Gene Summary

Gene:BMPR1A; bone morphogenetic protein receptor, type IA
Aliases: ALK3, SKR5, CD292, ACVRLK3, 10q23del
Summary:The bone morphogenetic protein (BMP) receptors are a family of transmembrane serine/threonine kinases that include the type I receptors BMPR1A and BMPR1B and the type II receptor BMPR2. These receptors are also closely related to the activin receptors, ACVR1 and ACVR2. The ligands of these receptors are members of the TGF-beta superfamily. TGF-betas and activins transduce their signals through the formation of heteromeric complexes with 2 different types of serine (threonine) kinase receptors: type I receptors of about 50-55 kD and type II receptors of about 70-80 kD. Type II receptors bind ligands in the absence of type I receptors, but they require their respective type I receptors for signaling, whereas type I receptors require their respective type II receptors for ligand binding. [provided by RefSeq, Jul 2008]
Databases:OMIM, HGNC, GeneCard, Gene
Protein:bone morphogenetic protein receptor type-1A
Source:NCBIAccessed: 27 February, 2015


What does this gene/protein do?
Show (50)
Pathways:What pathways are this gene/protein implicaed in?
Show (3)

Cancer Overview

Research Indicators

Publications Per Year (1990-2015)
Graph generated 27 February 2015 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • BRAF
  • Transforming Growth Factor beta
  • DNA Mutational Analysis
  • Adolescents
  • Registries
  • Telangiectasia, Hereditary Hemorrhagic
  • Sequence Deletion
  • Single Nucleotide Polymorphism
  • SMAD4
  • Young Adult
  • Sequence Homology
  • PTEN
  • BMPR1A
  • Transfection
  • Colorectal Cancer
  • Hereditary Neoplastic Syndromes
  • Mutation
  • Adenomatous Polyposis Coli
  • Intestinal Polyposis
  • Smad1 Protein
  • Transcription Factors
  • Tumor Suppressor Proteins
  • Phenotype
  • Receptors, Growth Factor
  • Cancer Gene Expression Regulation
  • Childhood Cancer
  • Chromosome 10
  • beta Catenin
  • Bone Morphogenetic Proteins
  • Cancer Stem Cells
  • Prostate Cancer
  • Bone Morphogenetic Protein Receptors, Type I
  • Risk Factors
  • Vascular Cell Adhesion Molecule-1
  • Genetic Predisposition
  • DNA-Binding Proteins
  • Protein-Serine-Threonine Kinases
  • Signal Transduction
  • Germ-Line Mutation
  • Transcription Factor RelA
Tag cloud generated 27 February, 2015 using data from PubMed, MeSH and CancerIndex

Specific Cancers (3)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: BMPR1A (cancer-related)

Aytac E, Sulu B, Heald B, et al.
Genotype-defined cancer risk in juvenile polyposis syndrome.
Br J Surg. 2015; 102(1):114-8 [PubMed] Related Publications
BACKGROUND: Germline mutations in SMAD4 and BMPR1A disrupt the transforming growth factor β signal transduction pathway, and are associated with juvenile polyposis syndrome. The effect of genotype on the pattern of disease in this syndrome is unknown. This study evaluated the differential impact of SMAD4 and BMPR1A gene mutations on cancer risk and oncological phenotype in patients with juvenile polyposis syndrome.
METHODS: Patients with juvenile polyposis syndrome and germline SMAD4 or BMPR1A mutations were identified from a prospectively maintained institutional registry. Medical records were reviewed and the clinical patterns of disease were analysed.
RESULTS: Thirty-five patients had germline mutations in either BMPR1A (8 patients) or SMAD4 (27). Median follow-up was 11 years. Colonic phenotype was similar between patients with SMAD4 and BMPR1A mutations, whereas SMAD4 mutations were associated with larger polyp numbers (number of patients with 50 or more gastric polyps: 14 versus 0 respectively). The numbers of patients with rectal polyps was comparable between BMPR1A and SMAD4 mutation carriers (5 versus 17). No patient was diagnosed with cancer in the BMPR1A group, whereas four men with a SMAD4 mutation developed gastrointestinal (3) or extraintestinal (1) cancer. The gastrointestinal cancer risk in patients with juvenile polyposis syndrome and a SMAD4 mutation was 11 per cent (3 of 27).
CONCLUSION: The SMAD4 genotype is associated with a more aggressive upper gastrointestinal malignancy risk in juvenile polyposis syndrome.

Yamaguchi J, Nagayama S, Chino A, et al.
Identification of coding exon 3 duplication in the BMPR1A gene in a patient with juvenile polyposis syndrome.
Jpn J Clin Oncol. 2014; 44(10):1004-8 [PubMed] Related Publications
Juvenile polyposis syndrome is an autosomal dominant inherited disorder characterized by multiple juvenile polyps arising in the gastrointestinal tract and an increased risk of gastrointestinal cancers, specifically colon cancer. BMPR1A and SMAD4 germline mutations have been found in patients with juvenile polyposis syndrome. We identified a BMPR1A mutation, which involves a duplication of coding exon 3 (c.230+452_333+441dup1995), on multiple ligation dependent probe amplification in a patient with juvenile polyposis syndrome. The mutation causes a frameshift, producing a truncated protein (p.D112NfsX2). Therefore, the mutation is believed to be pathogenic. We also identified a duplication breakpoint in which Alu sequences are located. These results suggest that the duplication event resulted from recombination between Alu sequences. To our knowledge, partial duplication in the BMPR1A gene has not been reported previously. This is the first case report to document coding exon 3 duplication in the BMPR1A gene in a patient with juvenile polyposis syndrome.

Hao J, Lee R, Chang A, et al.
DMH1, a small molecule inhibitor of BMP type i receptors, suppresses growth and invasion of lung cancer.
PLoS One. 2014; 9(6):e90748 [PubMed] Free Access to Full Article Related Publications
The bone morphogenetic protein (BMP) signaling cascade is aberrantly activated in human non-small cell lung cancer (NSCLC) but not in normal lung epithelial cells, suggesting that blocking BMP signaling may be an effective therapeutic approach for lung cancer. Previous studies demonstrated that some BMP antagonists, which bind to extracellular BMP ligands and prevent their association with BMP receptors, dramatically reduced lung tumor growth. However, clinical application of protein-based BMP antagonists is limited by short half-lives, poor intra-tumor delivery as well as resistance caused by potential gain-of-function mutations in the downstream of the BMP pathway. Small molecule BMP inhibitors which target the intracellular BMP cascades would be ideal for anticancer drug development. In a zebrafish embryo-based structure and activity study, we previously identified a group of highly selective small molecule inhibitors specifically antagonizing the intracellular kinase domain of BMP type I receptors. In the present study, we demonstrated that DMH1, one of such inhibitors, potently reduced lung cell proliferation, promoted cell death, and decreased cell migration and invasion in NSCLC cells by blocking BMP signaling, as indicated by suppression of Smad 1/5/8 phosphorylation and gene expression of Id1, Id2 and Id3. Additionally, DMH1 treatment significantly reduced the tumor growth in human lung cancer xenograft model. In conclusion, our study indicates that small molecule inhibitors of BMP type I receptors may offer a promising novel strategy for lung cancer treatment.

