Cancer Overview
Research Indicators
Graph generated 01 September 2019 using data from PubMed using criteria.Literature Analysis
Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.
Tag cloud generated 01 September, 2019 using data from PubMed, MeSH and CancerIndex
Specific Cancers (7)
Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.
Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).
Useful Links
AVPR1B
OMIM, Johns Hopkin University
Referenced article focusing on the relationship between phenotype and genotype.
AVPR1B
International Cancer Genome Consortium.
Summary of gene and mutations by cancer type from ICGC
AVPR1B
Cancer Genome Anatomy Project, NCI
Gene Summary
AVPR1B
COSMIC, Sanger Institute
Somatic mutation information and related details
AVPR1B
GEO Profiles, NCBI
Search the gene expression profiles from curated DataSets in the Gene Expression Omnibus (GEO) repository.
Latest Publications: AVPR1B (cancer-related)
Prognosis in colorectal cancer patients is quite variable, even after adjustment for clinical parameters such as disease stage and microsatellite instability status. It is possible that the psychological distress experienced by patients, including anxiety and depression, may be correlated with poor prognosis. In the present study, we hypothesize that genetic variations within three genes biologically linked to the stress response, namely serotonin transporter (SLC6A4), brain-derived neurotrophic factor (BDNF), and arginine vasopressin receptor (AVPR1B) genes are associated with prognosis in colorectal cancer patients. We used a population-based cohort of 280 patients who were followed for up to 12.5 years after diagnosis. Our multivariate analysis showed that a tagSNP in the SLC6A4 gene (rs12150214) was a predictor of shorter overall survival (HR: 1.572, 95%CI: 1.142-2.164, p = 0.005) independent of stage, age, grade and MSI status. Additionally, a multivariate analysis using the combined genotypes of three polymorphisms in this gene demonstrated that the presence of any of the minor alleles at these polymorphic loci was an independent predictor of both shorter overall survival (HR: 1.631, 95%CI: 1.190-2.236, p = 0.002) and shorter disease specific survival (HR: 1.691, 95%CI: 1.138-2.512, p = 0.009). The 5-HTT protein coded by the SLC6A4 gene has also been implicated in inflammation. While our results remain to be replicated in other patient cohorts, we suggest that the genetic variations in the SLC6A4 gene contribute to poor survival in colorectal cancer patients.
Tani Y, Sugiyama T, Izumiyama H, et al.
Differential gene expression profiles of POMC-related enzymes, transcription factors and receptors between non-pituitary and pituitary ACTH-secreting tumors.Endocr J. 2011; 58(4):297-303 [
PubMed]
Related Publications
The differential gene expression of proopiomelanocortin (POMC)-related processing enzymes, transcription factors, and receptors responsible for ACTH secretion between non-pituitary and pituitary ACTH-secreting tumors remains obscure. This study was attempted to determine the gene expression profiles of transcription factors (Tpit, NeuroD1 and IKZF1), proprotein convertase (PC) 1/3 and PC2, and several key receptors linked to ACTH secretion, including corticotrophin releasing hormone receptor (CRHR1), vasopressin receptor 1b (V1bR), somatostatin receptor (SSTR) subtype-2, -5 and dopamine receptor type 2 (D2R) in non-pituitary and pituitary ACTH-secreting tumors. Surgical tissue specimens from carcinoid tumors causing ectopic ACTH syndrome (EAS: n=4) and pituitary tumors causing Cushing's disease (CD: n=13), were subjected to real-time RT-PCR for measurements of each mRNA levels. POMC and CRHR1 mRNA levels in CD were far greater than those in EAS, whereas IKZF1, PC2, SSTR-2 and -5 mRNA levels in EAS were significantly greater than those in CD. NeuroD1, Tpit, PC1/3, V1bR and D2R mRNA levels were comparable between EAS and CD. In conclusion, differential gene expression profiles revealed more abundant mRNA expression in EAS than in CD of 1) IKZF1 with its potential implication of cell differentiation and hormone secretion, 2) PC2 with its possible enhanced processing activity of mature ACTH, and 3) SSTR-2 and -5 with their potential therapeutic application of more selective agonists in EAS patients.
Gagliardi L, Hotu C, Casey G, et al.
Familial vasopressin-sensitive ACTH-independent macronodular adrenal hyperplasia (VPs-AIMAH): clinical studies of three kindreds.Clin Endocrinol (Oxf). 2009; 70(6):883-91 [
PubMed]
Related Publications
OBJECTIVE: Cushing's syndrome due to familial ACTH-independent macronodular adrenal hyperplasia (AIMAH) has been reported in small kindreds. In vasopressin-sensitive AIMAH (VPs-AIMAH), VP stimulates an aberrant, ACTH-independent increase in cortisol. The aims of this study were to (i) delineate the preclinical phenotype of VPs-AIMAH in a three-generation kindred (AIMAH-01) and two smaller kindreds (AIMAH-02 and AIMAH-03) and (ii) investigate the aetiology of VP sensitivity in AIMAH-01.
