregulation of EZH2 expression and the subsequent modulation of target genes.

Mygatt JG, Singhal A, Sukumar G, et al.
Oncogenic herpesvirus HHV-8 promotes androgen-independent prostate cancer growth.
Cancer Res. 2013; 73(18):5695-708 [PubMed] Related Publications
Mechanisms underlying progression to androgen-independent prostate cancer following radical ablation therapy remain poorly defined. Although intraprostatic infections have been highlighted as potential cofactors, pathogen influences on pathways that support tumor regrowth are not known. To explore this provocative concept, we derived androgen-sensitive and -insensitive prostate epithelial cells persistently infected with human herpesvirus 8 (HHV-8), an oncogenic herpesvirus that has been detected in normal prostate epithelium, prostate adenocarcinoma, and biologic fluids of patients with prostate cancer, to explore its effects on transition to hormone-refractory disease. Strikingly, we found that HHV-8 infection of androgen-sensitive prostate cancer cells conferred the capacity for androgen-independent growth. This effect was associated with altered expression and transcriptional activity of the androgen receptor (AR). However, HHV-8 infection bypassed AR signaling by promoting enhancer of zeste homolog 2 (EZH2)-mediated epigenetic silencing of tumor-suppressor genes, including MSMB and DAB2IP that are often inactivated in advanced disease. Furthermore, we found that HHV-8 triggered epithelial-to-mesenchymal transition. Although HHV-8 has not been linked etiologically to prostate cancer, virologic outcomes revealed by our study provide mechanistic insight into how intraprostatic infections could constitute risk for progression to androgen-independent metastatic disease where EZH2 has been implicated. Taken together, our findings prompt further evaluations of the relationship between HHV-8 infections and risk of advanced prostate cancer.

Wu K, Xie D, Zou Y, et al.
The mechanism of DAB2IP in chemoresistance of prostate cancer cells.
Clin Cancer Res. 2013; 19(17):4740-9 [PubMed] Related Publications
PURPOSE: The docetaxel-based chemotherapy is the standard of care for castration-resistant prostate cancer (CRPC), inevitably, patients develop resistance and decease. Until now, the mechanism and predictive marker for chemoresistance are poorly understood.
EXPERIMENTAL DESIGN: Immortalized normal prostate and cancer cell lines stably manipulated with different DAB2IP expression levels were used and treated with chemotherapeutic drugs commonly used in prostate cancer therapy. Cell proliferation was measured using MTT assay; Western blot, quantitative PCR, and luciferase reporter assays were used to analyze Clusterin gene regulation by DAB2IP. Immunohistochemical analysis was conducted for evaluating DAB2IP, Clusterin and Egr-1 expression in human prostate cancer tissue.
RESULTS: DAB2IP Knockdown (KD) cells exhibited resistance to several chemotherapeutic drugs, whereas increased DAB2IP in C4-2 cells restored the drug sensitivity. Parallel, DAB2IP KD cells exhibited higher expression of Clusterin, an antiapoptotic factor, whereas elevated DAB2IP in C4-2 cells decreased Clusterin expression. Functionally, knocking down Clusterin by short-hairpin RNA or antisense oligonucleotide OGX-011 decreased drug resistance, whereas overexpressing Clusterin in C4-2 D2 enhanced drug resistance. Mechanistically, DAB2IP blocked the cross-talk between Wnt/β-catenin and IGF-I signaling, leading to the suppression of Egr-1 that is responsible for Clusterin expression. A similar result was observed in the prostate of DAB2IP knockout animals. In addition, we observed a significantly inverse correlation between DAB2IP and Egr-1 or Clusterin expression from clinical tissue microarray.
CONCLUSIONS: This study unveils a new regulation of the Egr-1/Clusterin signaling network by DAB2IP. Loss of DAB2IP expression in CRPC cells signifies their chemoresistance. Clusterin is a key target for developing more effective CRPC therapy.

Wu K, Liu J, Tseng SF, et al.
The role of DAB2IP in androgen receptor activation during prostate cancer progression.
Oncogene. 2014; 33(15):1954-63 [PubMed] Related Publications
Altered androgen-receptor (AR) expression and/or constitutively active AR are commonly associated with prostate cancer (PCa) progression. Targeting AR remains a focal point for designing new strategy of PCa therapy. Here, we have shown that DAB2IP, a novel tumor suppressor in PCa, can inhibit AR-mediated cell growth and gene activation in PCa cells via distinct mechanisms. DAB2IP inhibits the genomic pathway by preventing AR nuclear translocation or phosphorylation and suppresses the non-genomic pathway via its unique functional domain to inactivate c-Src. Also, DAB2IP is capable of suppressing AR activation in an androgen-independent manner. In addition, DAB2IP can inhibit several AR splice variants showing constitutive activity in PCa cells. In DAB2IP(-/-) mice, the prostate gland exhibits hyperplastic epithelia, in which AR becomes more active. Consistently, DAB2IP expression inversely correlates with AR activation status particularly in recurrent or metastatic PCa patients. Taken together, DAB2IP is a unique intrinsic AR modulator in normal cells, and likely can be further developed into a therapeutic agent for PCa.