Guo M, Jiang Z, Zhang X, et al.
miR-656 inhibits glioma tumorigenesis through repression of BMPR1A.
Carcinogenesis. 2014; 35(8):1698-706 [PubMed] Related Publications
Bone morphogenetic protein-2 (BMP-2), a member of the transforming growth factor-β family, plays critical roles in cell differentiation, modeling and regeneration processes in several tissues. BMP-2 is also closely associated with various malignant tumors. microRNAs negatively and posttranscriptionally regulate gene expression and function as oncogenes or tumor suppressors. Herein, we report that miR-656 expression was significantly downregulated in glioma cell lines and tissues. We identified and confirmed that BMP receptor, type 1A (BMPR1A) is a direct target of miR-656. The expression of BMPR1A was negatively correlated with that of miR-656 in human glioma tissues. We further demonstrated that miR-656 suppressed glioma cell proliferation, neurosphere formation, migration and invasion with or without exogenous BMP-2. Engineered knockdown of BMPR1A diminished the antiproliferation effect of miR-656 in vitro. Moreover, the canonical BMP/Smad and non-canonical BMP/mitogen-activated protein kinase (MAPK) pathways were inhibited by miR-656 overexpression. Several cancer-related signaling molecules, including cyclin B, cyclin D1, matrix metalloproteinase-9, p21 and p27, were also involved in miR-656 function in glioma cells. The tumor-suppressing function of miR-656 was validated using an in vivo intracranial xenograft mouse model. Notably, ectopic expression of miR-656 markedly reduced tumor size and prolonged the survival of mice treated with or without BMP-2. These results elucidate the function of miR-656 in glioma progression and suggest a promising application for glioma treatment.

Jee MJ, Yoon SM, Kim EJ, et al.
A novel germline mutation in exon 10 of the SMAD4 gene in a familial juvenile polyposis.
Gut Liver. 2013; 7(6):747-51 [PubMed] Free Access to Full Article Related Publications
Familial juvenile polyposis (FJP) is a rare autosomal dominant hereditary disorder that is characterized by the development of multiple distinct juvenile polyps in the gastrointestinal tract and an increased risk of cancer. Recently, germline mutations, including mutations in the SMAD4, BMPR1A, PTEN and, possibly, ENG genes, have been found in patients with juvenile polyps. We herein report a family with juvenile polyposis syndrome (JPS) with a novel germline mutation in the SMAD4 gene. A 21-year-old man presented with rectal bleeding and was found to have multiple polyps in his stomach, small bowel, and colon. His mother had a history of gastrectomy for multiple gastric polyps with anemia and a history of colectomy for colon cancer. A review of the histology of the polyps revealed juvenile polyps in both patients. Subsequently, mutation screening in DNA samples from the patients revealed a germline mutation in the SMAD4 gene. The pair had a novel mutation in exon 10 (stop codon at tyrosine 413). To our knowledge, this mutation has not been previously described. Careful family history collection and genetic screening in JPS patients are needed to identify FJP, and regular surveillance is recommended.

Garulli C, Kalogris C, Pietrella L, et al.
Dorsomorphin reverses the mesenchymal phenotype of breast cancer initiating cells by inhibition of bone morphogenetic protein signaling.
Cell Signal. 2014; 26(2):352-62 [PubMed] Related Publications
Increasing evidence supports the theory that tumor growth, homeostasis, and recurrence are dependent on a small subset of cells with stem cell properties, redefined cancer initiating cells (CICs) or cancer stem cells. Bone morphogenetic proteins (BMPs) are involved in cell-fate specification during embryogenesis, in the maintenance of developmental potency in adult stem cells and may contribute to sustain CIC populations in breast carcinoma. Using the mouse A17 cell model previously related to mesenchymal cancer stem cells and displaying properties of CICs, we investigated the role of BMPs in the control of breast cancer cell plasticity. We showed that an autocrine activation of BMP signaling is crucial for the maintenance of mesenchymal stem cell phenotype and tumorigenic potential of A17 cells. Pharmacological inhibition of BMP signaling cascade by Dorsomorphin resulted in the acquisition of epithelial-like traits by A17 cells, including expression of Citokeratin-18 and E-cadherin, through downregulation of Snail and Slug transcriptional factors and Cyclooxygenase-2 (COX2) expression, and in the loss of their stem-features and self-renewal ability. This phenotypic switch compromised A17 cell motility, invasiveness and in vitro tumor growth. These results reveal that BMPs are key molecules at the crossroad between stemness and cancer.

Voorneveld PW, Stache V, Jacobs RJ, et al.
Reduced expression of bone morphogenetic protein receptor IA in pancreatic cancer is associated with a poor prognosis.
Br J Cancer. 2013; 109(7):1805-12 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The expression of SMAD4, the central component of the transforming growth factor-β (TGF-β) and bone morphogenetic protein (BMP) signalling pathways, is lost in 50% of pancreatic cancers and is associated with a poor survival. Although the TGF-β pathway has been extensively studied and characterised in pancreatic cancer, there is very limited data on BMP signalling, a well-known tumour-suppressor pathway. BMP signalling can be lost not only at the level of SMAD4 but also at the level of BMP receptors (BMPRs), as has been described in colorectal cancer.
METHODS: We performed immunohistochemical analysis of the expression levels of BMP signalling components in pancreatic cancer and correlated these with survival. We also manipulated the activity of BMP signalling in vitro.
RESULTS: Reduced expression of BMPRIA is associated with a significantly worse survival, primarily in a subset of SMAD4-positive cancers. In vitro inactivation of SMAD4-dependent BMP signalling increases proliferation and invasion of pancreatic cancer cells, whereas inactivation of BMP signalling in SMAD4-negative cells does not change the proliferation and invasion or leads to an opposite effect.
CONCLUSION: Our data suggest that BMPRIA expression is a good prognostic marker and that the BMP pathway is a potential target for future therapeutic interventions in pancreatic cancer.

