Gene Summary

Gene:CDCP1; CUB domain containing protein 1
Aliases: CD318, TRASK, SIMA135
Summary:This gene encodes a transmembrane protein which contains three extracellular CUB domains and acts as a substrate for Src family kinases. The protein plays a role in the tyrosine phosphorylation-dependent regulation of cellular events that are involved in tumor invasion and metastasis. Alternative splicing results in multiple transcript variants of this gene. [provided by RefSeq, May 2013]
Databases:OMIM, VEGA, HGNC, Ensembl, GeneCard, Gene
Protein:CUB domain-containing protein 1
Source:NCBIAccessed: 06 August, 2015


What does this gene/protein do?
CDCP1 is implicated in:
- extracellular region
- integral to membrane
- plasma membrane
Data from Gene Ontology via CGAP

Cancer Overview

Research Indicators

Publications Per Year (1990-2015)
Graph generated 06 August 2015 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Western Blotting
  • Pancreatic Cancer
  • Tumor Markers
  • Cancer Stem Cells
  • Lung Cancer
  • Cell Movement
  • Cancer RNA
  • Neoplasm Invasiveness
  • Protein Kinase C-delta
  • Cell Adhesion Molecules
  • Cell Proliferation
  • Oligonucleotide Array Sequence Analysis
  • Cell Adhesion
  • CD Antigens
  • siRNA
  • Drug Resistance
  • Kidney Cancer
  • MAP Kinase Signaling System
  • Breast Cancer
  • rho GTP-Binding Proteins
  • Thiazoles
  • Neoplasm Proteins
  • Chromosome 3
  • Mutation
  • Xenograft Models
  • Young Adult
  • Messenger RNA
  • Cancer Gene Expression Regulation
  • Immunohistochemistry
  • VHL
  • Phosphorylation
  • src-Family Kinases
  • Signal Transduction
  • Tumor Antigens
  • Renal Cell Carcinoma
  • Adenocarcinoma
  • Survival Rate
  • Immunoenzyme Techniques
  • Up-Regulation
Tag cloud generated 06 August, 2015 using data from PubMed, MeSH and CancerIndex

Specific Cancers (4)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: CDCP1 (cancer-related)

Orchard-Webb DJ, Lee TC, Cook GP, Blair GE
CUB domain containing protein 1 (CDCP1) modulates adhesion and motility in colon cancer cells.
BMC Cancer. 2014; 14:754 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Deregulated expression of the transmembrane glycoprotein CDCP1 (CUB domain-containing protein-1) has been detected in several cancers including colon, lung, gastric, breast, and pancreatic carcinomas. CDCP1 has been proposed to either positively or negatively regulate tumour metastasis. In this study we assessed the role of CDCP1 in properties of cells that are directly relevant to metastasis, namely adhesion and motility. In addition, association between CDCP1 and the tetraspanin protein CD9 was investigated.
METHODS: CDCP1 and CD9 protein expression was measured in a series of colon cancer cell lines by flow cytometry and Western blotting. Adhesion of Colo320 and SW480 cells was determined using a Matrigel adhesion assay. The chemotactic motility of SW480 cells in which CDCP1 expression had been reduced by RNA interference was analysed using the xCELLigence system Real-Time Cell Analyzer Dual Plates combined with 8 μm pore filters. Detergent-resistant membrane fractions were generated following density gradient centrifugation and the CDCP1 and CD9 protein composition of these fractions was determined by Western blotting. The potential association of the CDCP1 and CD9 proteins was assessed by co-immunoprecipitation.
RESULTS: Engineered CDCP1 expression in Colo320 cells resulted in a reduction in cell adhesion to Matrigel. Treatment of SW480 cells with CDCP1 siRNA reduced serum-induced chemotaxis. CDCP1 and CD9 cell-surface protein and mRNA levels showed a positive correlation in colon cancer cell lines and the proteins formed a low-level, but detectable complex as judged by co-sedimentation of detergent lysates of HT-29 cells in sucrose gradients as well as by co-immunoprecipitation in SW480 cell lysates.
CONCLUSIONS: A number of recent studies have assigned a potentially important role for the cell-surface protein CDCP1 in invasion and metastasis of a several types of human cancer cells. In this study, CDCP1 was shown to modulate cell-substratum adhesion and motility in colon cancer cell lines, with some variation depending on the colon cancer cell type. CDCP1 and CD9 were co-expressed at the mRNA and protein level and we obtained evidence for the presence of a molecular complex of these proteins in SW480 colon cancer cells.

Lin CY, Chen HJ, Huang CC, et al.
ADAM9 promotes lung cancer metastases to brain by a plasminogen activator-based pathway.
Cancer Res. 2014; 74(18):5229-43 [PubMed] Related Publications
The transmembrane cell adhesion protein ADAM9 has been implicated in cancer cell migration and lung cancer metastasis to the brain, but the underpinning mechanisms are unclear and clinical support has been lacking. Here, we demonstrate that ADAM9 enhances the ability of tissue plasminogen activator (tPA) to cleave and stimulate the function of the promigratory protein CDCP1 to promote lung metastasis. Blocking this mechanism of cancer cell migration prolonged survival in tumor-bearing mice and cooperated with dexamethasone and dasatinib (a dual Src/Abl kinase inhibitor) treatment to enhance cytotoxic treatment. In clinical specimens, high levels of ADAM9 and CDCP1 correlated with poor prognosis and high risk of mortality in patients with lung cancer. Moreover, ADAM9 levels in brain metastases derived from lung tumors were relatively higher than the levels observed in primary lung tumors. Our results show how ADAM9 regulates lung cancer metastasis to the brain by facilitating the tPA-mediated cleavage of CDCP1, with potential implications to target this network as a strategy to prevent or treat brain metastatic disease.

