ADRB2

Gene Summary

Gene:ADRB2; adrenoceptor beta 2, surface
Aliases: BAR, B2AR, ADRBR, ADRB2R, BETA2AR
Location:5q31-q32
Summary:This gene encodes beta-2-adrenergic receptor which is a member of the G protein-coupled receptor superfamily. This receptor is directly associated with one of its ultimate effectors, the class C L-type calcium channel Ca(V)1.2. This receptor-channel complex also contains a G protein, an adenylyl cyclase, cAMP-dependent kinase, and the counterbalancing phosphatase, PP2A. The assembly of the signaling complex provides a mechanism that ensures specific and rapid signaling by this G protein-coupled receptor. This gene is intronless. Different polymorphic forms, point mutations, and/or downregulation of this gene are associated with nocturnal asthma, obesity and type 2 diabetes. [provided by RefSeq, Jul 2008]
Databases:OMIM, HGNC, GeneCard, Gene
Protein:beta-2 adrenergic receptor
HPRD
Source:NCBIAccessed: 25 June, 2015

Ontology:

What does this gene/protein do?
Show (57)
Pathways:What pathways are this gene/protein implicaed in?
Show (5)

Cancer Overview

Research Indicators

Publications Per Year (1990-2015)
Graph generated 25 June 2015 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Cell Proliferation
  • Pancreatic Cancer
  • Messenger RNA
  • Gene Expression Profiling
  • Single Nucleotide Polymorphism
  • Adrenergic beta-2 Receptor Antagonists
  • Receptors, Adrenergic, beta
  • Uterine Cancer
  • Haplotypes
  • Ubiquitin-Protein Ligases
  • Receptors, Adrenergic, beta-1
  • Sleep
  • Squamous Cell Carcinoma
  • Smoking
  • Chromosome 5
  • Receptors, Atrial Natriuretic Factor
  • Cancer Gene Expression Regulation
  • Stress, Physiological
  • Risk Factors
  • Breast Cancer
  • Survival Rate
  • VEGFA
  • Up-Regulation
  • Tumor Markers
  • Extracellular Signal-Regulated MAP Kinases
  • Case-Control Studies
  • Prostate Cancer
  • Vascular Endothelial Growth Factors
  • Cell Movement
  • Epinephrine
  • Polymorphism
  • Obesity
  • Receptors, Adrenergic, beta-3
  • Melanoma
  • Cyclic AMP
  • RB1
  • Adrenergic beta-Antagonists
  • Receptors, Adrenergic, beta-2
  • Genotype
  • Gene Expression
  • Genetic Predisposition
Tag cloud generated 25 June, 2015 using data from PubMed, MeSH and CancerIndex

Specific Cancers (5)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: ADRB2 (cancer-related)

Crescenzo R, Abate F, Lasorsa E, et al.
Convergent mutations and kinase fusions lead to oncogenic STAT3 activation in anaplastic large cell lymphoma.
Cancer Cell. 2015; 27(4):516-32 [PubMed] Related Publications
A systematic characterization of the genetic alterations driving ALCLs has not been performed. By integrating massive sequencing strategies, we provide a comprehensive characterization of driver genetic alterations (somatic point mutations, copy number alterations, and gene fusions) in ALK(-) ALCLs. We identified activating mutations of JAK1 and/or STAT3 genes in ∼20% of 155 ALK(-) ALCLs and demonstrated that 38% of systemic ALK(-) ALCLs displayed double lesions. Recurrent chimeras combining a transcription factor (NFkB2 or NCOR2) with a tyrosine kinase (ROS1 or TYK2) were also discovered in WT JAK1/STAT3 ALK(-) ALCL. All these aberrations lead to the constitutive activation of the JAK/STAT3 pathway, which was proved oncogenic. Consistently, JAK/STAT3 pathway inhibition impaired cell growth in vitro and in vivo.

Brandt WD, Schreck KC, Bar EE, et al.
Notch signaling activation in pediatric low-grade astrocytoma.
J Neuropathol Exp Neurol. 2015; 74(2):121-31 [PubMed] Article available free on PMC after 01/02/2016 Related Publications
Pilocytic astrocytoma (PA) is the most common primary brain tumor in children; various signaling pathways have been implicated in its biology. The Notch signaling pathway has been found to play a role in the development, stem cell biology, and pathogenesis of several cancers, but its role in PA has not been investigated. We studied alterations in Notch signaling components in tumor tissue from 18 patients with PA and 4 with other low-grade astrocytomas to identify much needed therapeutic targets. We found that Notch pathway members were overexpressed at the mRNA (NOTCH1, NOTCH2, HEY1, HEY2) and protein (HES1) levels in PAs at various anatomic sites compared with non-neoplastic brain samples. These changes were not associated with specific BRAF alterations. Inhibiting the Notch pathway in the pediatric low-grade astrocytoma cell lines Res186 and Res259 using either RNA interference or a γ-secretase inhibitor resulted in variable, but significant, reduction in cell growth and migration. This study suggests a potential role for Notch signaling in pediatric low-grade astrocytoma tumorigenesis and that Notch signaling may be a viable pathway therapeutic target.

Ananda G, Mockus S, Lundquist M, et al.
Development and validation of the JAX Cancer Treatment Profile™ for detection of clinically actionable mutations in solid tumors.
Exp Mol Pathol. 2015; 98(1):106-12 [PubMed] Related Publications
BACKGROUND: The continued development of targeted therapeutics for cancer treatment has required the concomitant development of more expansive methods for the molecular profiling of the patient's tumor. We describe the validation of the JAX Cancer Treatment Profile™ (JAX-CTP™), a next generation sequencing (NGS)-based molecular diagnostic assay that detects actionable mutations in solid tumors to inform the selection of targeted therapeutics for cancer treatment.
METHODS: NGS libraries are generated from DNA extracted from formalin fixed paraffin embedded tumors. Using hybrid capture, the genes of interest are enriched and sequenced on the Illumina HiSeq 2500 or MiSeq sequencers followed by variant detection and functional and clinical annotation for the generation of a clinical report.
RESULTS: The JAX-CTP™ detects actionable variants, in the form of single nucleotide variations and small insertions and deletions (≤50 bp) in 190 genes in specimens with a neoplastic cell content of ≥10%. The JAX-CTP™ is also validated for the detection of clinically actionable gene amplifications.
CONCLUSIONS: There is a lack of consensus in the molecular diagnostics field on the best method for the validation of NGS-based assays in oncology, thus the importance of communicating methods, as contained in this report. The growing number of targeted therapeutics and the complexity of the tumor genome necessitate continued development and refinement of advanced assays for tumor profiling to enable precision cancer treatment.