Wang L, Park P, La Marca F, et al.
Bone formation induced by BMP-2 in human osteosarcoma cells.
Int J Oncol. 2013; 43(4):1095-102 [PubMed] Free Access to Full Article Related Publications
Our previous studies demonstrated that BMP-2 inhibits the tumorigenicity of cancer stem cells identified as cells with high aldehyde dehydrogenase activity (ALDH(br) cells) from the human osteosarcoma cell line OS99-1. We further investigated whether BMP-2 is capable of inducing bone formation in OS99-1 cells. Flow cytometry sorting was used to isolate tumorigenic ALDH(br) and non-tumorigenic ALDH(lo) cells. qRT-PCR was used to quantify the gene expression. A xenograft model was used to verify the bone formation in vivo. There was significantly higher mRNA expression of BMPR1B and BMPR2 in ALDH(lo) cells compared with that in ALDH(br) cells and the BMPR1B expression in ALDH(lo) cells was ~8-fold higher compared to that in ALDHbr cells. BMP-2 was also found to induce higher transcription of osteogenic markers Runx-2, Osterix (Osx), alkaline phosphatase (ALP) and collagen type I in ALDH(lo) cells compared to ALDH(br) cells, which were mediated by the canonical Smad signaling pathway. In vivo, BMP-2 was identified to induce bone formation in both ALDH(br) and ALDH(lo) cells. All animals receiving 1 x 10()4 ALDH(lo) cells treated with 30 µg of BMP-2 per animal showed bone formation within 1-2 weeks after injection in mice. Bone formation induced by BMP-2 in ALDH(lo) cells showed significantly more bone mineral content compared to that in ALDH(br) cells. BMP-2 induces bone formation in heterogeneous osteosarcoma cells and BMP-2 may have a promising therapeutic role for treating human osteosarcoma by inducing differentiation along an osteogenic pathway.

Wend P, Fang L, Zhu Q, et al.
Wnt/β-catenin signalling induces MLL to create epigenetic changes in salivary gland tumours.
EMBO J. 2013; 32(14):1977-89 [PubMed] Free Access to Full Article Related Publications
We show that activation of Wnt/β-catenin and attenuation of Bmp signals, by combined gain- and loss-of-function mutations of β-catenin and Bmpr1a, respectively, results in rapidly growing, aggressive squamous cell carcinomas (SCC) in the salivary glands of mice. Tumours contain transplantable and hyperproliferative tumour propagating cells, which can be enriched by fluorescence activated cell sorting (FACS). Single mutations stimulate stem cells, but tumours are not formed. We show that β-catenin, CBP and Mll promote self-renewal and H3K4 tri-methylation in tumour propagating cells. Blocking β-catenin-CBP interaction with the small molecule ICG-001 and small-interfering RNAs against β-catenin, CBP or Mll abrogate hyperproliferation and H3K4 tri-methylation, and induce differentiation of cultured tumour propagating cells into acini-like structures. ICG-001 decreases H3K4me3 at promoters of stem cell-associated genes in vitro and reduces tumour growth in vivo. Remarkably, high Wnt/β-catenin and low Bmp signalling also characterize human salivary gland SCC and head and neck SCC in general. Our work defines mechanisms by which β-catenin signals remodel chromatin and control induction and maintenance of tumour propagating cells. Further, it supports new strategies for the therapy of solid tumours.

Shen Z, Seppänen H, Kauttu T, et al.
Vasohibin-1 expression is regulated by transforming growth factor-β/bone morphogenic protein signaling pathway between tumor-associated macrophages and pancreatic cancer cells.
J Interferon Cytokine Res. 2013; 33(8):428-33 [PubMed] Free Access to Full Article Related Publications
Vasohibin-1 has been detected in endothelial cells as an intrinsic angiogenesis inhibitor. Both tumor-associated macrophages (TAMs) and transforming growth factor-β (TGF-β)/bone morphogenic protein (BMP) signaling have been reported to promote angiogenesis in cancer. However, whether vasohibin-1 expression is regulated by TGF-β/BMP signaling between TAMs and cancer cells remains unclear. The expression of TGF-β1, TGF-β2, BMP-4, and BMP-7 in TAMs and the expression of vasohibin-1, vascular endothelial growth factor-A (VEGF-A), and VEGF-C in two pancreatic cancer cell lines (a nonmetastatic cell line Panc-1 and a distant metastatic cell line HPAF-II) were measured by real-time reverse transcription-polymerase chain reaction (RT-PCR). The TGF-β receptor 1 and BMP receptor 1 were inhibited by the inhibitor SB-431542 and LDN193189, respectively. Thereafter, vasohibin-1, VEGF-A, and VEGF-C expression was detected by real-time RT-PCR. We found that the expression of TGF-β1, TGF-β2, BMP-4, and BMP-7 was upregulated in TAMs cocultured with pancreatic cancer cells. Vasohibin-1, VEGF-A, and VEGF-C mRNA expression in pancreatic cancer cells was upregulated by TAMs. Vasohibin-1 expression in pancreatic cancer cells cocultured with TAMs was upregulated significantly when TGF-β receptors or BMP receptors were inhibited, but VEGF-C expression was downregulated. Therefore, Vasohibin-1 expression is regulated by the TGF-β/BMP signaling between TAMs and pancreatic cancer cells. These results might shed a new light on the antiangiogenesis therapy in the pancreatic cancer.

Septer S, Zhang L, Lawson CE, et al.
Aggressive juvenile polyposis in children with chromosome 10q23 deletion.
World J Gastroenterol. 2013; 19(14):2286-92 [PubMed] Free Access to Full Article Related Publications
Juvenile polyps are relatively common findings in children, while juvenile polyposis syndrome (JPS) is a rare hereditary syndrome entailing an increased risk of colorectal cancer. Mutations in BMPR1A or SMAD4 are found in roughly half of patients diagnosed with JPS. Mutations in PTEN gene are also found in patients with juvenile polyps and in Bannayan-Riley-Ruvalcaba syndrome and Cowden syndrome. Several previous reports have described microdeletions in chromosome 10q23 encompassing both PTEN and BMPR1A causing aggressive polyposis and malignancy in childhood. These reports have also described extra-intestinal findings in most cases including cardiac anomalies, developmental delay and macrocephaly. In this report we describe a boy with a 5.75 Mb deletion of chromosome 10q23 and a 1.03 Mb deletion within chromosome band 1p31.3 who displayed aggressive juvenile polyposis and multiple extra-intestinal anomalies including macrocephaly, developmental delay, short stature, hypothyroidism, atrial septal defect, ventricular septal defect and hypospadias. He required colectomy at six years of age, and early colectomy was a common outcome in other children with similar deletions. Due to the aggressive polyposis and reports of dysplasia and even malignancy at a young age, we propose aggressive gastrointestinal surveillance in children with 10q23 microdeletions encompassing the BMPR1A and PTEN genes to include both the upper and lower gastrointestinal tracts, and also include a flowchart for an effective genetic testing strategy in children with juvenile polyposis.

