ABCB1

Gene Summary

Gene:ABCB1; ATP-binding cassette, sub-family B (MDR/TAP), member 1
Aliases: CLCS, MDR1, P-GP, PGY1, ABC20, CD243, GP170
Location:7q21.12
Summary:The membrane-associated protein encoded by this gene is a member of the superfamily of ATP-binding cassette (ABC) transporters. ABC proteins transport various molecules across extra- and intra-cellular membranes. ABC genes are divided into seven distinct subfamilies (ABC1, MDR/TAP, MRP, ALD, OABP, GCN20, White). This protein is a member of the MDR/TAP subfamily. Members of the MDR/TAP subfamily are involved in multidrug resistance. The protein encoded by this gene is an ATP-dependent drug efflux pump for xenobiotic compounds with broad substrate specificity. It is responsible for decreased drug accumulation in multidrug-resistant cells and often mediates the development of resistance to anticancer drugs. This protein also functions as a transporter in the blood-brain barrier. [provided by RefSeq, Jul 2008]
Databases:OMIM, VEGA, HGNC, Ensembl, GeneCard, Gene
Protein:multidrug resistance protein 1
HPRD
Source:NCBIAccessed: 27 February, 2015

Ontology:

What does this gene/protein do?
Show (19)
Pathways:What pathways are this gene/protein implicaed in?
Show (3)

Cancer Overview

Research Indicators

Publications Per Year (1990-2015)
Graph generated 28 February 2015 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • RT-PCR
  • Cell Survival
  • Genotype
  • Apoptosis
  • Rhodamine 123
  • Vascular Endothelial Growth Factors
  • Neoplasm Proteins
  • Antineoplastic Agents
  • Transcription Factors
  • Breast Cancer
  • Genetic Predisposition
  • Multidrug Resistance-Associated Proteins
  • Virus Replication
  • Vinblastine
  • Tubulin
  • Protein Transport
  • DNA Sequence Analysis
  • P-Glycoproteins
  • Cancer Gene Expression Regulation
  • Multiple Drug Resistance
  • Eye Cancer
  • Chromosome 7
  • Messenger RNA
  • Smoking
  • Paclitaxel
  • Stomach Cancer
  • Neoadjuvant Therapy
  • ATP-Binding Cassette Transporters
  • Cervical Cancer
  • Publication Bias
  • P-Glycoprotein
  • bcl-2-Associated X Protein
  • Protein Isoforms
  • Cell Proliferation
  • Saudi Arabia
  • Single Nucleotide Polymorphism
  • Drug Resistance
  • Vincristine
  • Promoter Regions
  • Young Adult
  • Doxorubicin
Tag cloud generated 27 February, 2015 using data from PubMed, MeSH and CancerIndex

Specific Cancers (4)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: ABCB1 (cancer-related)

Wang Z, Xu Y, Meng X, et al.
Suppression of c-Myc is involved in multi-walled carbon nanotubes' down-regulation of ATP-binding cassette transporters in human colon adenocarcinoma cells.
Toxicol Appl Pharmacol. 2015; 282(1):42-51 [PubMed] Related Publications
Over-expression of ATP-binding cassette (ABC) transporters, a large family of integral membrane proteins that decrease cellular drug uptake and accumulation by active extrusion, is one of the major causes of cancer multi-drug resistance (MDR) that frequently leads to failure of chemotherapy. Carbon nanotubes (CNTs)-based drug delivery devices hold great promise in enhancing the efficacy of cancer chemotherapy. However, CNTs' effects on the ABC transporters remain under-investigated. In this study, we found that multiwalled carbon nanotubes (MWCNTs) reduced transport activity and expression of ABC transporters including ABCB1/Pgp and ABCC4/MRP4 in human colon adenocarcinoma Caco-2 cells. Proto-oncogene c-Myc, which directly regulates ABC gene expression, was concurrently decreased in MWCNT-treated cells and forced over-expression of c-Myc reversed MWCNTs' inhibitory effects on ABCB1 and ABCC4 expression. MWCNT-cell membrane interaction and cell membrane oxidative damage were observed. However, antioxidants such as vitamin C, β-mecaptoethanol and dimethylthiourea failed to antagonize MWCNTs' down-regulation of ABC transporters. These data suggest that MWCNTs may act on c-Myc, but not through oxidative stress, to down-regulate ABC transporter expression. Our findings thus shed light on CNTs' novel cellular effects that may be utilized to develop CNTs-based drug delivery devices to overcome ABC transporter-mediated cancer chemoresistance.