Chang C, Goel HL, Gao H, et al.
A laminin 511 matrix is regulated by TAZ and functions as the ligand for the α6Bβ1 integrin to sustain breast cancer stem cells.
Genes Dev. 2015; 29(1):1-6 [PubMed] Article available free on PMC after 01/07/2015 Related Publications
Understanding how the extracellular matrix impacts the function of cancer stem cells (CSCs) is a significant but poorly understood problem. We report that breast CSCs produce a laminin (LM) 511 matrix that promotes self-renewal and tumor initiation by engaging the α6Bβ1 integrin and activating the Hippo transducer TAZ. Although TAZ is important for the function of breast CSCs, the mechanism is unknown. We observed that TAZ regulates the transcription of the α5 subunit of LM511 and the formation of a LM511 matrix. These data establish a positive feedback loop involving TAZ and LM511 that contributes to stemness in breast cancer.

Aoki Y, Watanabe T, Saito Y, et al.
Identification of CD34+ and CD34- leukemia-initiating cells in MLL-rearranged human acute lymphoblastic leukemia.
Blood. 2015; 125(6):967-80 [PubMed] Article available free on PMC after 01/07/2015 Related Publications
Translocation of the mixed-lineage leukemia (MLL) gene with AF4, AF9, or ENL results in acute leukemia with both lymphoid and myeloid involvement. We characterized leukemia-initiating cells (LICs) in primary infant MLL-rearranged leukemia using a xenotransplantation model. In MLL-AF4 patients, CD34(+)CD38(+)CD19(+) and CD34(-)CD19(+) cells initiated leukemia, and in MLL-AF9 patients, CD34(-)CD19(+) cells were LICs. In MLL-ENL patients, either CD34(+) or CD34(-) cells were LICs, depending on the pattern of CD34 expression. In contrast, in patients with these MLL translocations, CD34(+)CD38(-)CD19(-)CD33(-) cells were enriched for normal hematopoietic stem cells (HSCs) with in vivo long-term multilineage hematopoietic repopulation capacity. Although LICs developed leukemic cells with clonal immunoglobulin heavy-chain (IGH) rearrangement in vivo, CD34(+)CD38(-)CD19(-)CD33(-) cells repopulated recipient bone marrow and spleen with B cells, showing broad polyclonal IGH rearrangement and recipient thymus with CD4(+) single positive (SP), CD8(+) SP, and CD4(+)CD8(+) double-positive (DP) T cells. Global gene expression profiling revealed that CD9, CD32, and CD24 were over-represented in MLL-AF4, MLL-AF9, and MLL-ENL LICs compared with normal HSCs. In patient samples, these molecules were expressed in CD34(+)CD38(+) and CD34(-) LICs but not in CD34(+)CD38(-)CD19(-)CD33(-) HSCs. Identification of LICs and LIC-specific molecules in primary human MLL-rearranged acute lymphoblastic leukemia may lead to improved therapeutic strategies for MLL-rearranged leukemia.

Shaham L, Vendramini E, Ge Y, et al.
MicroRNA-486-5p is an erythroid oncomiR of the myeloid leukemias of Down syndrome.
Blood. 2015; 125(8):1292-301 [PubMed] Article available free on PMC after 19/02/2016 Related Publications
Children with Down syndrome (DS) are at increased risk for acute myeloid leukemias (ML-DS) characterized by mixed megakaryocytic and erythroid phenotype and by acquired mutations in the GATA1 gene resulting in a short GATA1s isoform. The chromosome 21 microRNA (miR)-125b cluster has been previously shown to cooperate with GATA1s in transformation of fetal hematopoietic progenitors. In this study, we report that the expression of miR-486-5p is increased in ML-DS compared with non-DS acute megakaryocytic leukemias (AMKLs). miR-486-5p is regulated by GATA1 and GATA1s that bind to the promoter of its host gene ANK1. miR-486-5p is highly expressed in mouse erythroid precursors and knockdown (KD) in ML-DS cells reduced their erythroid phenotype. Ectopic expression and KD of miR-486-5p in primary fetal liver hematopoietic progenitors demonstrated that miR-486-5p cooperates with Gata1s to enhance their self renewal. Consistent with its activation of AKT, overexpression and KD experiments showed its importance for growth and survival of human leukemic cells. Thus, miR-486-5p cooperates with GATA1s in supporting the growth and survival, and the aberrant erythroid phenotype of the megakaryocytic leukemias of DS.

Gu L, Frommel SC, Oakes CC, et al.
BAZ2A (TIP5) is involved in epigenetic alterations in prostate cancer and its overexpression predicts disease recurrence.
Nat Genet. 2015; 47(1):22-30 [PubMed] Related Publications
Prostate cancer is driven by a combination of genetic and/or epigenetic alterations. Epigenetic alterations are frequently observed in all human cancers, yet how aberrant epigenetic signatures are established is poorly understood. Here we show that the gene encoding BAZ2A (TIP5), a factor previously implicated in epigenetic rRNA gene silencing, is overexpressed in prostate cancer and is paradoxically involved in maintaining prostate cancer cell growth, a feature specific to cancer cells. BAZ2A regulates numerous protein-coding genes and directly interacts with EZH2 to maintain epigenetic silencing at genes repressed in metastasis. BAZ2A overexpression is tightly associated with a molecular subtype displaying a CpG island methylator phenotype (CIMP). Finally, high BAZ2A levels serve as an independent predictor of biochemical recurrence in a cohort of 7,682 individuals with prostate cancer. This work identifies a new aberrant role for the epigenetic regulator BAZ2A, which can also serve as a useful marker for metastatic potential in prostate cancer.