Langenfeld E, Hong CC, Lanke G, Langenfeld J
Bone morphogenetic protein type I receptor antagonists decrease growth and induce cell death of lung cancer cell lines.
PLoS One. 2013; 8(4):e61256 [PubMed] Free Access to Full Article Related Publications
Bone morphogenetic proteins (BMPs) are highly conserved morphogens that are essential for normal development. BMP-2 is highly expressed in the majority of non-small cell lung carcinomas (NSCLC) but not in normal lung tissue or benign lung tumors. The effects of the BMP signaling cascade on the growth and survival of cancer cells is poorly understood. We show that BMP signaling is basally active in lung cancer cell lines, which can be effectively inhibited with selective antagonists of the BMP type I receptors. Lung cancer cell lines express alk2, alk3, and alk6 and inhibition of a single BMP receptor was not sufficient to decrease signaling. Inhibition of more than one type I receptor was required to decrease BMP signaling in lung cancer cell lines. BMP receptor antagonists and silencing of BMP type I receptors with siRNA induced cell death, inhibited cell growth, and caused a significant decrease in the expression of inhibitor of differentiation (Id1, Id2, and Id3) family members, which are known to regulate cell growth and survival in many types of cancers. BMP receptor antagonists also decreased clonogenic cell growth. Knockdown of Id3 significantly decreased cell growth and induced cell death of lung cancer cells. H1299 cells stably overexpressing Id3 were resistant to growth suppression and induction of cell death induced by the BMP antagonist DMH2. These studies suggest that BMP signaling promotes cell growth and survival of lung cancer cells, which is mediated through its regulation of Id family members. Selective antagonists of the BMP type I receptors represents a potential means to pharmacologically treat NSCLC and other carcinomas with an activated BMP signaling cascade.

Tanskanen T, Gylfe AE, Katainen R, et al.
Exome sequencing in diagnostic evaluation of colorectal cancer predisposition in young patients.
Scand J Gastroenterol. 2013; 48(6):672-8 [PubMed] Related Publications
OBJECTIVE: Early-onset colorectal cancer (CRC), defined here as age of onset less than 40 years, develops frequently in genetically predisposed individuals. Next-generation sequencing is an increasingly available option in the diagnostic workup of suspected hereditary susceptibility, but little is known about the practical feasibility and additional diagnostic yield of the technology in this patient group.
MATERIALS AND METHODS: We analyzed 38 young CRC patients derived from a set of 1514 CRC cases. All 38 tumors had been tested in our laboratory for microsatellite instability (MSI), and Sanger sequencing had been used to screen for MLH1 and MSH2 mutations in MSI cases. Also, gastrointestinal polyposis had been diagnosed clinically and molecularly. Family histories were acquired from national registries. If inherited syndromes had not been diagnosed in routine diagnostic efforts (n = 23), normal tissue DNA was analyzed for mutations in a comprehensive set of high-penetrance genes (MLH1, MSH2, MSH6, PMS2, APC, MUTYH, SMAD4, BMPR1A, LKB1/STK11, and PTEN) by exome sequencing.
RESULTS: CRC predisposition syndromes were confirmed in 42% (16/38) of early-onset CRC patients. Hereditary nonpolyposis colorectal cancer was diagnosed in 12 (32%) patients, familial adenomatous polyposis in three (7.9%), and juvenile polyposis in one (2.6%) patient. Exome sequencing revealed one additional MLH1 mutation. Over half of the patients had advanced cancers (Dukes C or D, 61%, 23/38). The majority of nonsyndromic patients had unaffected first-degree relatives and microsatellite-stable tumors.
CONCLUSIONS: Microsatellite instability positivity or gastrointestinal polyposis characterized all patients with unambiguous highly penetrant germline mutations. In our series, exome sequencing produced little added value in diagnosing the underlying predisposition conditions.

Shen Z, Kauttu T, Cao J, et al.
Macrophage coculture enhanced invasion of gastric cancer cells via TGF-β and BMP pathways.
Scand J Gastroenterol. 2013; 48(4):466-72 [PubMed] Related Publications
OBJECTIVE: Transforming growth factor β (TGF-β) superfamily plays an important role in regulating gastric cancer progression. As previously demonstrated, tumor-associated macrophages (TAMs) promoted the invasion of gastric cancer cells in Matrigel. However, the role of TGF-β superfamily signaling between TAMs and gastric cancer remains unclear.
MATERIAL AND METHODS: Three-dimensional dynamic migration imaging system was used to detect gastric cancer invasion rate cocultured with macrophages in Matrigel before or after TGF-β receptor 1 or bone morphogenic protein (BMP) receptor 1A and 1B inhibition; real-time RT-PCR was used to quantitatively investigate gene expression (TGF-β1, TGF-β2, BMP4, and BMP7, ADAM9, MMP9, TIMP3, VEGF-A, and VEGF-C).
RESULTS: TGF-β1, TGF-β2, BMP4, and BMP7 expressions were increased significantly in macrophages grown with cancer cells as compared to macrophages grown alone. The invasion rate and invasion-related genes expressions of both AGS and Hs-746T gastric cancer cell lines were upregulated by macrophages, although the expression profile was different. Invasion rate and invasion-related genes' expressions of AGS cells cocultured with macrophages were downregulated significantly after TGF-βR1 and BMPR1 inhibition.
CONCLUSIONS: Macrophages associated with tumor might promote gastric cancer cells invasion though enhancing TGF-β/BMPs signal pathway. Inhibiting TGF-β/BMPs signal between TAMs and gastric cancer cells might provide a new therapeutic method of gastric cancer.

Ngeow J, Heald B, Rybicki LA, et al.
Prevalence of germline PTEN, BMPR1A, SMAD4, STK11, and ENG mutations in patients with moderate-load colorectal polyps.
Gastroenterology. 2013; 144(7):1402-9, 1409.e1-5 [PubMed] Free Access to Full Article Related Publications
BACKGROUND & AIMS: Gastrointestinal polyposis is a common clinical problem, yet there is no consensus on how to best manage patients with moderate-load polyposis. Identifying genetic features of this disorder could improve management and especially surveillance of these patients. We sought to determine the prevalence of hamartomatous polyposis-associated mutations in the susceptibility genes PTEN, BMPR1A, SMAD4, ENG, and STK11 in individuals with ≥5 gastrointestinal polyps, including at least 1 hamartomatous or hyperplastic/serrated polyp.
METHODS: We performed a prospective, referral-based study of 603 patients (median age: 51 years; range, 2-89 years) enrolled from June 2006 through January 2012. Genomic DNA was extracted from peripheral lymphocytes and analyzed for specific mutations and large rearrangements in PTEN, BMPR1A, SMAD4, and STK11, as well as mutations in ENG. Recursive partitioning analysis was used to determine cutoffs for continuous variables. The prevalence of mutations was compared using Fisher's exact test. Logistic regression analyses were used to determine univariate and multivariate risk factors.
RESULTS: Of 603 patients, 119 (20%) had a personal history of colorectal cancer and most (n = 461 [76%]) had <30 polyps. Seventy-seven patients (13%) were found to have polyposis-associated mutations, including 11 in ENG (1.8%), 13 in PTEN (2.2%), 13 in STK11 (2.2%), 20 in BMPR1A (3.3%), and 21 in SMAD4 (3.5%). Univariate clinical predictors for risk of having these mutations included age at presentation younger than 40 years (19% vs 10%; P = .008), a polyp burden of ≥30 (19% vs 11%; P = .014), and male sex (16% vs 10%; P = .03). Patients who had ≥1 ganglioneuroma (29% vs 2%; P < .001) or presented with polyps of ≥3 histologic types (20% vs 2%; P = .003) were more likely to have germline mutations in PTEN.
CONCLUSIONS: Age younger than 40 years, male sex, and specific polyp histologies are significantly associated with risk of germline mutations in hamartomatous-polyposis associated genes. These associations could guide clinical decision making and further investigations.