Chen S, Chen X, Xiu YL, et al.
microRNA 490-3P enhances the drug-resistance of human ovarian cancer cells.
J Ovarian Res. 2014; 7:84 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: MicroRNAs (miRNAs) are non-coding, single-stranded small RNAs that regulate gene expression negatively, which is involved in fundamental cellular processes. In this study, we investigated the role of miR-490-3P in the development of drug resistance in ovarian cancer cells.
METHODS: The human ovarian carcinoma cell line A2780 and A2780/Taxol were exposed to paclitaxel in the presence or absence of microRNA 490-3P transfection, after which cell viability were performed by CCK-8 assay. Reverse transcription polymerase chain reaction (RT-PCR) and western blotting were used to assess the mRNA and protein expression levels of GST-π, MDR1 or P-gp.
RESULTS: Our results showed higher miR-490-3P mRNA expression level in A2780/Taxol cells than in A2780 cells (p < 0.05). Following miR-490-3P transfection, both A2780 and A2780/Taxol cells showed decreased sensitivity to paclitaxel. The mRNA expression levels of MDR1, GST-π (p < 0.05) and protein expression levels of P-gp, GST-π were down-regulated after miR-490-3P transfection in comparison to mock and negative control cancer cells.
CONCLUSION: Our results demonstrate for the first time that microRNA 490-3P may be involved in the development of drug resistance in ovarian cancer.

Sprouse AA, Herbert BS
Resveratrol augments paclitaxel treatment in MDA-MB-231 and paclitaxel-resistant MDA-MB-231 breast cancer cells.
Anticancer Res. 2014; 34(10):5363-74 [PubMed] Related Publications
BACKGROUND: Resveratrol (RES) inhibits cell growth, induces apoptosis and augments chemotherapeutics in multiple cancer types, although its effects on drug-resistant cancer cells are unknown.
MATERIALS AND METHODS: To study the effects of resveratrol in triple-negative breast cancer cells that are resistant to the common cancer drug, paclitaxel, a novel paclitaxel-resistant cell line was generated from the MDA-MB-231 cell line.
RESULTS: The resistant MDA-MB-231/PacR cells exhibited a 12-fold increased resistance to paclitaxel. RES treatment reduced cell proliferation and colony formation and increased senescence and apoptosis in both parental and resistant cells. Importantly, RES augmented the effects of paclitaxel in both cell lines. Up-regulation of the MDR1 and CYP2C8 genes were shown to be potential mechanisms of paclitaxel resistance in the resistant cells.
CONCLUSION: RES, both alone and in combination with paclitaxel, may be useful in the treatment of paclitaxel-sensitive and paclitaxel-resistant triple-negative breast cancer cells.

Dimeloe S, Frick C, Fischer M, et al.
Human regulatory T cells lack the cyclophosphamide-extruding transporter ABCB1 and are more susceptible to cyclophosphamide-induced apoptosis.
Eur J Immunol. 2014; 44(12):3614-20 [PubMed] Related Publications
ATP-binding cassette (ABC) transporters, including ABC-transporter B1 (ABCB1), extrude drugs, metabolites, and other compounds (such as mitotracker green (MTG)) from cells. Susceptibility of CD4(+) regulatory T (Treg) cells to the ABCB1-substrate cyclophosphamide (CPA) has been reported. Here, we characterized ABCB1 expression and function in human CD4(+) T-cell subsets. Naïve, central memory, and effector-memory CD4(+) T cells, but not Treg cells, effluxed MTG in an ABCB1-dependent manner. In line with this, ABCB1 mRNA and protein was expressed by nonregulatory CD4(+) T-cell subsets, but not Treg cells. In vitro, the ABCB1-substrate CPA was cytotoxic for Treg cells at a 100-fold lower dose than for nonregulatory counterparts, and, inversely, verapamil, an inhibitor of ABC transporters, increased CPA-toxicity in nonregulatory CD4(+) T cells but not Treg cells. Thus, Treg cells lack expression of ABCB1, rendering them selectively susceptible to CPA. Our findings provide mechanistic support for therapeutic strategies using CPA to boost anti-tumor immunity by selectively depleting Treg cells.