Uekita T, Fujii S, Miyazawa Y, et al.
Oncogenic Ras/ERK signaling activates CDCP1 to promote tumor invasion and metastasis.
Mol Cancer Res. 2014; 12(10):1449-59 [PubMed] Related Publications
UNLABELLED: Involvement of Ras in cancer initiation is known, but recent evidence indicates a role in cancer progression, including metastasis and invasion; however, the mechanism is still unknown. In this study, it was determined that human lung cancer cells with Ras mutations, among other popular mutations, showed significantly higher expression of CUB domain-containing protein 1 (CDCP1) than those without. Furthermore, activated Ras clearly induced CDCP1, whereas CDCP1 knockdown or inhibition of CDCP1 phosphorylation by Src-directed therapy abrogated anoikis resistance, migration, and invasion induced by activated-Ras. Activation of MMP2 and secretion of MMP9, in a model of Ras-induced invasion, was found to be regulated through induction of phosphorylated CDCP1. Thus, CDCP1 is required for the functional link between Ras and Src signaling during the multistage development of human malignant tumors, highlighting CDCP1 as a potent target for treatment in the broad spectrum of human cancers associated with these oncogenes.
IMPLICATIONS: CDCP1 protein induced by oncogenic Ras/Erk signaling is essential for Ras-mediated metastatic potential of cancer cells.

Miura S, Hamada S, Masamune A, et al.
CUB-domain containing protein 1 represses the epithelial phenotype of pancreatic cancer cells.
Exp Cell Res. 2014; 321(2):209-18 [PubMed] Related Publications
The prognosis of pancreatic cancer is dismal due to the frequent metastasis and invasion to surrounding organs. Numerous molecules are involved in the malignant behavior of pancreatic cancer cells, but the entire process remains unclear. Several reports have suggested that CUB-domain containing protein-1 (CDCP1) is highly expressed in pancreatic cancer, but its impact on the invasive growth and the upstream regulator remain elusive. To clarify the role of CDCP1 in pancreatic cancer, we here examined the effects of CDCP1 knockdown on the cell behaviors of pancreatic cancer cells. Knockdown of CDCP1 expression in Panc-1 resulted in reduced cellular migration accompanied by the increased expression of E-cadherin and decreased expression of N-cadherin. Knockdown of CDCP1 attenuated the spheroid formation and resistance against gemcitabine, which are some of the cancer stem cell-related phenotypes. Bone morphogenetic protein 4 (BMP4) was found to induce CDCP1 expression via the extracellular signal regulated kinase pathway, suggesting that CDCP1 has a substantial role in the BMP4-induced epithelial-mesenchymal transition. These results indicate that CDCP1 represses the epithelial phenotype of pancreatic cancer cells.

Fujiwara D, Kato K, Nohara S, et al.
The usefulness of three-dimensional cell culture in induction of cancer stem cells from esophageal squamous cell carcinoma cell lines.
Biochem Biophys Res Commun. 2013; 434(4):773-8 [PubMed] Related Publications
In recent years, research on resistance to chemotherapy and radiotherapy in cancer treatment has come under the spotlight, and researchers have also begun investigating the relationship between resistance and cancer stem cells. Cancer stem cells are assumed to be present in esophageal cancer, but experimental methods for identification and culture of these cells have not yet been established. To solve this problem, we created spheroids using a NanoCulture® Plate (NCP) for 3-dimensional (3-D) cell culture, which was designed as a means for experimentally reproducing the 3-D structures found in the body. We investigated the potential for induction of cancer stem cells from esophageal cancer cells. Using flow cytometry we analyzed the expression of surface antigen markers CD44, CD133, CD338 (ABCG2), CD318 (CDCP1), and CD326 (EpCAM), which are known cancer stem cell markers. None of these surface antigen markers showed enhanced expression in 3-D cultured cells. We then analyzed aldehyde dehydrogenase (ALDH) enzymatic activity using the ALDEFLUOR reagent, which can identify immature cells such as stem cells and precursor cells. 3-D-cultured cells were strongly positive for ALDH enzyme activity. We also analyzed the expression of the stem cell-related genes Sox-2, Nanog, Oct3/4, and Lin28 using RT-PCR. Expression of Sox-2, Nanog, and Lin28 was enhanced. Analysis of expression of the hypoxic surface antigen marker carbonic anhydrase-9 (CA-9), which is an indicator of cancer stem cell induction and maintenance, revealed that CA-9 expression was enhanced, suggesting that hypoxia had been induced. Comparison of cancer drug resistance using cisplatin and doxorubicin in 3-D-cultured esophageal cancer cells showed that cancer drug resistance had increased. These results indicate that 3-D culture of esophageal squamous cell carcinoma lines is a useful method for inducing cancer stem cells.

Zhang S, Feng XL, Shi L, et al.
Genome-wide analysis of DNA methylation in tongue squamous cell carcinoma.
Oncol Rep. 2013; 29(5):1819-26 [PubMed] Related Publications
Tongue squamous cell carcinoma (TSCC) is one of the most common types of oral cancer; however, its molecular mechanisms remain unclear. In this study, methylated DNA immunoprecipitation (MeDIP) coupled with methylation microarray analysis was performed to screen for aberrantly methylated genes in adjacent normal control and TSCC tissues from 9 patients. Roche NimbleGen Human DNA Methylation 385K Promoter Plus CpG Island Arrays were used to detect 28,226 CpG sites. A total of 1,269 hypermethylated CpG sites covering 330 genes and 1,385 hypomethylated CpG sites covering 321 genes were found in TSCC tissue, compared to the adjacent normal tissue. Furthermore, we chose three candidate genes (FBLN1, ITIH5 and RUNX3) and validated the DNA methylation status by methylation-specific PCR (MS-PCR) and the mRNA expression levels by reverse transcription PCR (RT-PCR). In TSCC tissue, FBLN1 and ITIH5 were shown to be hypermethylated and their expression was found to be decreased, and RUNX3 was shown to be hypomethylated, however, its mRNA expression was found to be increased. In addition, another three genes (BCL2L14, CDCP1 and DIRAS3) were tested by RT-PCR. In TSCC tissue, BCL2L14 and CDCP1 expressions were markedly upregulated, and DIRAS3 expression was significantly downregulated. Our data demonstrated that aberrant DNA methylation is observed in TSCC tissue and plays an important role in the tumorigenesis, development and progression of TSCC.