Oliveira PH, Cunha C, Almeida S, et al.
Juvenile polyposis of infancy in a child with deletion of BMPR1A and PTEN genes: surgical approach.
J Pediatr Surg. 2013; 48(1):e33-7 [PubMed] Related Publications
Juvenile polyposis of infancy is the most severe and life-threatening form of juvenile polyposis. This disease typically presents in the first two years of life with gastrointestinal bleeding, diarrhea, inanition, and exudative enteropathy. In very few reports concerning this entity, a large deletion in the long arm of chromosome 10 (10q23), encompassing the PTEN and BMPR1A genes, was found. The authors report a case of delayed diagnosis of juvenile polyposis of infancy at 6 years of age. A 3.34 Mb long de novo deletion was identified at 10q23.1q23.31, encompassing the PTEN and BMPR1A genes. The disease course was severe with diarrhea, abdominal pain, inanition, refractory anemia, rectal bleeding, hypoalbuminemia, and exudative enteropathy. A sub-total colectomy, combined with intraoperative endoscopic removal of ileal and rectal stump polyps, was required for palliative disease control.

Khalaf M, Morera J, Bourret A, et al.
BMP system expression in GCs from polycystic ovary syndrome women and the in vitro effects of BMP4, BMP6, and BMP7 on GC steroidogenesis.
Eur J Endocrinol. 2013; 168(3):437-44 [PubMed] Related Publications
BACKGROUND: The bone morphogenetic proteins (BMPs) are growth factors involved in the folliculogenesis. Alteration in their expression may compromise the reproductive process in disease such as the polycystic ovary syndrome (PCOS). This study investigated the expression and role of granulosa cell (GC) BMP from normal cycling and PCOS women.
METHODS AND RESULTS: This prospective study was performed in GCs obtained from 14 patients undergoing IVF: i) six women with normal ovulatory cycles and tubal or male infertility and ii) eight women with PCOS. BMP2, BMP4, BMP5, BMP6, BMP7, and BMP8A and their receptors BMPR1A, BMPR1B, and BMPR2 were identified by RT-PCR in GCs from normally cycling and PCOS women. BMP4, BMP6, and BMP7 expressions were confirmed by immunohistochemistry. Quantitative transcript analysis showed the predominant expression of BMP6. In GCs from PCOS women, an overexpression of BMP6 (P<0.01) and BMPR1A mRNA (P<0.05) was observed. GC culture experiments demonstrated that basal estradiol (E₂) production was threefold higher but FSH-induced E₂ increment was twofold lower in PCOS compared with controls. In PCOS, BMP6 and BMP7 exerted a stimulatory effect on basal E₂ production while BMP4 and BMP6 inhibited FSH-induced E₂ production. FSH receptor and aromatase expression were not different between both groups.
CONCLUSION: The BMP system is expressed in human GCs from normal cycling and PCOS women. The BMP may be involved in reproductive abnormalities found in PCOS.

Bano G, Siedel V, Beharry N, et al.
A complex endocrine conundrum.
Fam Cancer. 2013; 12(3):577-80 [PubMed] Related Publications
We describe a case of recurrent primary hyperparathyroidism, manifested as 3 metachronous parathyroid adenomata, in a 50 year-old woman who also had Hashimoto hypothyroidism, gastric gastrointestinal stromal tumour (GIST), cysts in liver and kidneys, 5 intestinal polyps (one of these a villous adenoma), diverticulitis and telangiectasia of lips. She did not have medullary thyroid carcinoma (MTC). Genetic analysis of the CDC73 gene [for Hyperparathyroidism-jaw tumor (HPT-JT)], MEN1 for Multiple Endocrine Neoplasia Type1, CDKN1B for MEN4, SDHB and SDHD for Paraganglioma/Pheochromocytoma susceptibility, VHL for von Hippel-Lindau Syndrome, BMPR1A and SMAD4 for Juvenile Polyposis Syndrome (JPS) (sequencing and MLPA), karyotype and array CGH (44 K) were all normal. She was found to be homozygous for a synonomous germline variant in exon 14 (p. Ser836Ser) of the RET oncogene. This RET variant is of unclear clinical significance, and has been previously reported both in normal individuals and in individuals with MTC. It is unlikely that homozygosity for the RET variant has been casual in the multiple pathologies that our patient has developed.

Slattery ML, John EM, Torres-Mejia G, et al.
Genetic variation in bone morphogenetic proteins and breast cancer risk in hispanic and non-hispanic white women: The breast cancer health disparities study.
Int J Cancer. 2013; 132(12):2928-39 [PubMed] Free Access to Full Article Related Publications
Bone morphogenetic proteins (BMP) are thought to be important in breast cancer promotion and progression. We evaluated genetic variation in BMP-related genes and breast cancer risk among Hispanic (2,111 cases, 2,597 controls) and non-Hispanic White (NHW) (1,481 cases, 1,586 controls) women who participated in the 4-Corner's Breast Cancer Study, the Mexico Breast Cancer Study and the San Francisco Bay Area Breast Cancer Study. BMP genes and their receptors evaluated include ACVR1, AVCR2A, ACVR2B, ACVRL1, BMP1, BMP2, BMP4, BMP6, BMP7, BMPR1A, BMPR1B, BMPR2, MSTN and GDF10. Additionally, 104 ancestral informative markers were assessed to discriminate between European and native American ancestry. The importance of estrogen on BMP-related associations was suggested through unique associations by menopausal status and estrogen (ER) and progesterone (PR) receptor status of tumors. After adjustment for multiple comparisons ACVR1 (8 SNPs) was modestly associated with ER+PR+ tumors [odds ratios (ORs) between 1.18 and 1.39 padj < 0.05]. ACVR1 (3 SNPs) and BMP4 (3 SNPs) were associated with ER+PR- tumors (ORs 0.59-2.07; padj < 0.05). BMPR2 was associated with ER-PR+ tumors (OR 4.20; 95% CI 1.62, 10.91; padj < 0.05) as was GDF10 (2 SNPs; ORs 3.62 and 3.85; padj < 0.05). After adjustment for multiple comparisons several SNPs remained associated with ER-PR- tumors (padj < 0.05) including ACVR1 BMP4 and GDF10 (ORs between 0.53 and 2.12). Differences in association also were observed by percentage of native ancestry and menopausal status. Results support the hypothesis that genetic variation in BMPs is associated with breast cancer in this admixed population.