Qian J, Wang Q, Dose M, et al.
B cell super-enhancers and regulatory clusters recruit AID tumorigenic activity.
Cell. 2014; 159(7):1524-37 [PubMed] Article available free on PMC after 18/12/2015 Related Publications
The antibody gene mutator activation-induced cytidine deaminase (AID) promiscuously damages oncogenes, leading to chromosomal translocations and tumorigenesis. Why nonimmunoglobulin loci are susceptible to AID activity is unknown. Here, we study AID-mediated lesions in the context of nuclear architecture and the B cell regulome. We show that AID targets are not randomly distributed across the genome but are predominantly grouped within super-enhancers and regulatory clusters. Unexpectedly, in these domains, AID deaminates active promoters and eRNA(+) enhancers interconnected in some instances over megabases of linear chromatin. Using genome editing, we demonstrate that 3D-linked targets cooperate to recruit AID-mediated breaks. Furthermore, a comparison of hypermutation in mouse B cells, AID-induced kataegis in human lymphomas, and translocations in MEFs reveals that AID damages different genes in different cell types. Yet, in all cases, the targets are predominantly associated with topological complex, highly transcribed super-enhancers, demonstrating that these compartments are key mediators of AID recruitment.

Brett-Morris A, Wright BM, Seo Y, et al.
The polyamine catabolic enzyme SAT1 modulates tumorigenesis and radiation response in GBM.
Cancer Res. 2014; 74(23):6925-34 [PubMed] Article available free on PMC after 01/12/2015 Related Publications
Glioblastoma multiforme (GBM) is the most common and severe form of brain cancer. The median survival time of patients is approximately 12 months due to poor responses to surgery and chemoradiation. To understand the mechanisms involved in radioresistance, we conducted a genetic screen using an shRNA library to identify genes in which inhibition would sensitize cells to radiation. The results were cross-referenced with the Oncomine and Rembrandt databases to focus on genes that are highly expressed in GBM tumors and associated with poor patient outcomes. Spermidine/spermine-N1-acetyltransferase 1 (SAT1), an enzyme involved in polyamine catabolism, was identified as a gene that promotes resistance to ionizing radiation (IR), is overexpressed in brain tumors, and correlates with poor outcomes. Knockdown of SAT1 using shRNA and siRNA approaches in multiple cell and neurosphere lines resulted in sensitization of GBM cells to radiation in colony formation assays and tumors, and decreased tumorigenesis in vivo. Radiosensitization occurred specifically in G2-M and S phases, suggesting a role for SAT1 in homologous recombination (HR) that was confirmed in a DR-GFP reporter system. Mechanistically, we found that SAT1 promotes acetylation of histone H3, suggesting a new role of SAT1 in chromatin remodeling and regulation of gene expression. In particular, SAT1 depletion led to a dramatic reduction in BRCA1 expression, explaining decreased HR capacity. Our findings suggest that the biologic significance of elevated SAT1 expression in GBM lies in its contribution to cell radioresistance and that SAT1 may potentially be a therapeutic target to sensitize GBM to cancer therapies.

Lawlor PN, Kalisky T, Rosner R, et al.
Conceptualizing cancer drugs as classifiers.
PLoS One. 2014; 9(9):e106444 [PubMed] Article available free on PMC after 01/12/2015 Related Publications
Cancer and healthy cells have distinct distributions of molecular properties and thus respond differently to drugs. Cancer drugs ideally kill cancer cells while limiting harm to healthy cells. However, the inherent variance among cells in both cancer and healthy cell populations increases the difficulty of selective drug action. Here we formalize a classification framework based on the idea that an ideal cancer drug should maximally discriminate between cancer and healthy cells. More specifically, this discrimination should be performed on the basis of measurable cell markers. We divide the problem into three parts which we explore with examples. First, molecular markers should discriminate cancer cells from healthy cells at the single-cell level. Second, the effects of drugs should be statistically predicted by these molecular markers. Third, drugs should be optimized for classification performance. We find that expression levels of a handful of genes suffice to discriminate well between individual cells in cancer and healthy tissue. We also find that gene expression predicts the efficacy of some cancer drugs, suggesting that these cancer drugs act as suboptimal classifiers using gene profiles. Finally, we formulate a framework that defines an optimal drug, and predicts drug cocktails that may target cancer more accurately than the individual drugs alone. Conceptualizing cancer drugs as solving a discrimination problem in the high-dimensional space of molecular markers promises to inform the design of new cancer drugs and drug cocktails.

Wolff AS, Kärner J, Owe JF, et al.
Clinical and serologic parallels to APS-I in patients with thymomas and autoantigen transcripts in their tumors.
J Immunol. 2014; 193(8):3880-90 [PubMed] Article available free on PMC after 01/12/2015 Related Publications
Patients with the autoimmune polyendocrine syndrome type I (APS-I), caused by mutations in the autoimmune regulator (AIRE) gene, and myasthenia gravis (MG) with thymoma, show intriguing but unexplained parallels. They include uncommon manifestations like autoimmune adrenal insufficiency (AI), hypoparathyroidism, and chronic mucocutaneous candidiasis plus autoantibodies neutralizing IL-17, IL-22, and type I IFNs. Thymopoiesis in the absence of AIRE is implicated in both syndromes. To test whether these parallels extend further, we screened 247 patients with MG, thymoma, or both for clinical features and organ-specific autoantibodies characteristic of APS-I patients, and we assayed 26 thymoma samples for transcripts for AIRE and 16 peripheral tissue-specific autoantigens (TSAgs) by quantitative PCR. We found APS-I-typical autoantibodies and clinical manifestations, including chronic mucocutaneous candidiasis, AI, and asplenia, respectively, in 49 of 121 (40%) and 10 of 121 (8%) thymoma patients, but clinical features seldom occurred together with the corresponding autoantibodies. Both were rare in other MG subgroups (n = 126). In 38 patients with APS-I, by contrast, we observed neither autoantibodies against muscle Ags nor any neuromuscular disorders. Whereas relative transcript levels for AIRE and 7 of 16 TSAgs showed the expected underexpression in thymomas, levels were increased for four of the five TSAgs most frequently targeted by these patients' autoantibodies. Therefore, the clinical and serologic parallels to APS-I in patients with thymomas are not explained purely by deficient TSAg transcription in these aberrant AIRE-deficient tumors. We therefore propose additional explanations for the unusual autoimmune biases they provoke. Thymoma patients should be monitored for potentially life-threatening APS-I manifestations such as AI and hypoparathyroidism.