Emerling BM, Benes CH, Poulogiannis G, et al.
Identification of CDCP1 as a hypoxia-inducible factor 2α (HIF-2α) target gene that is associated with survival in clear cell renal cell carcinoma patients.
Proc Natl Acad Sci U S A. 2013; 110(9):3483-8 [PubMed] Free Access to Full Article Related Publications
CUB domain-containing protein 1 (CDCP1) is a transmembrane protein that is highly expressed in stem cells and frequently overexpressed and tyrosine-phosphorylated in cancer. CDCP1 promotes cancer cell metastasis. However, the mechanisms that regulate CDCP1 are not well-defined. Here we show that hypoxia induces CDCP1 expression and tyrosine phosphorylation in hypoxia-inducible factor (HIF)-2α-, but not HIF-1α-, dependent fashion. shRNA knockdown of CDCP1 impairs cancer cell migration under hypoxic conditions, whereas overexpression of HIF-2α promotes the growth of tumor xenografts in association with enhanced CDCP1 expression and tyrosine phosphorylation. Immunohistochemistry analysis of tissue microarray samples from tumors of patients with clear cell renal cell carcinoma shows that increased CDCP1 expression correlates with decreased overall survival. Together, these data support a critical role for CDCP1 as a unique HIF-2α target gene involved in the regulation of cancer metastasis, and suggest that CDCP1 is a biomarker and potential therapeutic target for metastatic cancers.

Thornley JA, Trask HW, Ringelberg CS, et al.
SMAD4-dependent polysome RNA recruitment in human pancreatic cancer cells.
Mol Carcinog. 2012; 51(10):771-82 [PubMed] Free Access to Full Article Related Publications
Pancreatic cancer is the fourth leading cause of cancer death in the United States because most patients are diagnosed too late in the course of the disease to be treated effectively. Thus, there is a pressing need to more clearly understand how gene expression is regulated in cancer cells and to identify new biomarkers and therapeutic targets. Translational regulation is thought to occur primarily through non-SMAD directed signaling pathways. We tested the hypothesis that SMAD4-dependent signaling does play a role in the regulation of mRNA entry into polysomes and that novel candidate genes in pancreatic cancer could be identified using polysome RNA from the human pancreatic cancer cell line BxPC3 with or without a functional SMAD4 gene. We found that (i) differentially expressed whole cell and cytoplasm RNA levels are both poor predictors of polysome RNA levels; (ii) for a majority of RNAs, differential RNA levels are regulated independently in the nucleus, cytoplasm, and polysomes; (iii) for most of the remaining polysome RNA, levels are regulated via a "tagging" of the RNAs in the nucleus for rapid entry into the polysomes; (iv) a SMAD4-dependent pathway appears to indeed play a role in regulating mRNA entry into polysomes; and (v) a gene list derived from differentially expressed polysome RNA in BxPC3 cells generated new candidate genes and cell pathways potentially related to pancreatic cancer.

Wei H, Ke HL, Lin J, et al.
MicroRNA target site polymorphisms in the VHL-HIF1α pathway predict renal cell carcinoma risk.
Mol Carcinog. 2014; 53(1):1-7 [PubMed] Free Access to Full Article Related Publications
Renal cell carcinoma (RCC) accounts for ∼4% of all human malignancies and is the 9th leading cause of male cancer death in the United States. The purpose of this study was to determine the effect of variation within microRNA (miRNA)-binding sites of genes in the VHL-HIF1α pathway on RCC risk. We identified 429 miRNA-binding site single-nucleotide polymorphisms (SNPs) in 102 pathway genes and assessed 53 tagging-SNPs for 31 of these genes for risk in a case-control study consisting of 894 RCC cases and 1,516 controls. Results showed that five SNPs were significantly associated with RCC risk. The most significant finding was rs743409 in MAPK1. Under the additive model, the variant was associated with a 10% risk reduction (OR: 0.90, 95% CI, 0.77-0.98). Other significant findings were for SNPs in CDCP1, TFRC, and DEC1. Cumulative effects analysis showed that subjects carrying four or five unfavorable genotypes had a 2.14-fold increase in risk (95% CI, 1.03-4.43, P = 0.04) than those with no unfavorable genotypes. Potential higher-order gene-gene interactions were identified and categorized subjects into different risk groups. The OR of the high-risk group defined by two SNPs: CDCP1:rs6773576 (GG) and DEC1:rs10982724 (GG) was 4.46 times higher than that of low-risk reference group (95% CI, 1.31-15.08). Overall, our study provides the first evidence supporting a connection between miRNA-binding site SNPs within the VHL-HIF1α pathway and RCC risk. These novel genetic risk factors might help identify individuals at high risk to enable detection of tumors at an early, curable stage.

Sandvig K, Llorente A
Proteomic analysis of microvesicles released by the human prostate cancer cell line PC-3.
Mol Cell Proteomics. 2012; 11(7):M111.012914 [PubMed] Free Access to Full Article Related Publications
Cancer biomarkers are invaluable tools for cancer detection, prognosis, and treatment. Recently, microvesicles have appeared as a novel source for cancer biomarkers. We present here the results from a proteomic analysis of microvesicles released to the extracellular environment by the metastatic prostate cancer cell line PC-3. Using nanocapillary liquid chromatography-tandem mass spectrometry 266 proteins were identified with two or more peptide sequences. Further analysis showed that 16% of the proteins were classified as extracellular and that intracellular proteins were annotated in a variety of locations. Concerning biological processes, the proteins found in PC-3 cell-released microvesicles are mainly involved in transport, cell organization and biogenesis, metabolic process, response to stimulus, and regulation of biological processes. Several of the proteins identified (tetraspanins, annexins, Rab proteins, integrins, heat shock proteins, cytoskeletal proteins, 14-3-3 proteins) have previously been found in microvesicles isolated from other sources. However, some of the proteins seem to be more specific to the vesicular population released by the metastatic prostate cancer PC-3 cell line. Among these proteins are the tetraspanin protein CD151 and the glycoprotein CUB domain-containing protein 1. Interestingly, our results show these proteins are promising biomarkers for prostate cancer and therefore candidates for clinical validation studies in biological fluids.