DESIGN: Clinical studies of three kindreds for adrenal tumours or early Cushing's and molecular studies of adrenal tumours (AIMAH-01).
PATIENTS: Thirty-three individuals, from three kindreds, were screened for perturbations of the hypothalamic-pituitary-adrenal axis or adrenal tumours.
MEASUREMENTS: Patients underwent clinical, biochemical and adrenal imaging investigations. Evaluation included low-dose (1 IU/70 kg) VP stimulation. Adrenal VP receptor (AVPR1A, AVPR1B, AVPR2) expression (AIMAH-01) was assessed using RT-PCR and immunohistochemistry (IHC). IHC for VP was also performed.
RESULTS: AIMAH-01 had three siblings with Cushing's, and four individuals with suppressed ACTH/aberrant VP responses and/or adrenal nodules. In AIMAH-02, a father and son were affected. AIMAH-03 had three siblings with Cushing's. RT-PCR showed adrenal overexpression of AVPR1A and AVPR1B. IHC detected AVPR1A. The adrenal tumour from one patient also stained weakly for VP and AVPR2.
CONCLUSION: Adrenal nodules, suppressed ACTH and increased VP sensitivity may represent preclinical disease, allowing early detection, and treatment, of affected individuals. In AIMAH-01, increased VP sensitivity may be due to adrenal VP receptor overexpression. In these kindreds, VPs-AIMAH is familial, and autosomal dominant inheritance is most likely.
Machado MC, Valeria de Sa S, Correa-Giannella ML, et al.
Association between tumoral GH-releasing peptide receptor type 1a mRNA expression and in vivo response to GH-releasing peptide-6 in ACTH-dependent Cushing's syndrome patients.Eur J Endocrinol. 2008; 158(5):605-13 [
PubMed]
Related Publications
OBJECTIVE: GH secretagogues (GHS) produce exaggerated ACTH and cortisol responses in Cushing's disease (CD) patients, attributable to their direct action on GH-releasing peptide receptor type 1a (GHSR-1a). However, there are no studies correlating the in vivo response to GHS and GHSR-1a mRNA expression in ACTH-dependent Cushing's syndrome (CS) patients. The aim of this study is to correlate the patterns of ACTH and cortisol response to GH-releasing peptide-6 (GHRP-6) to GHSR-1a expression in ACTH-dependent CS patients.
DESIGN: Prospective study in a tertiary referral hospital center. Fifteen CD patients and two ectopic ACTH syndrome (EAS) patients were studied.
METHODS: Tumor fragments were submitted to RNA extraction, and GHSR-1a expression was studied through real-time qPCR and compared with normal tissue samples. The patients were also submitted to desmopressin test and vasopressin receptor type 1B (AVPR1B) mRNA analysis by qPCR.
RESULTS: GHSR-1a expression was similar in normal pituitary samples and in corticotrophic tumor samples. GHSR-1a expression was higher in patients (CD and EAS) presenting in vivo response to GHRP-6. Higher expression of AVPR1B was observed in the EAS patients responsive to desmopressin, as well as in corticotrophic tumors, as compared with normal pituitary samples, but no correlation between AVPR1B expression and response to desmopressin was observed in the CD patients.
CONCLUSIONS: Our results revealed a higher expression of GHSR-1a in the ACTH-dependent CS patients responsive to GHRP-6, suggesting an association between receptor gene expression and in vivo response to the secretagogue in both the CD and the EAS patients.
Tateno T, Izumiyama H, Doi M, et al.
Differential gene expression in ACTH -secreting and non-functioning pituitary tumors.Eur J Endocrinol. 2007; 157(6):717-24 [
PubMed]
Related Publications
OBJECTIVE: Differential expression of several genes between ACTH-secreting pituitary tumors causing Cushing' disease (CD), silent corticotroph adenoma (SCA), and non-functioning pituitary tumors (NFT) was investigated.
DESIGN AND METHODS: We used tissue specimens from 35 pituitary tumors (12 CD, 8 SCA, and 15 NFT). Steady-state mRNA levels of the genes related to proopiomelanocortin (POMC) transcription, synthesis, processing, and secretion, such as neurogenic differentiation 1 (NeuroD1), T-box 19 (Tpit), corticotropin releasing hormone receptor (CRHR), vasopressin receptor 1b (V1bR), prohormone convertase (PC) 1/3 and PC2, 11beta-hydroxysteroid dehydrogenase (11beta-HSD) type 1 and type 2, glucocorticoid receptor alpha (GRalpha), annexin A1, histone deacetylase 2 (HDAC2), and BRM/SWI2-related gene 1, were determined by real-time RT-PCR.