Duan YF, Li DF, Liu YH, et al.
Decreased expression of DAB2IP in pancreatic cancer with wild-type KRAS.
Hepatobiliary Pancreat Dis Int. 2013; 12(2):204-9 [PubMed] Related Publications
BACKGROUND: KRAS mutation plays an important role in the pathogenesis of pancreatic cancer. However, the role of wild-type KRAS in the progression of pancreatic cancer remains unknown. The present study was to investigate the expression of the Ras GTPase activating protein (DAB2IP) in pancreatic cancer and its clinical significance.
METHODS: The expression of DAB2IP in pancreatic cancer cell lines and normal human pancreatic ductal epithelial cells was analyzed by Western blotting and real-time quantitative reverse transcription-PCR (qRT-PCR). The KRAS mutational types of pancreatic cancer tissues obtained from pancreatic cancer patients (n=20) were also analyzed. Subsequently, DAB2IP expression was detected in pancreatic cancer tissues, adjacent and normal pancreatic tissues (n=2) by immunohistochemistry, and the relationship between DAB2IP expression and the clinical characteristics of patients was evaluated.
RESULTS: Western blotting and qRT-PCR results showed that DAB2IP expression in pancreatic cancer cells with wild-type KRAS was lower than that in those with mutation-type KRAS and normal human pancreatic ductal epithelial cells (P<0.05). Immunohistochemistry showed that DAB2IP expression was lower in pancreatic cancer tissues than that in adjacent and normal pancreatic tissues (Z=-4.000, P=0.000). DAB2IP expression was lower in pancreatic cancer patients with the wild-type KRAS gene than that in those with KRAS mutations (WilcoxonW=35.000, P=0.042). Furthermore, DAB2IP expression in patients with perineurial invasion was lower than that in those without invasion (WilcoxonW=71.500, P=0.028). DAB2IP expression was lower in patients with more advanced stage than that in those with early clinical stage (WilcoxonW=54.000, P=0.002).
CONCLUSIONS: DAB2IP expression was reduced in patients with pancreatic cancer compared with those with no cancer. DAB2IP expression was correlated with the KRAS gene, perineurial invasion and clinical stage of the disease. Our data indicated that DAP2IP expression can be used as a potential prognostic indicator and a promising molecular target for therapeutic intervention in patients with pancreatic cancer.

Yu L, Tumati V, Tseng SF, et al.
DAB2IP regulates autophagy in prostate cancer in response to combined treatment of radiation and a DNA-PKcs inhibitor.
Neoplasia. 2012; 14(12):1203-12 [PubMed] Article available free on PMC after 01/05/2016 Related Publications
Radiation therapy (RT) is an effective strategy for the treatment of localized prostate cancer (PCa) as well as local invasion. However, some locally advanced cancers develop radiation resistance and recur after therapy; therefore, the development of radiation-sensitizing compounds is essential for treatment of these tumors. DOC-2/DAB2 interactive protein (DAB2IP), which is a novel member of the Ras-GTPase activating protein family and a regulator of phosphatidylinositol 3-kinase-Akt activity, is often downregulated in aggressive PCa. Our previous studies have shown that loss of DAB2IP results in radioresistance in PCa cells primarily because of accelerated DNA double-strand break (DSB) repair kinetics, robust G(2)/M checkpoint control, and evasion of apoptosis. A novel DNA-PKcs inhibitor NU7441 can significantly enhance the effect of radiation in DAB2IP-deficient PCa cells. This enhanced radiation sensitivity after NU7441 treatment is primarily due to delayed DNA DSB repair. More significantly, we found that DAB2IP-deficient PCa cells show dramatic induction of autophagy after treatment with radiation and NU7441. However, restoring DAB2IP expression in PCa cells resulted in decreased autophagy-associated proteins, such as LC3B and Beclin 1, as well as decreased phosphorylation of S6K and mammalian target of rapamycin (mTOR). Furthermore, the presence of DAB2IP in PCa cells can lead to more apoptosis in response to combined treatment of NU7441 and ionizing radiation. Taken together, NU7441 is a potent radiosensitizer in aggressive PCa cells and DAB2IP plays a critical role in enhancing PCa cell death after combined treatment with NU7441 and radiation.