Park JJ, Jin YB, Lee YJ, et al.
KAI1 suppresses HIF-1α and VEGF expression by blocking CDCP1-enhanced Src activation in prostate cancer.
BMC Cancer. 2012; 12:81 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: KAI1 was initially identified as a metastasis-suppressor gene in prostate cancer. It is a member of the tetraspan transmembrane superfamily (TM4SF) of membrane glycoproteins. As part of a tetraspanin-enriched microdomain (TEM), KAI1 inhibits tumor metastasis by negative regulation of Src. However, the underlying regulatory mechanism has not yet been fully elucidated. CUB-domain-containing protein 1 (CDCP1), which was previously known as tetraspanin-interacting protein in TEM, promoted metastasis via enhancement of Src activity. To better understand how KAI1 is involved in the negative regulation of Src, we here examined the function of KAI1 in CDCP1-mediated Src kinase activation and the consequences of this process, focusing on HIF-1 α and VEGF expression.
METHODS: We used the human prostate cancer cell line PC3 which was devoid of KAI1 expression. Vector-transfected cells (PC3-GFP clone #8) and KAI1-expressing PC3 clones (PC3-KAI1 clone #5 and #6) were picked after stable transfection with KAI1 cDNA and selection in 800 μg/ml G418. Protein levels were assessed by immunoblotting and VEGF reporter gene activity was measured by assaying luciferase activitiy. We followed tumor growth in vivo and immunohistochemistry was performed for detection of HIF-1, CDCP1, and VHL protein level.
RESULTS: We demonstrated that Hypoxia-inducible factor 1α (HIF-1α) and VEGF expression were significantly inhibited by restoration of KAI1 in PC3 cells. In response to KAI1 expression, CDCP1-enhanced Src activation was down-regulated and the level of von Hippel-Lindau (VHL) protein was significantly increased. In an in vivo xenograft model, KAI1 inhibited the expression of CDCP1 and HIF-1α.
CONCLUSIONS: These novel observations may indicate that KAI1 exerts profound metastasis-suppressor activity in the tumor malignancy process via inhibition of CDCP1-mediated Src activation, followed by VHL-induced HIF-1α degradation and, ultimately, decreased VEGF expression.

Dong Y, He Y, de Boer L, et al.
The cell surface glycoprotein CUB domain-containing protein 1 (CDCP1) contributes to epidermal growth factor receptor-mediated cell migration.
J Biol Chem. 2012; 287(13):9792-803 [PubMed] Free Access to Full Article Related Publications
Epidermal growth factor (EGF) activation of the EGF receptor (EGFR) is an important mediator of cell migration, and aberrant signaling via this system promotes a number of malignancies including ovarian cancer. We have identified the cell surface glycoprotein CDCP1 as a key regulator of EGF/EGFR-induced cell migration. We show that signaling via EGF/EGFR induces migration of ovarian cancer Caov3 and OVCA420 cells with concomitant up-regulation of CDCP1 mRNA and protein. Consistent with a role in cell migration CDCP1 relocates from cell-cell junctions to punctate structures on filopodia after activation of EGFR. Significantly, disruption of CDCP1 either by silencing or the use of a function blocking antibody efficiently reduces EGF/EGFR-induced cell migration of Caov3 and OVCA420 cells. We also show that up-regulation of CDCP1 is inhibited by pharmacological agents blocking ERK but not Src signaling, indicating that the RAS/RAF/MEK/ERK pathway is required downstream of EGF/EGFR to induce increased expression of CDCP1. Our immunohistochemical analysis of benign, primary, and metastatic serous epithelial ovarian tumors demonstrates that CDCP1 is expressed during progression of this cancer. These data highlight a novel role for CDCP1 in EGF/EGFR-induced cell migration and indicate that targeting of CDCP1 may be a rational approach to inhibit progression of cancers driven by EGFR signaling including those resistant to anti-EGFR drugs because of activating mutations in the RAS/RAF/MEK/ERK pathway.

Chiocca EA, Aguilar LK, Bell SD, et al.
Phase IB study of gene-mediated cytotoxic immunotherapy adjuvant to up-front surgery and intensive timing radiation for malignant glioma.
J Clin Oncol. 2011; 29(27):3611-9 [PubMed] Free Access to Full Article Related Publications
PURPOSE: Despite aggressive therapies, median survival for malignant gliomas is less than 15 months. Patients with unmethylated O(6)-methylguanine-DNA methyltransferase (MGMT) fare worse, presumably because of temozolomide resistance. AdV-tk, an adenoviral vector containing the herpes simplex virus thymidine kinase gene, plus prodrug synergizes with surgery and chemoradiotherapy, kills tumor cells, has not shown MGMT dependency, and elicits an antitumor vaccine effect.
PATIENTS AND METHODS: Patients with newly diagnosed malignant glioma received AdV-tk at 3 × 10(10), 1 × 10(11), or 3 × 10(11) vector particles (vp) via tumor bed injection at time of surgery followed by 14 days of valacyclovir. Radiation was initiated within 9 days after AdV-tk injection to overlap with AdV-tk activity. Temozolomide was administered after completing valacyclovir treatment.
RESULTS: Accrual began December 2005 and was completed in 13 months. Thirteen patients were enrolled and 12 completed therapy, three at dose levels 1 and 2 and six at dose level 3. There were no dose-limiting or significant added toxicities. One patient withdrew before completing prodrug because of an unrelated surgical complication. Survival at 2 years was 33% and at 3 years was 25%. Patient-reported quality of life assessed with the Functional Assessment of Cancer Therapy-Brain (FACT-Br) was stable or improved after treatment. A significant CD3(+) T-cell infiltrate was found in four of four tumors analyzed after treatment. Three patients with MGMT unmethylated glioblastoma multiforme survived 6.5, 8.7, and 46.4 months.
CONCLUSION: AdV-tk plus valacyclovir can be safely delivered with surgery and accelerated radiation in newly diagnosed malignant gliomas. Temozolomide did not prevent immune responses. Although not powered for efficacy, the survival and MGMT independence trends are encouraging. A phase II trial is ongoing.