RESULTS AND CONCLUSION: POMC and Tpit mRNA levels were greater in CD and SCA than those in NFT. NeuroD1 mRNA levels were less in CD than those in NFT, but almost comparable between SCA and NFT. PC1/3 mRNA levels were greater in CD, but less in SCA than those in NFT. PC2 mRNA levels in CD and SCA were less than those in NFT. CRHR, V1bR, and 11beta-HSD2 mRNA levels in CD were greater than those in SCA and NFT. HDAC2 mRNA levels in CD and SCA were lower than those in NFT. In conclusion, our study demonstrated that the genes related to transcription, synthesis, processing, and secretion of POMC are differentially regulated in ACTH-secreting pituitary tumors causing CD and SCA compared with those in NFT. This may partly explain the development of clinically active and inactive CD.
Péqueux C, Breton C, Hagelstein MT, et al.
Oxytocin receptor pattern of expression in primary lung cancer and in normal human lung.Lung Cancer. 2005; 50(2):177-88 [
PubMed]
Related Publications
In order to assess if oxytocin- and vasopressin-induced mitogenic effects detected on small-cell lung carcinoma (SCLC) cell lines could be transposed on primary SCLC, the aim of the present work was to identify mediators of these mitogenic actions on primary tumours samples. This was addressed on normal human lung tissue, on SCLC and on non-SCLC (NSCLC). Herein, we observe, in normal human lung, that OTR is colocalized with vascular endothelial cells of the lung and is not expressed by lung cells of epithelial nature. We detected mRNA amplification of V1aR, V2R and of a V2R variant. We observed that 86% of SCLC biopsies analyzed expressed at least the OTR and that 71% expressed the OTR, the V1aR and the V2R altogether. Comparatively, 50% of NSCLC biopsies tested expressed at least the OTR and 32% expressed the OTR, the V1aR and the V2R altogether. The occurrence of the V1bR/V3R is of 28 and 18% for SCLC and NSCLC, respectively. Nevertheless, for the SCLC biopsies analyzed in this study, V1bR/V3R expression correlates, in all cases, with the expression of all the other neurohypophysial peptide receptors. Our results suggest that neurohypophysial peptide antagonists may offer promise as a potential new therapeutic modality for the treatment of lung cancer expressing at least one of the neurhypophysial peptide receptor subtypes.
Péqueux C, Keegan BP, Hagelstein MT, et al.
Oxytocin- and vasopressin-induced growth of human small-cell lung cancer is mediated by the mitogen-activated protein kinase pathway.Endocr Relat Cancer. 2004; 11(4):871-85 [
PubMed]
Related Publications
Malignant growth of small-cell lung carcinoma is promoted by various neuroendocrine autocrine/paracrine loops. Therefore, to interfere with this mitogenic process, it is crucial to elucidate the mechanisms involved. It is known that the oxytocin (OT) and vasopressin (VP) genes, normally transcriptionally restricted in their expression, are activated in small-cell lung cancer (SCLC), concomitantly with expression of their receptors (OTR, V1aR, V1bR/V3R and V2R). The aim of the present study was to characterize, in concentrations close to physiological and pharmacological conditions, intracellular signalling events triggered by OT and VP binding to their specific receptors in SCLC cells and to identify factors mediating OT- and VP-induced mitogenic effects on SCLC. Known agonists for OTR ([Thr4,Gly7]OT) and V1aR (F180), in addition to OT and VP, were able to elicit increases in cytosolic Ca2+ levels and this effect could be blocked using an OTR antagonist (OVTA) or a V1aR antagonist (SR49059) respectively. There was no activation of the cAMP pathway detected after VP, dDAVP (a V2R agonist), or OT treatment. Stimulation of SCLC cells with OT and VP led to an increase of extracellular signal-regulated kinase (ERK) 1/2 phosphorylation, maximal at 5 min, and the subsequent phosphorylation of its downstream target p90 ribosomal S6 kinase (p90RSK). Pre-incubation with OVTA and SR49059, and with inhibitors of phospholipase C (PLC), protein kinase C (PKC), mitogen-activated protein kinase/ERK kinase (MEK) 1/2 and a Ca2+ chelator significantly reduced OT- and VP-induced ERK1/2 phosphorylations. OVTA, SR49059 as well as MEK1/2 and PKC inhibitors also downregulated OT- and VP-induced p90RSK phosphorylation. In [3H]thymidine-uptake experiments, we subsequently observed that PLC, Ca2+, PKC and ERK1/2 are absolutely required for the OT- and VP-stimulated SCLC cellular growth process. In conclusion, the results presented here indicate that OT- and VP-induced mitogenic effects on SCLC are respectively mediated by OTR and V1aR signalling and that this mitogenic signalling passes through the phosphorylation of ERK1/2 and p90RSK in a PLC-, Ca2+-, PKC- and MEK1/2-dependent pathway.