Rolland Y, Marighetti P, Malinverno C, et al.
The CDC42-interacting protein 4 controls epithelial cell cohesion and tumor dissemination.
Dev Cell. 2014; 30(5):553-68 [PubMed] Related Publications
The role of endocytic proteins and the molecular mechanisms underlying epithelial cell cohesion and tumor dissemination are not well understood. Here, we report that the endocytic F-BAR-containing CDC42-interacting protein 4 (CIP4) is required for ERBB2- and TGF-β1-induced cell scattering, breast cancer (BC) cell motility and invasion into 3D matrices, and conversion from ductal breast carcinoma in situ to invasive carcinoma in mouse xenograft models. CIP4 promotes the formation of an E-cadherin-CIP4-SRC complex that controls SRC activation, E-cadherin endocytosis, and localized phosphorylation of the myosin light chain kinase, thereby impinging on the actomyosin contractility required to generate tangential forces to break cell-cell junctions. CIP4 is upregulated in ERBB2-positive human BC, correlates with increased distant metastasis, and is an independent predictor of poor disease outcome in subsets of BC patients. Thus, it critically controls cell-cell cohesion and is required for the acquisition of an invasive phenotype in breast tumors.

Inaki K, Menghi F, Woo XY, et al.
Systems consequences of amplicon formation in human breast cancer.
Genome Res. 2014; 24(10):1559-71 [PubMed] Article available free on PMC after 01/12/2015 Related Publications
Chromosomal structural variations play an important role in determining the transcriptional landscape of human breast cancers. To assess the nature of these structural variations, we analyzed eight breast tumor samples with a focus on regions of gene amplification using mate-pair sequencing of long-insert genomic DNA with matched transcriptome profiling. We found that tandem duplications appear to be early events in tumor evolution, especially in the genesis of amplicons. In a detailed reconstruction of events on chromosome 17, we found large unpaired inversions and deletions connect a tandemly duplicated ERBB2 with neighboring 17q21.3 amplicons while simultaneously deleting the intervening BRCA1 tumor suppressor locus. This series of events appeared to be unusually common when examined in larger genomic data sets of breast cancers albeit using approaches with lesser resolution. Using siRNAs in breast cancer cell lines, we showed that the 17q21.3 amplicon harbored a significant number of weak oncogenes that appeared consistently coamplified in primary tumors. Down-regulation of BRCA1 expression augmented the cell proliferation in ERBB2-transfected human normal mammary epithelial cells. Coamplification of other functionally tested oncogenic elements in other breast tumors examined, such as RIPK2 and MYC on chromosome 8, also parallel these findings. Our analyses suggest that structural variations efficiently orchestrate the gain and loss of cancer gene cassettes that engage many oncogenic pathways simultaneously and that such oncogenic cassettes are favored during the evolution of a cancer.

Brodie A, Tovia-Brodie O, Ofran Y
Large scale analysis of phenotype-pathway relationships based on GWAS results.
PLoS One. 2014; 9(7):e100887 [PubMed] Article available free on PMC after 01/12/2015 Related Publications
The widely used pathway-based approach for interpreting Genome Wide Association Studies (GWAS), assumes that since function is executed through the interactions of multiple genes, different perturbations of the same pathway would result in a similar phenotype. This assumption, however, was not systemically assessed on a large scale. To determine whether SNPs associated with a given complex phenotype affect the same pathways more than expected by chance, we analyzed 368 phenotypes that were studied in >5000 GWAS. We found 216 significant phenotype-pathway associations between 70 of the phenotypes we analyzed and known pathways. We also report 391 strong phenotype-phenotype associations between phenotypes that are affected by the same pathways. While some of these associations confirm previously reported connections, others are new and could shed light on the molecular basis of these diseases. Our findings confirm that phenotype-associated SNPs cluster into pathways much more than expected by chance. However, this is true for <20% (70/368) of the phenotypes. Different types of phenotypes show markedly different tendencies: Virtually all autoimmune phenotypes show strong clustering of SNPs into pathways, while most cancers and metabolic conditions, and all electrophysiological phenotypes, could not be significantly associated with any pathway despite being significantly associated with a large number of SNPs. While this may be due to missing data, it may also suggest that these phenotypes could result only from perturbations of specific genes and not from other perturbations of the same pathway. Further analysis of pathway-associated versus gene-associated phenotypes is, therefore, needed in order to understand disease etiology and in order to promote better drug target selection.

Shultz LD, Goodwin N, Ishikawa F, et al.
Human cancer growth and therapy in immunodeficient mouse models.
Cold Spring Harb Protoc. 2014; 2014(7):694-708 [PubMed] Article available free on PMC after 01/07/2015 Related Publications
Since the discovery of the "nude" mouse more than 40 years ago, investigators have attempted to model human tumor growth in immunodeficient mice. Here, we summarize how the field has advanced over the ensuing years owing to improvements in the murine recipients of human tumors. These improvements include the discovery of the scid mutation and development of targeted mutations in the recombination-activating genes 1 and 2 (Rag1(null), Rag2(null)) that severely cripple the adaptive immune response of the murine host. More recently, mice deficient in adaptive immunity have been crossed with mice bearing targeted mutations designed to weaken the innate immune system, ultimately leading to the development of immunodeficient mice bearing a targeted mutation in the gene encoding the interleukin 2 (IL2) receptor common γ chain (IL2rg(null), also known in humans as cytokine receptor common subunit γ). The IL2rg(null) mutation has been used to develop several immunodeficient strains of mice, including the NOD-scid IL2rg(null) (NSG) strain. Using NSG mice as human xenograft recipients, it is now possible to grow almost all types of primary human tumors in vivo, including most solid tumors and hematological malignancies that maintain characteristics of the primary tumor in the patient. Programs to optimize patient-specific therapy using patient-derived xenograft tumor growth in NSG mice have been established at several institutions, including The Jackson Laboratory. Moreover, NSG mice can be engrafted with functional human immune systems, permitting for the first time the potential to study primary human tumors in vivo in the presence of a human immune system.