Xu S, Zhou Y, Du WD, et al.
Association of the variant rs2243421 of human DOC-2/DAB2 interactive protein gene (hDAB2IP) with gastric cancer in the Chinese Han population.
Gene. 2013; 515(1):200-4 [PubMed] Related Publications
Human DOC-2/DAB2 interactive protein (hDAB2IP) gene is a novel member of the Ras GTPase-activating family and has been demonstrated to be a tumor-suppressor gene that inhibits cell survival and proliferation and induces cell apoptosis. It was reported that the expression level of hDAB2IP in gastric cancer tissue was highly correlated with tumor progression, however, whether hDAB2IP genetic variants are associated with the risk of gastric cancer remains yet unknown. In this case-control study, we conducted a genetic analysis for hDAB2IP variants in 311 patients with gastric cancer and 425 controls from the Chinese Han population. We found that the SNP rs2243421 of hDAB2IP gene with the minor allele C significantly revealed strong association with decreased gastric cancer susceptibility (P=0.007, adjusted odds ratio [OR]=0.734, 95%CI=0.586-0.919). Haplotypes rs2243421 and rs10985332 (HaploType: CC, P=0.012, aOR=0.760) and haplotypes rs2243421 and rs555996 (HaploType: CG, P=0.034, aOR=0.788) represented the decreased risk of gastric cancer, respectively. On the contrary, rs2243421 and rs555996 showed an elevated susceptibility (HaploType: TG, P=0.010, aOR=1.320). Our results for the first time provided new insight into susceptibility factors of hDAB2IP gene variants in carcinogenesis of gastric cancer.

Smits M, van Rijn S, Hulleman E, et al.
EZH2-regulated DAB2IP is a medulloblastoma tumor suppressor and a positive marker for survival.
Clin Cancer Res. 2012; 18(15):4048-58 [PubMed] Related Publications
PURPOSE: Medulloblastoma is the most common malignant brain tumor in children. Despite recent improvements, the molecular mechanisms driving medulloblastoma are not fully understood and further elucidation could provide cues to improve outcome prediction and therapeutic approaches.
EXPERIMENTAL DESIGN: Here, we conducted a meta-analysis of mouse and human medulloblastoma gene expression data sets, to identify potential medulloblastoma tumor suppressor genes.
RESULTS: We identified DAB2IP, a member of the RAS-GTPase-activating protein family (RAS GAP), and showed that DAB2IP expression is repressed in medulloblastoma by EZH2-induced trimethylation. Moreover, we observed that reduced DAB2IP expression correlates significantly with a poor overall survival of patients with medulloblastoma, independent of metastatic stage. Finally, we showed that ectopic DAB2IP expression enhances stress-induced apoptosis in medulloblastoma cells and that reduced expression of DAB2IP in medulloblastoma cells conveys resistance to irradiation-induced cell death.
CONCLUSION: These results suggest that repression of DAB2IP may at least partly protect medulloblastoma cells from apoptotic cell death. Moreover, DAB2IP may represent a molecular marker to distinguish patients with medulloblastoma at high risk from those with a longer survival prognosis.

Dang X, Ma A, Yang L, et al.
MicroRNA-26a regulates tumorigenic properties of EZH2 in human lung carcinoma cells.
Cancer Genet. 2012; 205(3):113-23 [PubMed] Related Publications
MicroRNAs (miRNAs) are a class of 21-23 nucleotide RNA molecules that play critical roles in the regulation of various cancers, including human lung cancer. Among them, miR-26a has been identified as a tumor-related regulator in several cancers, but its pathophysiologic properties and correlation with the development of human lung cancer remain unclear. In this study, it was determined that miR-26a expression is clearly down-regulated in human lung cancer tissues relative to normal tissues. Meanwhile, the overexpression of miR-26a in the A549 human lung cancer cell line dramatically inhibited cell proliferation, blocked G1/S phase transition, induced apoptosis, and inhibited cell metastasis and invasion in vitro. In contrast, a miR-26a inhibitor was used to transfect A549 cells, and the inhibition of endogenous miR-26a promoted cell metastasis and invasion. In addition, miR-26a expression inhibited the expression of enhancer of zeste homolog 2 (EZH2) and transactivated downstream target genes, including disabled homolog 2 (Drosophila) interacting protein gene (DAB2IP) and human Runt-related transcription factor 3 (RUNX3), which suggests that EZH2 is a potential target of miR-26a as previously reported. In conclusion, miR-26a plays an important role as an anti-oncogene in the molecular mechanism of human lung cancer and could potentially be used for the treatment of lung cancer.