Uekita T, Sakai R
Roles of CUB domain-containing protein 1 signaling in cancer invasion and metastasis.
Cancer Sci. 2011; 102(11):1943-8 [PubMed] Related Publications
Tumor metastasis is a complex multistep process by which cells from the primary tumor invade tissues, move through the vasculature, settle at distant sites and eventually grow to form secondary tumors. Altered tyrosine phosphorylation signals in cancer cells contribute to a number of aberrant characteristics involved in tumor invasion and metastasis. CUB domain-containing protein 1 (CDCP1) is a substrate of Src family kinases and has been shown to regulate anoikis resistance, migration and matrix degradation during tumor invasion and metastasis in a tyrosine phosphorylation-dependent manner. Knockdown of CDCP1 blocks tumor metastasis or peritoneal dissemination in vivo, without significantly affecting cell proliferation. Moreover, expression levels of CDCP1 are of prognostic value in several cancers. Here, we summarize the studies on CDCP1, focusing on structure and signal transduction, to gain insight into its role in cancer progression. Understanding the signaling pathways regulated by CDCP1 could help establish novel therapeutic strategies against the progression of cancer.

Gioia R, Leroy C, Drullion C, et al.
Quantitative phosphoproteomics revealed interplay between Syk and Lyn in the resistance to nilotinib in chronic myeloid leukemia cells.
Blood. 2011; 118(8):2211-21 [PubMed] Related Publications
In this study, we have addressed how Lyn kinase signaling mediates nilotinib-resistance by quantitative phospho-proteomics using Stable Isotope Labeling with Amino acid in Cell culture. We have found an increased tyrosine phosphorylation of 2 additional tyrosine kinases in nilotinib-resistant cells: the spleen tyrosine kinase Syk and the UFO family receptor tyrosine kinase Axl. This increased tyrosine phosphorylation involved an interaction of these tyrosine kinases with Lyn. Inhibition of Syk by the inhibitors R406 or BAY 61-3606 or by RNA interference restored the capacity of nilotinib to inhibit cell proliferation. Conversely, coexpression of Lyn and Syk were required to fully induce resistance to nilotinib in drug-sensitive cells. Surprisingly, the knockdown of Syk also strongly decreased tyrosine phosphorylation of Lyn and Axl, thus uncovering interplay between Syk and Lyn. We have shown the involvement of the adaptor protein CDCP-1 in resistance to nilotinib. Interestingly, the expression of Axl and CDCP1 were found increased both in a nilotinib-resistant cell line and in nilotinib-resistant CML patients. We conclude that an oncogenic signaling mediated by Lyn and Syk can bypass the need of Bcr-Abl in CML cells. Thus, targeting these kinases may be of therapeutic value to override imatinib or nilotinib resistance in CML.

Sasaroli D, Gimotty PA, Pathak HB, et al.
Novel surface targets and serum biomarkers from the ovarian cancer vasculature.
Cancer Biol Ther. 2011; 12(3):169-80 [PubMed] Free Access to Full Article Related Publications
The molecular phenotype of tumor vasculature is different from normal vasculature, offering new opportunities for diagnosis and therapy of cancer, but the identification of tumor-restricted targets remains a challenge. We investigated 13 tumor vascular markers (TVMs) from 50 candidates identified through expression profiling of ovarian cancer vascular cells and selected to be either transmembrane or secreted, and to be either absent or expressed at low levels in normal tissues while overexpressed in tumors, based on analysis of 1,110 normal and tumor tissues from publicly available Affymetrix microarray data. Tumor-specific expression of each TVM was confirmed at the protein level in tumor tissue and/or in serum. Among the 13 TVMs, 11 were expressed on tumor vascular endothelium; the remaining 2 TVMs were expressed by tumor leukocytes. Our results demonstrate that certain transmembrane TVMs such as ADAM12 and CDCP1 are selectively expressed in tumor vasculature and represent promising targets for vascular imaging or anti-vascular therapy of epithelial ovarian cancer, while secreted or shed molecules such as TNFRSF21/DR6 can function as serum biomarkers. We have identified novel tumor-specific vasculature markers which appear promising for cancer serum diagnostics, molecular imaging and/or therapeutic targeting applications and warrant further clinical development.

Razorenova OV, Finger EC, Colavitti R, et al.
VHL loss in renal cell carcinoma leads to up-regulation of CUB domain-containing protein 1 to stimulate PKC{delta}-driven migration.
Proc Natl Acad Sci U S A. 2011; 108(5):1931-6 [PubMed] Free Access to Full Article Related Publications
A common genetic mutation found in clear cell renal cell carcinoma (CC-RCC) is the loss of the von Hippel-Lindau (VHL) gene, which results in stabilization of hypoxia-inducible factors (HIFs), and contributes to cancer progression and metastasis. CUB-domain-containing protein 1 (CDCP1) was shown to promote metastasis in scirrhous and lung adenocarcinomas as well as in prostate cancer. In this study, we established a molecular mechanism linking VHL loss to induction of the CDCP1 gene through the HIF-1/2 pathway in renal cancer. Also, we report that Fyn, which forms a complex with CDCP1 and mediates its signaling to PKCδ, is a HIF-1 target gene. Mechanistically, we found that CDCP1 specifically regulates phosphorylation of PKCδ, but not of focal adhesion kinase or Crk-associated substrate. Signal transduction from CDCP1 to PKCδ leads to its activation, increasing migration of CC-RCC. Furthermore, patient survival can be stratified by CDCP1 expression at the cell surface of the tumor. Taken together, our data indicates that CDCP1 protein might serve as a therapeutic target for CC-RCC.

Mamat S, Ikeda J, Enomoto T, et al.
Prognostic significance of CUB domain containing protein expression in endometrioid adenocarcinoma.
Oncol Rep. 2010; 23(5):1221-7 [PubMed] Related Publications
CDCP1, a transmembrane protein with intracellular tyrosine residues which are phosphorylated upon activation, is supposed to be engaged in proliferative activities and resistance to apoptosis of cancer cells. High level of CDCP1 expression proved to be a poor prognosticator for lung adenocarcinoma. Here, expression level of CDCP1 was immunohistochemically examined in 110 cases (median age of 54.7 years) of endometrioid adenocarcinoma, and its clinical implications were evaluated. Tumor stage was stage I in 71 cases (64.5%), II in 5 (4.5%), III in 28 (25.5%), and IV in 6 (5.5%). Staining intensity of tumor cells was divided into two categories; tumor cells with no to weak and moderate to strong membrane staining. The intensity of CDCP1 expression in each case was defined by the staining of major population of cells as follows; cases with tumor cells showing no to weak and moderate to high membrane staining were categorized as CDCP1-low and CDCP1-high, respectively. Eighty-seven of 110 cases were categorized as CDCP1-high, and the remaining as CDCP1-low. Significant positive correlation was observed between low CDCP1 expression and stage (p=0.0091), relapse rate (p=0.0017), and poor prognosis (p=0.0009). Multivariate analysis revealed that low CDCP1 and advanced stage were independent poor prognostic factors for both OS and DFS. As compared to cancer cells, normal endometrium continuously expressed CDCP1. These suggested that the attitude of CDCP1 in cancers of lung and endometrium was different. Different role of CDCP1 by tissues and cancers is discussed.