Bar J, Cyjon A, Flex D, et al.
EGFR mutation testing practice in advanced non-small cell lung cancer.
Lung. 2014; 192(5):759-63 [PubMed] Related Publications
PURPOSE: Testing tumor samples for the presence of a mutation in the epithelial growth factor receptor (EGFR) gene is recommended for advanced non-squamous non-small cell lung cancer (NSCLC) patients. We aimed to collect data about common practice among Medical Oncologists treating lung cancer patients, regarding EGFR mutation testing in advanced NSCLC patients.
METHODS: An internet-based survey was conducted among members of the Israeli Society for Clinical Oncology and Radiotherapy involved in the treatment of lung cancer patients.
RESULTS: 24 Oncologists participated in the survey. The participants encompass the Oncologists treating most of the lung cancer patients in Israel. 79% of them use EGFR testing routinely for all advanced NSCLC patients. Opinions were split regarding the preferable biopsy site for EGFR testing material. 60% of participants recommend waiting for EGFR test results prior to initiation of first-line therapy.
CONCLUSIONS: EGFR testing is requested in Israel routinely by most treating Oncologists for all advanced NSCLC patients, regardless of histology. In most cases, systemic treatment is deferred until the results of this test are received.

Yamazaki S, Miyoshi N, Kawabata K, et al.
Quercetin-3-O-glucuronide inhibits noradrenaline-promoted invasion of MDA-MB-231 human breast cancer cells by blocking β₂-adrenergic signaling.
Arch Biochem Biophys. 2014; 557:18-27 [PubMed] Related Publications
Endogenous catecholamines such as adrenaline (A) and noradrenaline (NA) are released from the adrenal gland and sympathetic nervous system during exposure to stress. The adrenergic system plays a central role in stress signaling, and excessive stress was found to be associated with increased production of reactive oxygen species (ROS). Overproduction of ROS induces oxidative damage in tissues and causes the development of diseases such as cancer. In this study, we investigated the effects of quercetin-3-O-glucuronide (Q3G), a circulating metabolite of quercetin, which is a type of natural flavonoid, on the catecholamine-induced β2-adrenergic receptor (β2-AR)-mediated response in MDA-MB-231 human breast cancer cells expressing β2-AR. Treatment with A or NA at concentrations above 1μM generated significant levels of ROS, and NA treatment induced the gene expression of heme oxygenase-1 (HMOX1), and matrix metalloproteinase-2 (MMP-2) and -9 (MMP9). Inhibitors of p38 MAP kinase (SB203580), cAMP-dependent protein kinase (PKA) (H-89), activator protein-1 (AP-1) transcription factor (SR11302), and NF-κB and AP-1 (Tanshinone IIA) decreased MMP2 and MMP9 gene expression. NA also enhanced cAMP induction, RAS activation and phosphorylation of ERK1/2. These results suggested that the cAMP-PKA, MAPK, and ROS-NF-κB pathways are involved in β2-AR signaling. Treatment with 0.1μM Q3G suppressed ROS generation, cAMP and RAS activation, phosphorylation of ERK1/2 and the expression of HMOX1, MMP2, and MMP9 genes. Furthermore, Q3G (0.1μM) suppressed invasion of MDA-MB-231 breast cancer cells and MMP-9 induction, and inhibited the binding of [(3)H]-NA to β2-AR. These results suggest that Q3G may function to suppress invasion of breast cancer cells by controlling β2-adrenergic signaling, and may be a dietary chemopreventive factor for stress-related breast cancer.

Shan T, Cui X, Li W, et al.
Novel regulatory program for norepinephrine-induced epithelial-mesenchymal transition in gastric adenocarcinoma cell lines.
Cancer Sci. 2014; 105(7):847-56 [PubMed] Related Publications
Norepinephrine and epinephrine, catecholamine hormones that are major mediators for chronic stress-induced cancers, are implicated in the progression of a number of cancer cells, including gastric adenocarcinoma. However, the underlying mechanisms of these hormones have not been well elucidated. Epithelial-mesenchymal transition (EMT) is a crucial event responsible for cancer cell invasion and metastasis. The hypothesis regarding whether the promotive effects of norepinephrine (NE) on cancer are in part due to its ability to induce an EMT program has not been proven. In this study, we show that NE does not only obviously induce EMT alterations in the morphological characteristics of gastric adenocarcinoma cells, but also increases the markers of EMT, including vimentin expression, and decreases E-cadherin expression, further resulting in cell motility and invasiveness. We also reveal that these actions are mainly mediated through the activation of β2 -AR-HIF-1α-Snail signaling pathways. In summary, this study implies that NE induces EMT in gastric adenocarcinoma through the regulation of β2 -AR-HIF-1α-Snail activity. The data provide a new perspective on chronic stress in a negative social and psychological state, which may be a risk factor for cancer development and progression.

Ben-Hamo R, Gidoni M, Efroni S
PhenoNet: identification of key networks associated with disease phenotype.
Bioinformatics. 2014; 30(17):2399-405 [PubMed] Related Publications
MOTIVATION: At the core of transcriptome analyses of cancer is a challenge to detect molecular differences affiliated with disease phenotypes. This approach has led to remarkable progress in identifying molecular signatures and in stratifying patients into clinical groups. Yet, despite this progress, many of the identified signatures are not robust enough to be clinically used and not consistent enough to provide a follow-up on molecular mechanisms.
RESULTS: To address these issues, we introduce PhenoNet, a novel algorithm for the identification of pathways and networks associated with different phenotypes. PhenoNet uses two types of input data: gene expression data (RMA, RPKM, FPKM, etc.) and phenotypic information, and integrates these data with curated pathways and protein-protein interaction information. Comprehensive iterations across all possible pathways and subnetworks result in the identification of key pathways or subnetworks that distinguish between the two phenotypes.
AVAILABILITY AND IMPLEMENTATION: Matlab code is available upon request.
SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