Kam Y, Das T, Tian H, et al.
Sweat but no gain: inhibiting proliferation of multidrug resistant cancer cells with "ersatzdroges".
Int J Cancer. 2015; 136(4):E188-96 [PubMed] Article available free on PMC after 15/02/2016 Related Publications
ATP-binding cassette (ABC) drug transporters consuming ATPs for drug efflux is a common mechanism by which clinical cancers develop multidrug resistance (MDR). We hypothesized that MDR phenotypes could be suppressed by administration of "ersatzdroges," nonchemotherapy drugs that are, nevertheless, ABC substrates. We reasoned that, through prolonged activation of the ABC pumps, ersatzdroges will force MDR cells to divert limited resources from proliferation and invasion thus delaying disease progression. We evaluated ABC substrates as ersatzdroge by comparing their effects on proliferation and survival of MDR cell lines (MCF-7/Dox and 8226/Dox40) with the effects on the drug-sensitive parental lines (MCF-7 and 8226/s, respectively) in glucose-limited condition. The changes in glucose and energy demands were also examined in vitro and in vivo. MCF-7/Dox showed higher ATP demand and susceptibility to glucose resource limitation. Ersatzdroges significantly decreased proliferation of MCF-7/Dox when the culture media contained physiological glucose concentrations (1.0 g/L) or less, but had no effect on MCF-7. Similar evidence was obtained from 8226/Dox40 and 8226/s comparison. In vivo 18F-FDG-PET imaging demonstrated that glucose uptake was increased by systemic administration of an ersatzdroge in tumors composed of MDR. These results suggest that administration of ersatzdroges, by increasing the metabolic cost of resistance, can suppress proliferation of drug-resistance phenotypes. This provides a novel and relatively simple application model of evolution-based strategy, which can exploit the cost of resistance to delay proliferation of drug-resistant cancer phenotypes. Furthermore, suggested is the potential of ersatzdroges to identify tumors or regions of tumors that express the MDR phenotype.

Jakobsen Falk I, Fyrberg A, Paul E, et al.
Impact of ABCB1 single nucleotide polymorphisms 1236C>T and 2677G>T on overall survival in FLT3 wild-type de novo AML patients with normal karyotype.
Br J Haematol. 2014; 167(5):671-80 [PubMed] Related Publications
Drug resistance is a clinically relevant problem in the treatment of acute myeloid leukaemia (AML). We have previously reported a relationship between single nucleotide polymorphisms (SNPs) of ABCB1, encoding the multi-drug transporter P-glycoprotein, and overall survival (OS) in normal karyotype (NK)-AML. Here we extended this material, enabling subgroup analysis based on FLT3 and NPM1 status, to further elucidate the influence of ABCB1 SNPs. De novo NK-AML patients (n = 201) were analysed for 1199G>A, 1236C>T, 2677G>T/A and 3435C>T, and correlations to outcome were investigated. FLT3 wild-type 1236C/C patients have significantly shorter OS compared to patients carrying the variant allele; medians 20 vs. 49 months, respectively, P = 0·017. There was also an inferior outcome in FLT3 wild-type 2677G/G patients compared to patients carrying the variant allele, median OS 20 vs. 35 months, respectively, P = 0·039. This was confirmed in Cox regression analysis. Our results indicate that ABCB1 1236C>T and 2677G>T may be used as prognostic markers to distinguish relatively high risk patients in the intermediate risk FLT3 wild-type group, which may contribute to future individualizing of treatment strategies.