Holcomb IN, Young JM, Coleman IM, et al.
Comparative analyses of chromosome alterations in soft-tissue metastases within and across patients with castration-resistant prostate cancer.
Cancer Res. 2009; 69(19):7793-802 [PubMed] Free Access to Full Article Related Publications
Androgen deprivation is the mainstay of therapy for progressive prostate cancer. Despite initial and dramatic tumor inhibition, most men eventually fail therapy and die of metastatic castration-resistant (CR) disease. Here, we characterize the profound degree of genomic alteration found in CR tumors using array comparative genomic hybridization (array CGH), gene expression arrays, and fluorescence in situ hybridization (FISH). Bycluster analysis, we show that the similarity of the genomic profiles from primary and metastatic tumors is driven by the patient. Using data adjusted for this similarity, we identify numerous high-frequency alterations in the CR tumors, such as 8p loss and chromosome 7 and 8q gain. By integrating array CGH and expression array data, we reveal genes whose correlated values suggest they are relevant to prostate cancer biology. We find alterations that are significantly associated with the metastases of specific organ sites, and others with CR tumors versus the tumors of patients with localized prostate cancer not treated with androgen deprivation. Within the high-frequency sites of loss in CR metastases, we find an overrepresentation of genes involved in cellular lipid metabolism, including PTEN. Finally, using FISH, we verify the presence of a gene fusion between TMPRSS2 and ERG suggested by chromosome 21 deletions detected by array CGH. We find the fusion in 54% of our CR tumors, and 81% of the fusion-positive tumors contain cells with multiple copies of the fusion. Our investigation lays the foundation for a better understanding of and possible therapeutic targets for CR disease, the poorly responsive and final stage of prostate cancer.

Bonuccelli G, Casimiro MC, Sotgia F, et al.
Caveolin-1 (P132L), a common breast cancer mutation, confers mammary cell invasiveness and defines a novel stem cell/metastasis-associated gene signature.
Am J Pathol. 2009; 174(5):1650-62 [PubMed] Free Access to Full Article Related Publications
Here we used the Met-1 cell line in an orthotopic transplantation model in FVB/N mice to dissect the role of the Cav-1(P132L) mutation in human breast cancer. Identical experiments were performed in parallel with wild-type Cav-1. Cav-1(P132L) up-regulated the expression of estrogen receptor-alpha as predicted, because only estrogen receptor-alpha-positive patients have been shown to harbor Cav-1(P132L) mutations. In the context of primary tumor formation, Cav-1(P132L) behaved as a loss-of-function mutation, lacking any tumor suppressor activity. In contrast, Cav-1(P132L) caused significant increases in cell migration, invasion, and experimental metastasis, consistent with a gain-of-function mutation. To identify possible molecular mechanism(s) underlying this invasive gain-of-function activity, we performed unbiased gene expression profiling. From this analysis, we show that the Cav-1(P132L) expression signature contains numerous genes that have been previously associated with cell migration, invasion, and metastasis. These include i) secreted growth factors and extracellular matrix proteins (Cyr61, Plf, Pthlh, Serpinb5, Tnc, and Wnt10a), ii) proteases that generate EGF and HGF (Adamts1 and St14), and iii) tyrosine kinase substrates and integrin signaling/adapter proteins (Akap13, Cdcp1, Ddef1, Eps15, Foxf1a, Gab2, Hs2st1, and Itgb4). Several of the P132L-specific genes are also highly expressed in stem/progenitor cells or are associated with myoepithelial cells, suggestive of an epithelial-mesenchymal transition. These results directly support clinical data showing that patients harboring Cav-1 mutations are more likely to undergo recurrence and metastasis.

Holcomb IN, Grove DI, Kinnunen M, et al.
Genomic alterations indicate tumor origin and varied metastatic potential of disseminated cells from prostate cancer patients.
Cancer Res. 2008; 68(14):5599-608 [PubMed] Free Access to Full Article Related Publications
Disseminated epithelial cells can be isolated from the bone marrow of a far greater fraction of prostate-cancer patients than the fraction of patients who progress to metastatic disease. To provide a better understanding of these cells, we have characterized their genomic alterations. We first present an array comparative genomic hybridization method capable of detecting genomic changes in the small number of disseminated cells (10-20) that can typically be obtained from bone marrow aspirates of prostate-cancer patients. We show multiple regions of copy-number change, including alterations common in prostate cancer, such as 8p loss, 8q gain, and gain encompassing the androgen-receptor gene on Xq, in the disseminated cell pools from 11 metastatic patients. We found fewer and less striking genomic alterations in the 48 pools of disseminated cells from patients with organ-confined disease. However, we identify changes shared by these samples with their corresponding primary tumors and prostate-cancer alterations reported in the literature, evidence that these cells, like those in advanced disease, are disseminated tumor cells (DTC). We also show that DTCs from patients with advanced and localized disease share several abnormalities, including losses containing cell-adhesion genes and alterations reported to associate with progressive disease. These shared alterations might confer the capability to disseminate or establish secondary disease. Overall, the spectrum of genomic deviations is evidence for metastatic capacity in advanced-disease DTCs and for variation in that capacity in DTCs from localized disease. Our analysis lays the foundation for elucidation of the relationship between DTC genomic alterations and progressive prostate cancer.