Ben-Shlomo I, Younis JS
Basic research in PCOS: are we reaching new frontiers?
Reprod Biomed Online. 2014; 28(6):669-83 [PubMed] Related Publications
Polycystic ovarian syndrome (PCOS) is the leading cause for anovulatory infertility. It is diagnosed by two of the following three clinical criteria: oligomenorrhoea, hyperandrogenism and polycystic appearance of the ovaries. Weight loss and physical activity can lead to ovulation and conception. Lowering of serum insulin normalizes androgen concentrations whereas ovulation induction often causes ovarian hyperstimulation. Theca cells from PCOS ovaries may be more responsive to insulin than cells from non-PCOS ovaries. Herein we review the research efforts at the genomic and cell function levels, as well as animal models, which have been made to elucidate the underlying mechanism that leads to PCOS. It appears that, despite the impressive amount of data that have been generated in these studies, the mechanism of this syndrome is still only partially understood. Polycystic ovarian syndrome (PCOS) is the leading cause for infertility, which is caused by anovulation. It is diagnosed by two of the following three clinical criteria: irregular and prolonged menstrual cycles, overt symptoms of excess androgens, which is revealed by acne and excess hair, and ultrasonographic appearance of the ovaries with multiple small follicles spread mainly near the ovarian surface, which gave it its name. Intentional weight loss and physical activity can lead to resumption of ovulation and not infrequently to conception as well. It was shown that lowering of serum insulin accounts for normalization of serum androgen levels, whereas ovulation induction with FSH often causes ovarian hyperstimulation. It is suggested that theca cells from PCOS ovaries may be more responsive to insulin than cells from non-PCOS ovaries. In this article we review the efforts to define the genes responsible for the syndrome and the studies at the cell function level, as well as animal models, which have been done to elucidate the underlying mechanism that leads to PCOS. Overall, it appears that despite the impressive amount of data that have been generated in these studies, the mechanism of this syndrome is still only partially understood.

Mostafavi H, Khaksarian M, Joghataei MT, et al.
Selective β2 adrenergic agonist increases Cx43 and miR-451 expression via cAMP-Epac.
Mol Med Rep. 2014; 9(6):2405-10 [PubMed] Related Publications
It has been demonstrated that connexin 43 (Cx43) and microRNAs have significant roles in glioma. Cyclic adenosine monophosphate (cAMP) is suggested to be a regulator of connexins and microRNAs. However, it remains elusive whether cAMP and exchange protein directly activated by cAMP (Epac2), have a regulatory effect on Cx43 and microRNA-451 (miR-451) in astrocytoma cells. We treated 1321N1 astrocytoma cells with a selective β2 adrenergic agonist and a selective Epac activator with and without adenyl cyclase and protein kinase A inhibition. Cx43 and miR-451 expression were measured. Next, we evaluated the effect of miR-451 overexpression on Cx43 expression. Cell proliferation was measured using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The results demonstrated that cAMP-Epac2 increased Cx43 and miR-451 expression. However, the alteration of miR-451 expression required a higher dose of drugs. Overexpression of miR-451 had no significant effect on Cx43 expression. The MTT assay showed that cAMP-Epac stimulation and miR-451 overexpression had a synergic inhibitory effect on cell proliferation. These findings may expand our understanding of the molecular biology of glioma and provide new potential therapeutic targets.

Diesch J, Sanij E, Gilan O, et al.
Widespread FRA1-dependent control of mesenchymal transdifferentiation programs in colorectal cancer cells.
PLoS One. 2014; 9(3):e88950 [PubMed] Article available free on PMC after 01/07/2015 Related Publications
Tumor invasion and metastasis involves complex remodeling of gene expression programs governing epithelial homeostasis. Mutational activation of the RAS-ERK is a frequent occurrence in many cancers and has been shown to drive overexpression of the AP-1 family transcription factor FRA1, a potent regulator of migration and invasion in a variety of tumor cell types. However, the nature of FRA1 transcriptional targets and the molecular pathways through which they promote tumor progression remain poorly understood. We found that FRA1 was strongly expressed in tumor cells at the invasive front of human colorectal cancers (CRCs), and that its depletion suppressed mesenchymal-like features in CRC cells in vitro. Genome-wide analysis of FRA1 chromatin occupancy and transcriptional regulation identified epithelial-mesenchymal transition (EMT)-related genes as a major class of direct FRA1 targets in CRC cells. Expression of the pro-mesenchymal subset of these genes predicted adverse outcomes in CRC patients, and involved FRA-1-dependent regulation and cooperation with TGFβ signaling pathway. Our findings reveal an unexpectedly widespread and direct role for FRA1 in control of epithelial-mesenchymal plasticity in CRC cells, and suggest that FRA1 plays an important role in mediating cross talk between oncogenic RAS-ERK and TGFβ signaling networks during tumor progression.

Cashman R, Cohen H, Ben-Hamo R, et al.
SENP5 mediates breast cancer invasion via a TGFβRI SUMOylation cascade.
Oncotarget. 2014; 5(4):1071-82 [PubMed] Article available free on PMC after 01/07/2015 Related Publications
Identifying novel mechanisms, which are at the core of breast cancer biology, is of critical importance. Such mechanisms may explain response to treatment, reveal novel targets or drive detection assays. To uncover such novel mechanisms, we used survival analysis on gene expression datasets encompassing 1363 patients. By iterating over the compendia of genes, we screened for their significance as prognosis biomarkers and identified SUMO-specific protease 5 (SENP5) to significantly stratify patients into two survival groups across five unrelated tested datasets. According to these findings, low expression of SENP5 is associated with good prognosis among breast cancer patients. Following these findings, we analyzed SENP5 silencing and show it is followed by inhibition of anchorage-independence growth, proliferation, migration and invasion in breast cancer cell lines. We further show that these changes are conducted via regulation of TGFβRI levels. These data relate to recent reports about the SUMOylation of TGFβRI. Following TGFβRI changes in expression, we show that one of its target genes, MMP9, which plays a key role in degrading the extracellular matrix and contributes to TGFβ-induced invasion, is dramatically down regulated upon SENP5 silencing. This is the first report represents SENP5-TGFβ-MMP9 cascade and its mechanistic involvement in breast cancer.