Zhang X, Li N, Li X, et al.
Low expression of DAB2IP contributes to malignant development and poor prognosis in hepatocellular carcinoma.
J Gastroenterol Hepatol. 2012; 27(6):1117-25 [PubMed] Related Publications
BACKGROUND AND AIM: DOC-2/DAB2 interactive protein gene (DAB2IP) is a novel member of the Ras GTPase-activating protein family and plays a tumor suppressive role in cancer progression, but its function in hepatocellular carcinoma (HCC) remains unclear. This aims of this study were to analyze the clinicopathological features of DAB2IP expression in HCC, and to determine the effect of DAB2IP on HCC cell behaviors in vitro.
METHODS: The expression of DAB2IP was detected in hepatocyte cell line and HCC cell lines by real-time reverse transcription-polymerase chain reaction and western blot. DAB2IP expression was then examined in 120 cases of clinical paraffin-embedded HCC tissue by immunohistochemistry (IHC). 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di- phenytetrazoliumromide (MTT) method and in vitro invasive assay were finally performed to evaluate the effect of DAB2IP depletion on cell proliferation or invasion of HCC cells.
RESULTS: DAB2IP expression was lower in HCC cell lines or tissues than in hepatocyte cell lines, adjacent cirrhotic livers or normal livers (P < 0.05). Its expression was positively correlated with tumor size (P = 0.01). Patients with lower DAB2IP expression had shorter overall survival time (P = 0.013). DAB2IP suppresses proliferation and invasion of HCC cells in vitro.
CONCLUSION: DAB2IP is a valuable marker for progression of HCC patients. Downregulation of DAB2IP is associated with poor prognosis in HCC patients. DAB2IP silence alone is sufficient to promote HCC cell proliferation and invasion in vitro.

Yang L, Li Y, Ling X, et al.
A common genetic variant (97906C>A) of DAB2IP/AIP1 is associated with an increased risk and early onset of lung cancer in Chinese males.
PLoS One. 2011; 6(10):e26944 [PubMed] Article available free on PMC after 01/05/2016 Related Publications
DOC-2/DAB2 interactive protein (DAB2IP) is a novel identified tumor suppressor gene that inhibits cell growth and facilitates cell apoptosis. One genetic variant in DAB2IP gene was reported to be associated with an increased risk of aggressive prostate cancer recently. Since DAB2IP involves in the development of lung cancer and low expression of DAB2IP are observed in lung cancer, we hypothesized that the variations in DAB2IP gene can increase the genetic susceptibility to lung cancer. In a case-control study of 1056 lung cancer cases and 1056 sex and age frequency-matched cancer-free controls, we investigated the association between two common polymorphisms in DAB2IP gene (-1420T>G, rs7042542; 97906C>A, rs1571801) and the risk of lung cancer. We found that compared with the 97906CC genotypes, carriers of variant genotypes (97906AC+AA) had a significant increased risk of lung cancer (adjusted odds ratio [OR] = 1.33, 95%CI = 1.04-1.70, P = 0.023) and the number of variant (risk) allele worked in a dose-response manner (P(trend) = 0.0158). Further stratification analysis showed that the risk association was more pronounced in subjects aged less than 60 years old, males, non-smokers, non-drinkers, overweight groups and in those with family cancer history in first or second-degree relatives, and the 97906A interacted with overweight on lung cancer risk. We further found the number of risk alleles (97906A allele) were negatively correlated with early diagnosis age of lung cancer in male patients (P = 0.003). However, no significant association was observed on the -1420T>G polymorphism. Our data suggested that the 97906A variant genotypes are associated with the increased risk and early onset of lung cancer, particularly in males.