Awakura Y, Nakamura E, Takahashi T, et al.
Microarray-based identification of CUB-domain containing protein 1 as a potential prognostic marker in conventional renal cell carcinoma.
J Cancer Res Clin Oncol. 2008; 134(12):1363-9 [PubMed] Related Publications
PURPOSE: Renal cell carcinoma (RCC) is characterized by a variable and unpredictable clinical course. Thus, accurate prediction of the prognosis is important in clinical settings. We conducted microarray-based study to identify a novel prognostic marker in conventional RCC.
PATIENTS AND METHODS: The present study included the patients surgically treated at Kyoto University Hospital. Gene expression profiling of 39 samples was carried out to select candidate prognostic markers. Quantitative real-time PCR of 65 samples confirmed the microarray experiment results. Finally, we evaluated the significance of potential markers at their protein expression level by immunohistochemically analyzing 230 conventional RCC patients.
RESULTS: Using expression profiling analysis, we identified 14 candidate genes whose expression levels predicted unfavorable disease-specific survival. Next, we examined the expression levels of nine candidate genes by quantitative real-time PCR and selected CUB-domain containing protein 1 (CDCP1) for further immunohistochemical analysis. Positive staining for CDCP1 inversely correlated with disease-specific and recurrence-free survivals. In multivariate analysis including clinical/pathological factors, CDCP1 staining was a significant predictor of disease-specific and recurrence-free survivals.
CONCLUSIONS: We identified CDCP1 as a potential prognostic marker for conventional RCC. Further studies might be required to confirm the prognostic value of CDCP1 and to understand its function in RCC progression.

Raphael BJ, Volik S, Yu P, et al.
A sequence-based survey of the complex structural organization of tumor genomes.
Genome Biol. 2008; 9(3):R59 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The genomes of many epithelial tumors exhibit extensive chromosomal rearrangements. All classes of genome rearrangements can be identified using end sequencing profiling, which relies on paired-end sequencing of cloned tumor genomes.
RESULTS: In the present study brain, breast, ovary, and prostate tumors, along with three breast cancer cell lines, were surveyed using end sequencing profiling, yielding the largest available collection of sequence-ready tumor genome breakpoints and providing evidence that some rearrangements may be recurrent. Sequencing and fluorescence in situ hybridization confirmed translocations and complex tumor genome structures that include co-amplification and packaging of disparate genomic loci with associated molecular heterogeneity. Comparison of the tumor genomes suggests recurrent rearrangements. Some are likely to be novel structural polymorphisms, whereas others may be bona fide somatic rearrangements. A recurrent fusion transcript in breast tumors and a constitutional fusion transcript resulting from a segmental duplication were identified. Analysis of end sequences for single nucleotide polymorphisms revealed candidate somatic mutations and an elevated rate of novel single nucleotide polymorphisms in an ovarian tumor.
CONCLUSION: These results suggest that the genomes of many epithelial tumors may be far more dynamic and complex than was previously appreciated and that genomic fusions, including fusion transcripts and proteins, may be common, possibly yielding tumor-specific biomarkers and therapeutic targets.

Guo A, Villén J, Kornhauser J, et al.
Signaling networks assembled by oncogenic EGFR and c-Met.
Proc Natl Acad Sci U S A. 2008; 105(2):692-7 [PubMed] Free Access to Full Article Related Publications
A major question regarding the sensitivity of solid tumors to targeted kinase inhibitors is why some tumors respond and others do not. The observation that many tumors express EGF receptor (EGFR), yet only a small subset with EGFR-activating mutations respond clinically to EGFR inhibitors (EGFRIs), suggests that responsive tumors uniquely depend on EGFR signaling for their survival. The nature of this dependence is not understood. Here, we investigate dependence on EGFR signaling by comparing non-small-cell lung cancer cell lines driven by EGFR-activating mutations and genomic amplifications using a global proteomic analysis of phospho-tyrosine signaling. We identify an extensive receptor tyrosine kinase signaling network established in cells expressing mutated and activated EGFR or expressing amplified c-Met. We show that in drug sensitive cells the targeted tyrosine kinase drives other RTKs and an extensive network of downstream signaling that collapse with drug treatment. Comparison of the signaling networks in EGFR and c-Met-dependent cells identify a "core network" of approximately 50 proteins that participate in pathways mediating drug response.

Rikova K, Guo A, Zeng Q, et al.
Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer.
Cell. 2007; 131(6):1190-203 [PubMed] Related Publications
Despite the success of tyrosine kinase-based cancer therapeutics, for most solid tumors the tyrosine kinases that drive disease remain unknown, limiting our ability to identify drug targets and predict response. Here we present the first large-scale survey of tyrosine kinase activity in lung cancer. Using a phosphoproteomic approach, we characterize tyrosine kinase signaling across 41 non-small cell lung cancer (NSCLC) cell lines and over 150 NSCLC tumors. Profiles of phosphotyrosine signaling are generated and analyzed to identify known oncogenic kinases such as EGFR and c-Met as well as novel ALK and ROS fusion proteins. Other activated tyrosine kinases such as PDGFRalpha and DDR1 not previously implicated in the genesis of NSCLC are also identified. By focusing on activated cell circuitry, the approach outlined here provides insight into cancer biology not available at the chromosomal and transcriptional levels and can be applied broadly across all human cancers.

Perry SE, Robinson P, Melcher A, et al.
Expression of the CUB domain containing protein 1 (CDCP1) gene in colorectal tumour cells.
FEBS Lett. 2007; 581(6):1137-42 [PubMed] Related Publications
Expression of CUB domain containing protein 1 (CDCP1) is upregulated in carcinoma cells. We quantitated CDCP1 gene expression in matched normal colon and tumour tissue and compared the level of expression to other genes upregulated in colorectal tumourigenesis. Furthermore, we show that the CDCP1 gene generates two transcripts which are co-expressed in normal and matched tumour tissue as well as in the majority of cell lines analysed. However, intracellular localisation studies revealed that only one of these transcripts encodes a protein that is localised to the cell surface.