Busuttil RA, George J, Tothill RW, et al.
A signature predicting poor prognosis in gastric and ovarian cancer represents a coordinated macrophage and stromal response.
Clin Cancer Res. 2014; 20(10):2761-72 [PubMed] Related Publications
PURPOSE: Gene-expression profiling has revolutionized the way we think about cancer and confers the ability to observe the synchronous expression of thousands of genes. The use of putative genome-level expression profiles has allowed biologists to observe the complex interactions of genes that constitute recognized biologic pathways. We used gastric and ovarian datasets to identify gene-expression signatures and determine any functional significance.
EXPERIMENTAL DESIGN: Microarray data of 94-tumor and 45-benign samples derived from patients with gastric cancer were interrogated using Hierarchical Ordered Partitioning and Collapsing Hybrid analysis identifying clusters of coexpressed genes. Clusters were further characterized with respect to biologic significance, gene ontology, and ability to discriminate between normal and tumor tissue. Tumor tissues were separated into epithelial and stromal compartments and immunohistochemical analysis performed to further elucidate specific cell lineages expressing genes contained in the signature.
RESULTS: We identified a "stromal-response" expression signature, highly enriched for inflammatory, extracellular matrix, cytokine, and growth factor proteins. The majority of genes in the signature are expressed in the tumor-associated stroma but were absent in associated premalignant conditions. In gastric cancer, this module almost perfectly differentiates tumor from nonmalignant gastric tissue and hence can be regarded as a highly tumor-specific gene-expression signature.
CONCLUSIONS: We show that these genes are consistently coexpressed across a range of independent gastric datasets as well as other cancer types suggesting a conserved functional role in cancer. In addition, we show that this signature can be a surrogate marker for M2 macrophage activity and has significant prognostic implications in gastric and ovarian high-grade serous cancer.

Teo MT, Dyrskjøt L, Nsengimana J, et al.
Next-generation sequencing identifies germline MRE11A variants as markers of radiotherapy outcomes in muscle-invasive bladder cancer.
Ann Oncol. 2014; 25(4):877-83 [PubMed] Article available free on PMC after 01/07/2015 Related Publications
BACKGROUND: Muscle-invasive bladder cancer (MIBC) can be cured by radical radiotherapy (RT). We previously found tumour MRE11 expression to be predictive of survival following RT in MIBC, and this was independently validated in a separate institute. Here, we investigated germline MRE11A variants as possible predictors of RT outcomes in MIBC, using next-generation sequencing (NGS).
PATIENTS AND METHODS: The MRE11A gene was amplified in germline DNA from 186 prospectively recruited MIBC patients treated with RT and sequenced using bar-coded multiplexed NGS. Germline variants were analysed for associations with cancer-specific survival (CSS). For validation as a prognostic or predictive marker, rs1805363 was then genotyped in a cystectomy-treated MIBC cohort of 256 individuals. MRE11A mRNA isoform expression was measured in bladder cancer cell lines and primary tumour samples.
RESULTS: Carriage of at least one of six (five novel) rare variants was associated with the worse RT outcome (hazard ratio [HR] 4.04, 95% confidence interval [95% CI] 1.42-11.51, P = 0.009). The single-nucleotide polymorphism (SNP), rs1805363 (minor allele frequency 11%), was also associated with worse CSS (per-allele HR 2.10, 95% CI 1.34-3.28, Ptrend = 0.001) following RT in MIBC, with a gene-dosage effect observed, but no effect seen on CSS in the cystectomy cohort (Ptrend = 0.89). Furthermore, rs1805363 influenced relative MRE11A isoform expression, with increased isoform 2 expression with carriage of the rs1805363 minor A allele.
CONCLUSIONS: Germline MRE11A SNP rs1805363 was predictive of RT, but not of cystectomy outcome in MIBC. If successfully validated in an independent RT-treated cohort, this SNP could be a useful clinical tool for selecting patients for bladder-conserving treatment.

Li J, Yang XM, Wang YH, et al.
Monoamine oxidase A suppresses hepatocellular carcinoma metastasis by inhibiting the adrenergic system and its transactivation of EGFR signaling.
J Hepatol. 2014; 60(6):1225-34 [PubMed] Related Publications
BACKGROUND & AIMS: Monoamine oxidase A (MAOA), a catecholamine neurotransmitter degrading enzyme, is closely associated with neurological and psychiatric disorders. However, its role in cancer progression remains unknown.
METHODS: Hepatocellular carcinoma (HCC) tissue arrays (n=254) were used to investigate the correlation between MAOA expression and clinicopathological findings. In vitro invasion and anoikis assays, and in vivo intrahepatic and lung metastasis models were used to determine the role of MAOA in HCC metastasis. Quantitative real-time PCR, western blotting, immunohistochemical staining and HPLC analysis were performed to uncover the mechanism of MAOA in HCC.
RESULTS: We found that MAOA expression was significantly downregulated in 254 clinical HCC samples and was closely correlated with cancer vasoinvasion, metastasis, and poor prognoses. We then demonstrated that MAOA suppressed norepinephrine/epinephrine (NE/E)-induced HCC invasion and anoikis inhibition, and uncovered that the effects of NE/E on HCC behaviors were primarily mediated through alpha 1A (ADRA1A) and beta 2 adrenergic receptors (ADRB2). In addition to the canonical signaling pathway, which is mediated via adrenergic receptors (ADRs), we found that ADR-mediated EGFR transactivation was also involved in NE-induced HCC invasion and anoikis inhibition. Notably, we found that MAOA could synergize with EGFR inhibitors or ADR antagonists to abrogate NE-induced HCC behaviors.
CONCLUSIONS: Taken together, the results of our study may provide insights into the application of MAOA as a novel predictor of clinical outcomes and indicate that increasing MAOA expression or enzyme activity may be a new approach that can be used for HCC treatment.