Hiljadnikova Bajro M, Sukarova-Angelovska E, Adélaïde J, et al.
A new case with 10q23 interstitial deletion encompassing both PTEN and BMPR1A narrows the genetic region deleted in juvenile polyposis syndrome.
J Appl Genet. 2013; 54(1):43-7 [PubMed] Related Publications
We report on a patient with a contiguous interstitial germline deletion of chromosome 10q23, encompassing BMPR1A and PTEN, with clinical manifestations of juvenile polyposis and minor symptoms of Cowden syndrome (CS) and Bannayan-Riley-Ruvalcaba syndrome (BRRS). The patient presented dysmorphic features as well as developmental delay at the age of 5 months. Multiple polyps along all parts of the colon were diagnosed at the age of 3 years, following an episode of a severe abdominal pain and intestinal bleeding. The high-resolution comparative genomic hybridisation revealed a 3.7-Mb deletion within the 10q23 chromosomal region: 86,329,859-90,035,024. The genotyping with four polymorphic microsatellite markers confirmed a de novo 10q deletion on the allele with a paternal origin, encompassing both PTEN and BMPR1A genes. The karyotype analysis additionally identified a balanced translocation involving chromosomes 5q and 7q, and an inversion at chromosome 2, i.e. 46,XY,t(5;7)(q13.3-q36), inv(2)(p25q34). Although many genetic defects were detected, it is most likely that the 10q23 deletion is primarily the cause for the serious phenotypic manifestations. The current clinical findings and deletion of BMPR1A indicate a diagnosis of severe juvenile polyposis, but the existing macrocephaly and PTEN deletion also point to either CS or BRRS, which cannot be ruled out at the moment because of their clinical manifestation later in life and the de novo character of the deletion. The deletion detected in our patient narrows the genetic region deleted in all reported cases with juvenile polyposis by 0.04 Mb from the telomeric side, mapping it to the region chr10:88.5-90.03Mb (GRCh37/hg19), with an overall length of 1.53 Mb.

Chun N, Ford JM
Genetic testing by cancer site: stomach.
Cancer J. 2012 Jul-Aug; 18(4):355-63 [PubMed] Related Publications
Gastric cancer is a global public health concern, ranking as the fourth leading cause of cancer mortality, with a 5-year survival of only 20%. Approximately 10% of gastric cancers appear to have a familial predisposition, and about half of these can be attributed to hereditary germline mutations. We review the genetic syndromes and current standards for genetic counseling, testing, and medical management for screening and treatment of gastric cancer. Recently, germline mutations in the E-cadherin/CDH1 gene have been identified in families with an autosomal dominant inherited predisposition to gastric cancer of the diffuse type. The cumulative lifetime risk of developing gastric cancer in CDH1 mutation carriers is up to 80%, and women from these families also have an increased risk for developing lobular breast cancer. Prophylactic gastrectomies are recommended in unaffected CDH1 mutation carriers, because screening endoscopic examinations and blind biopsies have proven inadequate for surveillance. In addition to this syndrome, gastric cancer risk is elevated in Lynch syndrome associated with germline mutations in DNA mismatch repair genes and microsatellite instability, in hereditary breast and ovarian cancer syndrome due to germline BRCA1 and BRCA2 mutations, in familial adenomatous polyposis caused by germline APC mutations, in Li-Fraumeni syndrome due to germline p53 mutations, in Peutz-Jeghers syndrome associated with germline STK11 mutations, and in juvenile polyposis syndrome associated with germline mutations in the SMAD4 and BMPR1A genes. Guidelines for genetic testing, counseling, and management of individuals with hereditary diffuse gastric cancer are suggested. A raised awareness among the physician and genetic counseling communities regarding these syndromes may allow for increased detection and prevention of gastric cancers in these high-risk individuals.

Liu S, Yin F, Fan W, et al.
Over-expression of BMPR-IB reduces the malignancy of glioblastoma cells by upregulation of p21 and p27Kip1.
J Exp Clin Cancer Res. 2012; 31:52 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: In our previous study, we detected decreased expression of phospho-Smad1/5/8 and its upstream signaling molecule, bone morphogenetic protein receptor IB subunit (BMPR-IB), in certain glioblastoma tissues, unlike normal brain tissues. In order to clarify the functional roles and mechanism of BMPR-IB in the development of glioblastoma, we studied the effects of BMPR-IB overexpression on glioblastoma cell lines in vitro and in vivo.
METHODS: We selected glioblastoma cell lines U251, U87, SF763, which have different expression of BMPR-IB to be the research subjects. Colony formation analysis and FACS were used to detect the effects of BMPR-IB on the growth and proliferation of glioblastoma cells in vivo. Immunofluresence was used to detect the differentiation changes after BMPR-IB overexpression or knocking-down. Then we used subcutaneous and intracranial tumor models to study the effect of BMPR-IB on the growth and differentiation of glioblastoma cells in vivo. The genetic alterations involved in this process were examined by real-time PCR and western blot analysis.ed.
RESULTS AND CONCLUSION: Forced BMPR-IB expression in malignant human glioma cells, which exhibit lower expression of BMPR-IB, induced the phosphorylation and nuclear localization of smad1/5/8 and arrested the cell cycle in G1. Additionally, BMPR-IB overexpression could suppress anchorage-independent growth and promote differentiation of theses glioblastoma cells. Furthermore, overexpression of BMPR-IB inhibited the growth of subcutaneous and intracranial tumor xenografts and prolonged the survival of mice injected intracranially with BMPR-IB-overexpressing glioblastoma cells. Conversely, inhibition of BMPR-IB caused SF763 malignant glioma cells, a line known to exhibit high BMPR-IB expression that does not form tumors when used for xenografts, to show increased growth and regain tumorigenicity in a nude mouse model system, ultimately shortening the survival of these mice. We also observed significant accumulation of p21 and p27kip1 proteins in response to BMPR-IB overexpression. Our study suggests that overexpression of BMPR-IB may arrest and induce the differentiation of glioblastoma cells due to upregulation of p21 and p27kip1 in vitro and that in vivo and decreased expression of BMPR-IB in human glioblastoma cells contributes to glioma tumorigenicity. BMPR-IB could represent a new potential therapeutic target for malignant human gliomas.