Gu TL, Goss VL, Reeves C, et al.
Phosphotyrosine profiling identifies the KG-1 cell line as a model for the study of FGFR1 fusions in acute myeloid leukemia.
Blood. 2006; 108(13):4202-4 [PubMed] Related Publications
The 8p11 myeloproliferative syndrome (EMS) is associated with translocations that disrupt the FGFR1 gene. To date, 8 fusion partners of FGFR1 have been identified. However, no primary leukemia cell lines were identified that contain any of these fusions. Here, we screened more than 40 acute myeloid leukemia cell lines for constitutive phosphorylation of STAT5 and applied an immunoaffinity profiling strategy to identify tyrosine-phosphorylated proteins in the KG-1 cell line. Mass spectrometry analysis of KG-1 cells revealed aberrant tyrosine phosphorylation of FGFR1. Subsequent analysis led to the identification of a fusion of the FGFR1OP2 gene to the FGFR1 gene. Small interfering RNA (siRNA) against FGFR1 specifically inhibited the growth and induced apoptosis of KG-1 cells. Thus, the KG-1 cell line provides an in vitro model for the study of FGFR1 fusions associated with leukemia and for the analysis of small molecule inhibitors against FGFR1 fusions.

Ikeda JI, Morii E, Kimura H, et al.
Epigenetic regulation of the expression of the novel stem cell marker CDCP1 in cancer cells.
J Pathol. 2006; 210(1):75-84 [PubMed] Related Publications
CDCP1 is a novel stem cell marker that is expressed in several types of cancer. The mechanisms by which CDCP1 expression is regulated, and the clinical implications of this marker, have not been clarified. In this report, we examine the epigenetic regulation of CDCP1 expression in cell lines and clinical samples from patients with breast cancer. Many CpG sequences were localized around the transcription initiation site of CDCP1. These CpG motifs were found to be poorly methylated in cell lines with high levels of CDCP1 expression and heavily methylated in cell lines with low levels of CDCP1 expression. The in vitro methylation of CpG sites decreased CDCP1 promoter activity, and the addition of a demethylating reagent restored activity. In 25 breast cancer samples, an inverse correlation was noted between the CDCP1 expression level and the proportion of methylated to non-methylated CpG sites. Tumours with high-level CDCP1 expression showed higher levels of proliferation, as revealed by immunohistochemical detection of the MIB-1 antigen, than tumours with low-level CDCP1 expression. These findings indicate that the expression of CDCP1 is regulated by methylation of its promoter region in tumours. CDCP1 expression may prove to be useful in the further characterization of cancers.

Loo LW, Grove DI, Williams EM, et al.
Array comparative genomic hybridization analysis of genomic alterations in breast cancer subtypes.
Cancer Res. 2004; 64(23):8541-9 [PubMed] Related Publications
In this study, we performed high-resolution array comparative genomic hybridization with an array of 4153 bacterial artificial chromosome clones to assess copy number changes in 44 archival breast cancers. The tumors were flow sorted to exclude non-tumor DNA and increase our ability to detect gene copy number changes. In these tumors, losses were more frequent than gains, and gains in 1q and loss in 16q were the most frequent alterations. We compared gene copy number changes in the tumors based on histologic subtype and estrogen receptor (ER) status, i.e., ER-negative infiltrating ductal carcinoma, ER-positive infiltrating ductal carcinoma, and ER-positive infiltrating lobular carcinoma. We observed a consistent association between loss in regions of 5q and ER-negative infiltrating ductal carcinoma, as well as more frequent loss in 4p16, 8p23, 8p21, 10q25, and 17p11.2 in ER-negative infiltrating ductal carcinoma compared with ER-positive infiltrating ductal carcinoma (adjusted P values < or = 0.05). We also observed high-level amplifications in ER-negative infiltrating ductal carcinoma in regions of 8q24 and 17q12 encompassing the c-myc and c-erbB-2 genes and apparent homozygous deletions in 3p21, 5q33, 8p23, 8p21, 9q34, 16q24, and 19q13. ER-positive infiltrating ductal carcinoma showed a higher frequency of gain in 16p13 and loss in 16q21 than ER-negative infiltrating ductal carcinoma. Correlation analysis highlighted regions of change commonly seen together in ER-negative infiltrating ductal carcinoma. ER-positive infiltrating lobular carcinoma differed from ER-positive infiltrating ductal carcinoma in the frequency of gain in 1q and loss in 11q and showed high-level amplifications in 1q32, 8p23, 11q13, and 11q14. These results indicate that array comparative genomic hybridization can identify significant differences in the genomic alterations between subtypes of breast cancer.

Schmalbach CE, Chepeha DB, Giordano TJ, et al.
Molecular profiling and the identification of genes associated with metastatic oral cavity/pharynx squamous cell carcinoma.
Arch Otolaryngol Head Neck Surg. 2004; 130(3):295-302 [PubMed] Related Publications
OBJECTIVE: To investigate differences in gene expression profiles between oral cavity/oropharynx squamous cell carcinoma (OC/OP SCC) primary tumors that have metastasized to cervical lymph nodes and nonmetastatic OC/OP SCC tumors.
DESIGN: Oligonucleotide microarray analysis of primary tumors was used to produce gene expression profiles. Profile comparisons between metastatic and nonmetastatic tumors were performed using principal component analysis, t test, and fold change differences. A similar comparison between metastatic tumors and noncancer oral mucosa samples was performed to ensure tumor origin.
SUBJECTS: A prospective cohort of 20 patients with previously untreated OC/OP SCC who underwent pathologic staging following surgical resection and lymphadenectomy.
RESULTS: Of the approximately 9600 genes profiled, 101 demonstrated significant expression differences between the metastatic and nonmetastatic tumors (fold change > or =1.5; P<.01). Among this subset, 57 genes also exhibited significant differences between metastatic tumors and normal mucosa samples (fold change > or =1.5; P<.05). This profile included genes related to the extracellular matrix, adhesion, motility, inflammation, and protease inhibition. Collagen type 11 alpha-1 (COL11A1) demonstrated the greatest differential expression between metastatic and nonmetastatic OC/OP SCC tumors (fold change=7.61; P=.002). Tissue inhibitor of metalloproteinase 1 (TIMP-1) also demonstrated increased expression in metastatic tumors (fold change=3.3; P=.003).
CONCLUSIONS: Metastatic OC/OP SCC has a distinct gene expression profile compared with nonmetastatic OC/OP SCC and normal oral mucosa. This metastatic profile includes genes related to the extracellular matrix, adhesion, motility, and protease inhibition. Knowledge gained through tumor gene expression profiling may facilitate early detection of aggressive tumors and targeted therapeutic interventions.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. CDCP1, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 06 August, 2015     Cancer Genetics Web, Established 1999