Calvisi DF, Ladu S, Conner EA, et al.
Inactivation of Ras GTPase-activating proteins promotes unrestrained activity of wild-type Ras in human liver cancer.
J Hepatol. 2011; 54(2):311-9 [PubMed] Article available free on PMC after 01/05/2016 Related Publications
BACKGROUND & AIMS: Aberrant activation of the RAS pathway is ubiquitous in human hepatocarcinogenesis, but the molecular mechanisms leading to RAS induction in the absence of RAS mutations remain under-investigated. We defined the role of Ras GTPase activating proteins (GAPs) in the constitutive activity of Ras signaling during human hepatocarcinogenesis.
METHODS: The mutation status of RAS genes and RAS effectors was assessed in a collection of human hepatocellular carcinomas (HCC). Levels of RAS GAPs (RASA1-4, RASAL1, nGAP, SYNGAP1, DAB2IP, and NF1) and the RASAL1 upstream inducer PITX1 were determined by real-time RT-PCR and immunoblotting. The promoter and genomic status of RASAL1, DAB2IP, NF1, and PITX1 were assessed by methylation assays and microsatellite analysis. Effects of RASAL1, DAB2IP, and PITX1 on HCC growth were evaluated by transfection and siRNA analyses of HCC cell lines.
RESULTS: In the absence of Ras mutations, downregulation of at least one RAS GAP (RASAL1, DAB2IP, or NF1) was found in all HCC samples. Low levels of DAB2IP and PITX1 were detected mostly in a HCC subclass from patients with poor survival, indicating that these proteins control tumor aggressiveness. In HCC cells, reactivation of RASAL1, DAB2IP, and PITX1 inhibited proliferation and induced apoptosis, whereas their silencing increased proliferation and resistance to apoptosis.
CONCLUSIONS: Selective suppression of RASAL1, DAB2IP, or NF1 RAS GAPs results in unrestrained activation of Ras signaling in the presence of wild-type RAS in HCC.

Kong Z, Raghavan P, Xie D, et al.
Epothilone B confers radiation dose enhancement in DAB2IP gene knock-down radioresistant prostate cancer cells.
Int J Radiat Oncol Biol Phys. 2010; 78(4):1210-8 [PubMed] Related Publications
PURPOSE: In metastatic prostate cancer, DOC-2/DAB2 interactive protein (DAB2IP) is often downregulated and has been reported as a possible prognostic marker to predict the risk of aggressive prostate cancer (PCa). Our preliminary results show that DAB2IP-deficient PCa cells are radioresistant. In this study, we investigated the anticancer drug Epothilone B (EpoB) for the modulation of radiosensitivity in DAB2IP-deficient human PCa cells.
METHODS AND MATERIALS: We used a stable DAB2IP-knock down human PCa cell line, PC3 shDAB2IP, treated with EpoB, ionizing radiation (IR), or the combined treatment of EpoB and IR. The modulation of radiosensitivity was determined by surviving fraction, cell cycle distribution, apoptosis, and DNA double-strand break (DSB) repair. For in vivo studies, the PC3shDAB2IP xenograft model was used in athymic nude mice.
RESULTS: Treatment with EpoB at IC(50) dose (33.3 nM) increased cellular radiosensitivity in the DAB2IP-deficient cell line with a dose enhancement ratio of 2.36. EpoB delayed the DSB repair kinetics after IR and augmented the induction of apoptosis in irradiated cells after G(2)/M arrest. Combined treatment of EpoB and radiation enhanced tumor growth delay with an enhancement factor of 1.2.
CONCLUSIONS: We have demonstrated a significant radiation dose enhancement using EpoB in DAB2IP-deficient prostate cancer cells. This radiosensitization can be attributed to delayed DSB repair, prolonged G(2) block, and increased apoptosis in cells entering the cell cycle after G(2)/M arrest.

Kong Z, Xie D, Boike T, et al.
Downregulation of human DAB2IP gene expression in prostate cancer cells results in resistance to ionizing radiation.
Cancer Res. 2010; 70(7):2829-39 [PubMed] Related Publications
DAB2IP (DOC-2/DAB2 interactive protein) is a member of the RAS-GTPase-activating protein family. It is often downregulated in metastatic prostate cancer and has been reported as a possible prognostic marker to predict the risk of aggressive prostate cancer. In this study, we furnish several lines of evidence indicating that metastatic human prostate cancer PC3 cells deficient in DAB2IP (shDAB2IP) exhibit increased clonogenic survival in response to ionizing radiation (IR) compared with control cells expressing an endogenous level of DAB2IP (shVector). Radioresistance was also observed in normal prostate cells that are deficient in DAB2IP. This enhanced resistance to IR in DAB2IP-deficient prostate cancer cells is primarily due to faster DNA double-strand break (DSB) repair kinetics. More than 90% of DSBs were repaired in shDAB2IP cells by 8 hours after 2 Gy radiation, whereas only 60% of DSB repair were completed in shVector cells at the same time. Second, upon irradiation, DAB2IP-deficient cells enforced a robust G(2)-M cell cycle checkpoint compared with control cells. Finally, shDAB2IP cells showed resistance to IR-induced apoptosis that could result from a striking decrease in the expression levels of proapoptotic proteins caspase-3, caspase-8, and caspase-9, and significantly higher levels of antiapoptotic proteins Bcl-2 and STAT3 than those in shVector cells. In summary, DAB2IP plays a significant role in prostate cell survival following IR exposure due to enhanced DSB repair, robust G(2)-M checkpoint control, and resistance to IR-induced apoptosis. Therefore, it is important to identify patients with dysregulated DAB2IP for (a) assessing prostate cancer risk and (b) alternative treatment regimens.