Dutton-Regester K, Aoude LG, Nancarrow DJ, et al.
Identification of TFG (TRK-fused gene) as a putative metastatic melanoma tumor suppressor gene.
Genes Chromosomes Cancer. 2012; 51(5):452-61 [PubMed] Related Publications
High density SNP arrays can be used to identify DNA copy number changes in tumors such as homozygous deletions of tumor suppressor genes and focal amplifications of oncogenes. Illumina Human CNV370 Bead chip arrays were used to assess the genome for unbalanced chromosomal events occurring in 39 cell lines derived from stage III metastatic melanomas. A number of genes previously recognized to have an important role in the development and progression of melanoma were identified including homozygous deletions of CDKN2A (13 of 39 samples), CDKN2B (10 of 39), PTEN (3 of 39), PTPRD (3 of 39), TP53 (1 of 39), and amplifications of CCND1 (2 of 39), MITF (2 of 39), MDM2 (1 of 39), and NRAS (1 of 39). In addition, a number of focal homozygous deletions potentially targeting novel melanoma tumor suppressor genes were identified. Because of their likely functional significance for melanoma progression, FAS, CH25H, BMPR1A, ACTA2, and TFG were investigated in a larger cohort of melanomas through sequencing. Nonsynonymous mutations were identified in BMPR1A (1 of 43), ACTA2 (3 of 43), and TFG (5 of 103). A number of potentially important mutation events occurred in TFG including the identification of a mini mutation "hotspot" at amino acid residue 380 (P380S and P380L) and the presence of multiple mutations in two melanomas. Mutations in TFG may have important clinical relevance for current therapeutic strategies to treat metastatic melanoma.

Peart TM, Correa RJ, Valdes YR, et al.
BMP signalling controls the malignant potential of ascites-derived human epithelial ovarian cancer spheroids via AKT kinase activation.
Clin Exp Metastasis. 2012; 29(4):293-313 [PubMed] Related Publications
Epithelial ovarian cancer (EOC) cells have the ability to form multi-cellular aggregates in malignant ascites which dramatically alters cell signalling, survival, and metastatic potential. Herein, we demonstrate that patient ascites-derived EOC cells down-regulate endogenous bone morphogenetic protein (BMP) signalling by decreasing BMP ligand expression when grown in suspension culture to form spheroids. Enforced BMP signalling in these cells via constitutively-active BMP type I ALK3(QD) receptor expression causes the formation of smaller, more loosely-aggregated spheroids. Additionally, ALK3(QD)-expressing spheroids have an increased rate of adhesion and dispersion upon reattachment to substratum. Inhibition of endogenous BMP signalling using recombinant Noggin or small molecule inhibitor LDN-193189, on the other hand, opposed these phenotypic changes. To identify potential targets that impact the phenotype of EOC spheroids due to activated BMP signalling, we performed genome-wide expression analyses using Affymetrix arrays. Using the online Connectivity Map resource, the BMP signalling gene expression signature revealed that the AKT pathway is induced by activated BMP signalling in EOC cells; this finding was further validated by phospho-AKT immuno-blotting. In fact, treatment of EOC spheroids with an AKT inhibitor, Akti-1/2, reduced BMP-stimulated cell dispersion during reattachment as compared to controls. Thus, we have identified AKT as being one important downstream component of activated BMP signalling on EOC spheroid pathobiology, which may have important implications on the metastatic potential of this malignancy.

Chiu CY, Kuo KK, Kuo TL, et al.
The activation of MEK/ERK signaling pathway by bone morphogenetic protein 4 to increase hepatocellular carcinoma cell proliferation and migration.
Mol Cancer Res. 2012; 10(3):415-27 [PubMed] Related Publications
Hepatocellular carcinoma (HCC) is one of the most common visceral malignancies worldwide, with a very high incidence and poor prognosis. Bone morphogenesis protein 4 (BMP4), which belongs to the TGF-β superfamily of proteins, is a multifunctional cytokine, which exerts its biologic effects through SMAD- and non-SMAD-dependent pathways, and is also known to be involved in human carcinogenesis. However, the effects of the BMP4 signaling in liver carcinogenesis are not yet clearly defined. Here, we first show that BMP4 and its receptor, BMPR1A, are overexpressed in a majority of primary HCCs and that it promotes the growth and migration of HCC cell lines in vitro. We also establish that BMP4 can induce HCC cyclin-dependent kinase (CDK)1 and cyclin B1 upregulation to accelerate cell-cycle progression. Our study indicates that the induction of HCC cell proliferation is independent of the SMAD signaling pathway, as Smad4 knockdown of HCC cell lines still leads to the upregulation of CDK1 and cyclin B1 expression after BMP4 treatment. Using mitogen-activated protein/extracellular signal-regulated kinase (MEK) selective inhibitors, the induction of CDK1, cyclin B1 mRNA and protein were shown to be dependent on the activation of MEK/extracellular signal-regulated kinase (ERK) signaling. In vivo xenograft studies confirmed that the BMPR1A-knockdown cells were significantly less tumorigenic than the control groups. Our findings show that the upregulation of BMP4 and BMPR1A in HCC promotes the proliferation and metastasis of HCC cells and that CDK1 and cyclin B1 are important SMAD-independent molecular targets in BMP4 signaling pathways, during the HCC tumorigenesis. It is proposed that BMP4 signaling pathways may have potential as new therapeutic targets in HCC treatment.

Brosens LA, Langeveld D, van Hattem WA, et al.
Juvenile polyposis syndrome.
World J Gastroenterol. 2011; 17(44):4839-44 [PubMed] Free Access to Full Article Related Publications
Juvenile polyposis syndrome is a rare autosomal dominant syndrome characterized by multiple distinct juvenile polyps in the gastrointestinal tract and an increased risk of colorectal cancer. The cumulative life-time risk of colorectal cancer is 39% and the relative risk is 34. Juvenile polyps have a distinctive histology characterized by an abundance of edematous lamina propria with inflammatory cells and cystically dilated glands lined by cuboidal to columnar epithelium with reactive changes. Clinically, juvenile polyposis syndrome is defined by the presence of 5 or more juvenile polyps in the colorectum, juvenile polyps throughout the gastrointestinal tract or any number of juvenile polyps and a positive family history of juvenile polyposis. In about 50%-60% of patients diagnosed with juvenile polyposis syndrome a germline mutation in the SMAD4 or BMPR1A gene is found. Both genes play a role in the BMP/TGF-beta signalling pathway. It has been suggested that cancer in juvenile polyposis may develop through the so-called "landscaper mechanism" where an abnormal stromal environment leads to neoplastic transformation of the adjacent epithelium and in the end invasive carcinoma. Recognition of this rare disorder is important for patients and their families with regard to treatment, follow-up and screening of at risk individuals. Each clinician confronted with the diagnosis of a juvenile polyp should therefore consider the possibility of juvenile polyposis syndrome. In addition, juvenile polyposis syndrome provides a unique model to study colorectal cancer pathogenesis in general and gives insight in the molecular genetic basis of cancer. This review discusses clinical manifestations, genetics, pathogenesis and management of juvenile polyposis syndrome.