Louzoun Y, Xue C, Lesinski GB, Friedman A
A mathematical model for pancreatic cancer growth and treatments.
J Theor Biol. 2014; 351:74-82 [PubMed] Article available free on PMC after 01/07/2015 Related Publications
Pancreatic cancer is one of the most deadly types of cancer and has extremely poor prognosis. This malignancy typically induces only limited cellular immune responses, the magnitude of which can increase with the number of encountered cancer cells. On the other hand, pancreatic cancer is highly effective at evading immune responses by inducing polarization of pro-inflammatory M1 macrophages into anti-inflammatory M2 macrophages, and promoting expansion of myeloid derived suppressor cells, which block the killing of cancer cells by cytotoxic T cells. These factors allow immune evasion to predominate, promoting metastasis and poor responsiveness to chemotherapies and immunotherapies. In this paper we develop a mathematical model of pancreatic cancer, and use it to qualitatively explain a variety of biomedical and clinical data. The model shows that drugs aimed at suppressing cancer growth are effective only if the immune induced cancer cell death lies within a specific range, that is, the immune system has a specific window of opportunity to effectively suppress cancer under treatment. The model results suggest that tumor growth rate is affected by complex feedback loops between the tumor cells, endothelial cells and the immune response. The relative strength of the different loops determines the cancer growth rate and its response to immunotherapy. The model could serve as a starting point to identify optimal nodes for intervention against pancreatic cancer.

Knoechel B, Roderick JE, Williamson KE, et al.
An epigenetic mechanism of resistance to targeted therapy in T cell acute lymphoblastic leukemia.
Nat Genet. 2014; 46(4):364-70 [PubMed] Article available free on PMC after 01/07/2015 Related Publications
The identification of activating NOTCH1 mutations in T cell acute lymphoblastic leukemia (T-ALL) led to clinical testing of γ-secretase inhibitors (GSIs) that prevent NOTCH1 activation. However, responses to these inhibitors have been transient, suggesting that resistance limits their clinical efficacy. Here we modeled T-ALL resistance, identifying GSI-tolerant 'persister' cells that expand in the absence of NOTCH1 signaling. Rare persisters are already present in naive T-ALL populations, and the reversibility of their phenotype suggests an epigenetic mechanism. Relative to GSI-sensitive cells, persister cells activate distinct signaling and transcriptional programs and exhibit chromatin compaction. A knockdown screen identified chromatin regulators essential for persister viability, including BRD4. BRD4 binds enhancers near critical T-ALL genes, including MYC and BCL2. The BRD4 inhibitor JQ1 downregulates expression of these targets and induces growth arrest and apoptosis in persister cells, at doses well tolerated by GSI-sensitive cells. Consistently, the GSI-JQ1 combination was found to be effective against primary human leukemias in vivo. Our findings establish a role for epigenetic heterogeneity in leukemia resistance that may be addressed by incorporating epigenetic modulators in combination therapy.

Grabocka E, Pylayeva-Gupta Y, Jones MJ, et al.
Wild-type H- and N-Ras promote mutant K-Ras-driven tumorigenesis by modulating the DNA damage response.
Cancer Cell. 2014; 25(2):243-56 [PubMed] Article available free on PMC after 01/07/2015 Related Publications
Mutations in KRAS are prevalent in human cancers and universally predictive of resistance to anticancer therapeutics. Although it is widely accepted that acquisition of an activating mutation endows RAS genes with functional autonomy, recent studies suggest that the wild-type forms of Ras may contribute to mutant Ras-driven tumorigenesis. Here, we show that downregulation of wild-type H-Ras or N-Ras in mutant K-Ras cancer cells leads to hyperactivation of the Erk/p90RSK and PI3K/Akt pathways and, consequently, the phosphorylation of Chk1 at an inhibitory site, Ser 280. The resulting inhibition of ATR/Chk1 signaling abrogates the activation of the G2 DNA damage checkpoint and confers specific sensitization of mutant K-Ras cancer cells to DNA damage chemotherapeutic agents in vitro and in vivo.

Laureys G, Gerlo S, Spooren A, et al.
β₂-adrenergic agonists modulate TNF-α induced astrocytic inflammatory gene expression and brain inflammatory cell populations.
J Neuroinflammation. 2014; 11:21 [PubMed] Article available free on PMC after 01/07/2015 Related Publications
BACKGROUND: The NF-κB signaling pathway orchestrates many of the intricate aspects of neuroinflammation. Astrocytic β₂-adrenergic receptors have emerged as potential regulators in central nervous system inflammation and are potential targets for pharmacological modulation. The aim of this study was to elucidate the crosstalk between astrocytic β₂-adrenergic receptors and the TNF-α induced inflammatory gene program.
METHODS: Proinflammatory conditions were generated by the administration of TNF-α. Genes that are susceptible to astrocytic crosstalk between β₂-adrenergic receptors (stimulated by clenbuterol) and TNF-α were identified by qPCR-macroarray-based gene expression analysis in a human 1321 N1 astrocytoma cell line. Transcriptional patterns of the identified genes in vitro were validated by RT-PCR on the 1321 N1 cell line as well as on primary rat astrocytes. In vivo expression patterns were examined by intracerebroventricular administration of clenbuterol and/or TNF-α in rats. To examine the impact on the inflammatory cell content of the brain we performed extensive FACS analysis of rat brain immune cells after intracerebroventricular clenbuterol and/or TNF-α administration.
RESULTS: Parallel transcriptional patterns in vivo and in vitro confirmed the relevance of astrocytic β₂-adrenergic receptors as modulators of brain inflammatory responses. Importantly, we observed pronounced effects of β2-adrenergic receptor agonists and TNF-α on IL-6, CXCL2, CXCL3, VCAM1, and ICAM1 expression, suggesting a role in inflammatory brain cell homeostasis. Extensive FACS-analysis of inflammatory cell content in the brain demonstrated that clenbuterol/TNF-α co-administration skewed the T cell population towards a double negative phenotype and induced a shift in the myeloid brain cell population towards a neutrophilic predominance.
CONCLUSIONS: Our results show that astrocytic β₂-adrenergic receptors are potent regulators of astrocytic TNF-α-activated genes in vitro and in vivo, and ultimately modulate the molecular network involved in the homeostasis of inflammatory cells in the central nervous system. Astrocytic β₂-adrenergic receptors and their downstream signaling pathway may serve as potential targets to modulate neuroinflammatory responses.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. ADRB2, Cancer Genetics Web: http://www.cancer-genetics.org/ADRB2.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 25 June, 2015     Cancer Genetics Web, Established 1999