Min J, Zaslavsky A, Fedele G, et al.
An oncogene-tumor suppressor cascade drives metastatic prostate cancer by coordinately activating Ras and nuclear factor-kappaB.
Nat Med. 2010; 16(3):286-94 [PubMed] Article available free on PMC after 01/05/2016 Related Publications
Metastasis is responsible for the majority of prostate cancer-related deaths; however, little is known about the molecular mechanisms that underlie this process. Here we identify an oncogene-tumor suppressor cascade that promotes prostate cancer growth and metastasis by coordinately activating the small GTPase Ras and nuclear factor-kappaB (NF-kappaB). Specifically, we show that loss of the Ras GTPase-activating protein (RasGAP) gene DAB2IP induces metastatic prostate cancer in an orthotopic mouse tumor model. Notably, DAB2IP functions as a signaling scaffold that coordinately regulates Ras and NF-kappaB through distinct domains to promote tumor growth and metastasis, respectively. DAB2IP is suppressed in human prostate cancer, where its expression inversely correlates with tumor grade and predicts prognosis. Moreover, we report that epigenetic silencing of DAB2IP is a key mechanism by which the polycomb-group protein histone-lysine N-methyltransferase EZH2 activates Ras and NF-kappaB and triggers metastasis. These studies define the mechanism by which two major pathways can be simultaneously activated in metastatic prostate cancer and establish EZH2 as a driver of metastasis.

Xie D, Gore C, Liu J, et al.
Role of DAB2IP in modulating epithelial-to-mesenchymal transition and prostate cancer metastasis.
Proc Natl Acad Sci U S A. 2010; 107(6):2485-90 [PubMed] Article available free on PMC after 01/05/2016 Related Publications
A single nucleotide polymorphism in the DAB2IP gene is associated with risk of aggressive prostate cancer (PCa), and loss of DAB2IP expression is frequently detected in metastatic PCa. However, the functional role of DAB2IP in PCa remains unknown. Here, we show that the loss of DAB2IP expression initiates epithelial-to-mesenchymal transition (EMT), which is visualized by repression of E-cadherin and up-regulation of vimentin in both human normal prostate epithelial and prostate carcinoma cells as well as in clinical prostate-cancer specimens. Conversely, restoring DAB2IP in metastatic PCa cells reversed EMT. In DAB2IP knockout mice, prostate epithelial cells exhibited elevated mesenchymal markers, which is characteristic of EMT. Using a human prostate xenograft-mouse model, we observed that knocking down endogenous DAB2IP in human carcinoma cells led to the development of multiple lymph node and distant organ metastases. Moreover, we showed that DAB2IP functions as a scaffold protein in regulating EMT by modulating nuclear beta-catenin/T-cell factor activity. These results show the mechanism of DAB2IP in EMT and suggest that assessment of DAB2IP may provide a prognostic biomarker and potential therapeutic target for PCa metastasis.

Uhm KO, Lee ES, Lee YM, et al.
Differential methylation pattern of ID4, SFRP1, and SHP1 between acute myeloid leukemia and chronic myeloid leukemia.
J Korean Med Sci. 2009; 24(3):493-7 [PubMed] Article available free on PMC after 01/05/2016 Related Publications
To gain insight into the differential mechanism of gene promoter hypermethylation in acute and chronic leukemia, we identified the methylation status on one part of 5'CpG rich region of 8 genes, DAB2IP, DLC-1, H-cadherin, ID4, Integrin alpha4, RUNX3, SFRP1, and SHP1 in bone marrows from acute myeloid leukemia (AML) and chronic myeloid leukemia (CML) patients. Also, we compared the methylation status of genes in AML and CML using methylation-specific PCR (MSP). The frequencies of DNA methylation of ID4, SFRP1, and SHP1 were higher in AML patients compared to those in CML patients. In contrast, no statistical difference between AML and CML was detected for other genes such as DLC-1, DAB2IP, H-cadherin, Integrin alpha4, and RUNX3. Taken together, these results suggest that these methylation-controlled genes may have different roles in AML and CML, and thus, may act as a biological marker of AML.