Yoshimoto M, Ludkovski O, DeGrace D, et al.
PTEN genomic deletions that characterize aggressive prostate cancer originate close to segmental duplications.
Genes Chromosomes Cancer. 2012; 51(2):149-60 [PubMed] Related Publications
Deletion of PTEN at 10q23.3 occurs in ∼40% of human prostate cancers and is associated with aggressive metastatic potential, poor prognosis, and androgen-independence. This high frequency of recurrent PTEN deletions in prostate cancer suggests there may be unusual genomic features close to this locus that facilitate DNA alteration at 10q23.3. To explore possible mechanisms for deletions in the PTEN region, a meta-analysis of 311 published human genome array datasets was conducted and determined that the minimal prostate cancer-associated deletion at 10q23.3 corresponds to ∼2.06 MB region flanked by BMPR1A and FAS. On a separate cohort comprising an additional 330 tumors, four-color fluorescence in situ hybridization analysis using probes for BMPR1A, FAS, cen(10), and PTEN showed that 132 of 330 (40%) tumors had PTEN loss, 50 (15%) of which were homozygous losses (comprising in total 100 deletion events). Breakpoints between PTEN and BMPR1A or FAS were subsequently mapped in 100 homozygous and 82 hemizygous PTEN losses, revealing that 125/182 PTEN microdeletions occurred within the 940 kB interval between BMPR1A and PTEN. Furthermore, this breakpoint interval coincides with a repeat-rich region of 414 kB containing the SD17 and SD18 segmental duplications, which contain at least 13 homologous inverted repeat sequences. Together, these data suggest that a strong selective growth advantage for loss of PTEN and upregulation of PI3K/AKT, combined with the close proximity of PTEN to a large unstable segment of repeated DNA comprising SD17 and SD18, can lead to recurrent microdeletions of the PTEN gene in prostate cancer. © 2011 Wiley Periodicals, Inc.

Toulouse A, Collins GC, Sullivan AM
Neurotrophic effects of growth/differentiation factor 5 in a neuronal cell line.
Neurotox Res. 2012; 21(3):256-65 [PubMed] Related Publications
The neurotrophin growth/differentiation factor 5 (GDF5) is studied as a potential therapeutic agent for Parkinson's disease as it is believed to play a role in the development and maintenance of the nigrostriatal system. Progress in understanding the effects of GDF5 on dopaminergic neurones has been hindered by the use of mixed cell populations derived from primary cultures or in vivo experiments, making it difficult to differentiate between direct and indirect effects of GDF5 treatment on neurones. In an attempt to establish an useful model to study the direct neuronal influence of GDF5, we have characterised the effects of GDF5 on a human neuronal cell line, SH-SY5Y. Our results show that GDF5 has the capability to promote neuronal but not dopaminergic differentiation. We also show that it promotes neuronal survival in vitro following a 6-hydroxydopamine insult. Our results show that application of GDF5 to SH-SY5Y cultures induces the SMAD pathway which could potentially be implicated in the intracellular transmission of GDF5's neurotrophic effects. Overall, our study shows that the SH-SY5Y neuroblastoma cell line provides an excellent neuronal model to study the neurotrophic effects of GDF5.

Dahdaleh FS, Carr JC, Calva D, Howe JR
Juvenile polyposis and other intestinal polyposis syndromes with microdeletions of chromosome 10q22-23.
Clin Genet. 2012; 81(2):110-6 [PubMed] Free Access to Full Article Related Publications
Juvenile polyposis (JP) is an autosomal dominant hamartomatous polyposis syndrome that carries a significant risk for the development of colorectal cancer. Microdeletions of one of the two predisposing genes to JP, BMPR1A, have been associated with a severe form of JP called juvenile polyposis of infancy. Many of these deletions have also been found to contiguously include PTEN, which is the gene responsible for the development of Cowden syndrome. The advent of molecular techniques that localize genomic copy number variations and others that target specific genes such as multiplex-ligation probe analysis has allowed researchers to explore this area further for deletions. Here, we review the literature for microdeletions described on chromosome 10q22-23 in patients with JP and other intestinal polyposis syndromes.

Bhushan L, Kandpal RP
EphB6 receptor modulates micro RNA profile of breast carcinoma cells.
PLoS One. 2011; 6(7):e22484 [PubMed] Free Access to Full Article Related Publications
Breast carcinoma cells have a specific pattern of expression for Eph receptors and ephrin ligands. EphB6 has previously been characterized as a signature molecule for invasive breast carcinoma cells. The transcription of EphB6 is silenced in breast carcinoma cells and its re-expression leads to decreased invasiveness of MDA-MB-231 cells. Such differences in phenotypes of native and EphB6 expressing MDA-MB-231 cells relate to an altered profile of micro RNAs. Comparative hybridization of total RNA to slides containing all known miRNAs by using locked nucleic acid (LNA) miRCURY platform yielded a significantly altered profile of miRNAs in MDA-MB-231 cells stably transfected with EphB6. After applying a threshold of change and a p-value of <0.001, the list of significantly altered miRNAs included miR-16, miR-23a, miR-24, miR-26a, miR-29a, miR-100, miRPlus-E1172 and miRPlus-E1258. The array-based changes were validated by real-time qPCR of miR-16, miR-23a, miR-24 and miR-100. Except miRPlus-E1172 and miRPlus-E1258, the remaining six miRNAs have been observed in a variety of cancers. The biological relevance of target mRNAs was predicted by using a common-target selection approach that allowed the identification of SMARCA5, SMARCC1, eIF2C2, eIF2C4, eIF4EBP2, FKABP5, FKBP1A, TRIB1, TRIB2, TRIB3, BMPR2, BMPR1A and BMPR1B as important targets of a subset of significantly altered miRNAs. Quantitative PCR revealed that the levels of SMARCC1, eIFC4, eIF4EB2, FKBP1a, FKBP5, TRIB1, TRIB3, BMPR1a and BMPR2 transcripts were significantly decreased in MDA-MB-231 cells transfected with EphB6. These observations confirm targeting of specific mRNAs by miR-100, miR-23a, miR-16 and miR-24, and suggest that the kinase-deficient EphB6 receptor is capable of initiating signal transduction from the cell surface to the nucleus resulting in the altered expression of a variety of genes involved in tumorigenesis and invasion. The alterations in miRNAs and their target mRNAs also suggest indirect involvement of EphB6 in PI3K/Akt/mTOR pathways.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. BMPR1A, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 27 February, 2015     Cancer Genetics Web, Established 1999