Liao X, Siu MK, Chan KY, et al.
Hypermethylation of RAS effector related genes and DNA methyltransferase 1 expression in endometrial carcinogenesis.
Int J Cancer. 2008; 123(2):296-302 [PubMed] Related Publications
Epigenetic aberration is known to be important in human carcinogenesis. Promoter methylation status of RAS effector related genes, RASSF1A, RASSF2A, hDAB2IP (m2a and m2b regions) and BLU, was evaluated in 76 endometrial carcinomas and their non-neoplastic endometrial tissue by methylation specific PCR. Hypermethylation of at least one of the 5 genes was detected in 73.7% of carcinomas. There were significant correlations between methylation of hDAB2IP and RASSF1A, RASSF2A (p = 0.042, p = 0.012, respectively). Significantly, more frequent RASSF1A hypermethylation was found in Type I endometrioid carcinomas than Type II carcinomas (p = 0.049). Among endometrioid cancers, significant association between RASSF1A hypermethylation and advanced stage, as well as between methylation of hDAB2IP at m2a region with deep myometrial invasion (p < 0.05) was observed. mRNA expression of RASSF1A, RASSF2A and BLU in endometrial cancer cell lines significantly increased after treatment with the demethylating agent 5-Aza-2'-deoxycytidine supporting the repressive effect of hypermethylation on their transcription. Immunohistochemical study of DNMT1 on eight normal endometrium, 16 hyperplastic endometrium without atypia, 40 atypical complex hyperplasia and 79 endometrial carcinomas showed progressive increase in DNMT1 immunoreactivity from normal endometrium to endometrial hyperplasia and endometrioid carcinomas (p = 0.001). Among carcinomas, distinctly higher DNMT1 expression was observed in Type I endometrioid carcinomas (p < 0.001). DNMT1 immunoreactivity correlated with RASSF1A and RASSF2A methylation (p < 0.05). The data suggested that hypermethylation of RAS related genes, particularly RASSF1A, was involved in endometrial carcinogenesis with possible divergent patterns in different histological types. DNMT1 protein overexpression might contribute to such aberrant DNA hypermethylation of specific tumor suppressor genes in endometrial cancers.

Puca R, Nardinocchi L, Pistritto G, D'Orazi G
Overexpression of HIPK2 circumvents the blockade of apoptosis in chemoresistant ovarian cancer cells.
Gynecol Oncol. 2008; 109(3):403-10 [PubMed] Related Publications
OBJECTIVE: Chemoresistance, due to inhibition of apoptotic response, is the major reason for the failure of anticancer therapies. HIPK2 regulates p53-apoptotic function via serine-46 (Ser46) phosphorylation and activation of p53 is a key determinant in ovarian cancer cell death. In this study we determined whether HIPK2 overexpression restored apoptotic response in chemoresistant cancer cells.
METHODS: Using cisplatin chemosensitive (2008) and chemoresistant (2008C13) ovarian cancer cell lines we compared drug-induced activation of the HIPK2/p53Ser46 apoptotic pathway. The levels of HIPK2, Ser46 phosphorylation, and PARP cleavage were detected by Western blotting. The p53Ser46 apoptotic commitment was evaluated by luciferase assay using the Ser46 specific AIP1 target gene promoter. The apoptotic pathway was detected by caspase-3, -8, and -9 activities.
RESULTS: HIPK2 was expressed differently in sensitive versus chemoresistant cells in response to different chemotherapeutic drugs (i.e., cisplatin and adriamycin), though the p53Ser46 apoptotic pathway was not defective in chemoresistant 2008C13 cells. Thus, 2008C13 cells were resistant to cisplatin but sensitive to adriamycin-induced apoptosis through activation of the HIPK2/p53Ser46 pathway. HIPK2 knock-down inhibited the adriamycin-induced apoptosis in 2008C13 cells. Exogenous HIPK2 triggered apoptosis in chemoresistant cells, associated with induction of p53Ser46-target gene AIP1.
CONCLUSIONS: HIPK2 is an important regulator of p53 activity in response to a chemotherapeutic drug. These results suggest that different drug-activated pathways may regulate HIPK2 and that HIPK2/p53Ser46 deregulation is involved in chemoresistance. Exogenous HIPK2 might represent a novel therapeutic approach to circumvent inhibition of apoptosis in treatment of chemoresistant ovarian cancers with wtp53.

Duggan D, Zheng SL, Knowlton M, et al.
Two genome-wide association studies of aggressive prostate cancer implicate putative prostate tumor suppressor gene DAB2IP.
J Natl Cancer Inst. 2007; 99(24):1836-44 [PubMed] Related Publications
BACKGROUND: The consistent finding of a genetic susceptibility to prostate cancer suggests that there are germline sequence variants predisposing individuals to this disease. These variants could be useful in screening and treatment.
METHODS: We performed an exploratory genome-wide association scan in 498 men with aggressive prostate cancer and 494 control subjects selected from a population-based case-control study in Sweden. We combined the results of this scan with those for aggressive prostate cancer from the publicly available Cancer Genetic Markers of Susceptibility (CGEMS) Study. Single-nucleotide polymorphisms (SNPs) that showed statistically significant associations with the risk of aggressive prostate cancer based on two-sided allele tests were tested for their association with aggressive prostate cancer in two independent study populations composed of individuals of European or African American descent using one-sided tests and the genetic model (dominant or additive) associated with the lowest value in the exploratory study.
RESULTS: Among the approximately 60,000 SNPs that were common to our study and CGEMS, we identified seven that had a similar (positive or negative) and statistically significant (P<.01) association with the risk of aggressive prostate cancer in both studies. Analysis of the distribution of these SNPs among 1032 prostate cancer patients and 571 control subjects of European descent indicated that one, rs1571801, located in the DAB2IP gene, which encodes a novel Ras GTPase-activating protein and putative prostate tumor suppressor, was associated with aggressive prostate cancer (one-sided P value = .004). The association was also statistically significant in an African American study population that included 210 prostate cancer patients and 346 control subjects (one-sided P value = .02).
CONCLUSION: A genetic variant in DAB2IP may be associated with the risk of aggressive prostate cancer and should be evaluated further.

Qiu GH, Xie H, Wheelhouse N, et al.
Differential expression of hDAB2IPA and hDAB2IPB in normal tissues and promoter methylation of hDAB2IPA in hepatocellular carcinoma.
J Hepatol. 2007; 46(4):655-63 [PubMed] Related Publications
BACKGROUND/AIMS: hDAB2IP is a candidate tumor suppressor gene. We studied the expression of its two variants, hDAB2IPA and hDAB2IPB, in normal tissues, and the expression and methylation status of hDAB2IPA in hepatocellular carcinomas (HCC) and cell lines.
METHODS: Conventional or real-time RT-PCR was performed in normal tissue samples, cell lines and HCC samples, and sequencing analysis and methylation-specific PCR in cell lines and HCC samples.
RESULTS: hDAB2IPA was the predominant isoform, being expressed in the majority of tissues examined. The expression of hDAB2IPA was silenced or down-regulated but could be restored by 5-aza-2'-deoxycytidine treatment in liver cancer cell lines. The reactivation of hDAB2IPA was associated with promoter demethylation. The correlation between promoter methylation and hDAB2IPA expression was confirmed in eight pairs of matched HCC samples. Further, the methylation of the hDAB2IPA promoter in HCC was confirmed in an additional 53 pairs of patient samples. More than 80% of HCC samples showed hDAB2IPA promoter methylation, compared to 11.5% in the corresponding adjacent normal tissue (p<0.0001, chi2).
CONCLUSIONS: Our data suggest that hDAB2IPA is the dominant isoform expressed in normal tissues. Its expression is suppressed in HCC, consistent with its role as a tumor suppressor gene, mainly by promoter methylation.

Zupnick A, Prives C
Mutational analysis of the p53 core domain L1 loop.
J Biol Chem. 2006; 281(29):20464-73 [PubMed] Related Publications
The p53 tumor suppressor gene acquires missense mutations in over 50% of human cancers, and most of these mutations occur within the central core DNA binding domain. One structurally defined region of the core, the L1 loop (residues 112-124), is a mutational "cold spot" in which relatively few tumor-derived mutations have been identified. To further understand the L1 loop, we subjected this region to both alanine- and arginine-scanning mutagenesis and tested mutants for DNA binding in vitro. Select mutants were then analyzed for transactivation and cell cycle analysis in either transiently transfected cells or cells stably expressing wild-type and mutant proteins at regulatable physiological levels. We focused most extensively on two p53 L1 loop mutants, T123A and K120A. The T123A mutant p53 displayed significantly better DNA binding in vitro as well as stronger transactivation and apoptotic activity in vivo than wild-type p53, particularly toward its pro-apoptotic target AIP1. By contrast, K120A mutant p53, although capable of strong binding in vitro and wild-type levels of transactivation and apoptosis when transfected into cells, showed impaired activity when expressed at normal cellular levels. Our experiments indicate a weaker affinity for DNA in vivo by K120A p53 as the main reason for its defects in transactivation and apoptosis. Overall, our findings demonstrate an important, yet highly modular role for the L1 loop in the recognition of specific DNA sequences, target transactivation, and apoptotic signaling by p53.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. DAB2IP, Cancer Genetics Web: http://www.cancer-genetics.org/DAB2IP.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 07 August, 2015     Cancer Genetics Web, Established 1999