Gutiérrez-Iglesias G, Hurtado Y, Palma-Lara I, López-Marure R
Resistance to the antiproliferative effect induced by a short-chain ceramide is associated with an increase of glucosylceramide synthase, P-glycoprotein, and multidrug-resistance gene-1 in cervical cancer cells.
Cancer Chemother Pharmacol. 2014; 74(4):809-17 [PubMed] Related Publications
PURPOSE: Ceramide is glycosylated to glucosylceramide or lactosylceramide, and this glycosylation is a novel multidrug-resistance (MDR) mechanism. In this work, a short-chain ceramide (C6), lactosylceramide (LacCer), and an inhibitor of ceramide glycosylation (D-threo-1-phenyl-2-decanoylamino-3-1-propanol, PDMP) were evaluated on the proliferation of cervical cancer cells. The participation of glucosylceramide synthase (GCS), P-glycoprotein (P-gp), and multidrug-resistance gene-1 (MDR-1) in the resistance to the antiproliferative effect induced by C6 was also evaluated.
METHODS: Cell proliferation was determined by crystal violet staining. GCS and MDR-1 mRNA expression was evaluated by real-time RT-PCR assay. GCS and P-gp protein expressions, as well as Rhodamine 123 uptake, which is a functional test for P-gp efflux activity, were determined by flow cytometry.
RESULTS: C6 inhibited proliferation of CaLo and CasKi cells with an IC₅₀ of 2.5 μM; however, 50% proliferation of ViBo cells was inhibited with 10 μM. LacCer increased the proliferation of all cells. When cells were treated with PDMP plus C6, no additional effect on antiproliferation induced by C6 was observed in CaLo and CasKi cells; however, proliferation diminished in comparison with C6 alone in ViBo cells. C6 increased GCS and MDR-1 expression in all cells, as well as P-gp expression in CasKi cells.
CONCLUSIONS: Cells that have more capacity to glycosylate ceramide and express a higher level of GCS, MDR-1, and P-gp, are more resistant to the antiproliferative effect induced by C6.

Zhang H, Sun L, Xiao X, et al.
Krüppel-like factor 8 contributes to hypoxia-induced MDR in gastric cancer cells.
Cancer Sci. 2014; 105(9):1109-15 [PubMed] Related Publications
We previously reported that hypoxia-induced MDR in gastric cancer (GC) cells is hypoxia-inducible factor-1 (HIF-1)-dependent. However, the exact mechanisms are still unknown. Our previous study revealed that Krüppel-like factor 8 (KLF8), a novel transcription factor, was associated with malignant phenotype in GC cells. KLF8 is overexpressed in clear cell renal carcinoma lacking von Hippel-Lindau protein function, which resulted in HIF-1 stabilization. Given this association, we hypothesized that KLF8 contributed to hypoxia-induced MDR in GC cells. Initial experiments revealed that hypoxia could increase KLF8 and HIF-1α expressions in GC cells, and KLF8 levels in GC drug-resistant cell lines were higher than in parental cell lines. Subsequent experiments showed that in normoxia, exogenous KLF8 could promote the MDR phenotype; however, blocking KLF8 expression could effectively reverse the MDR phenotype induced by hypoxia. Overexpressed KLF8 increased resistance-associated gene MDR1 mRNA levels, Bcl-2 and P-gp protein levels, and decreased Bax and caspase-3 protein levels in GC cells, and knockout KLF8 reversed these effects. Dual luciferase reporter and ChIP assays showed that KLF8 could promote MDR1 transcriptional activity by combining with KLF8 binding sites located in the upstream of MDR1 transcriptional start site. These results suggest that KLF8 is involved in hypoxia-induced MDR through inhibiting apoptosis and increasing the drug release rate by directly regulating MDR1 transcription.

Zgheib NK, Akra-Ismail M, Aridi C, et al.
Genetic polymorphisms in candidate genes predict increased toxicity with methotrexate therapy in Lebanese children with acute lymphoblastic leukemia.
Pharmacogenet Genomics. 2014; 24(8):387-96 [PubMed] Related Publications
BACKGROUND: The aim of this study is to analyze polymorphisms in genes involved in 6-mercaptopurine detoxification (TPMT); methotrexate (MTX) metabolism including ABCB1 (or MDR1), ABCC2, SLC19A1 (or RFC1), and SLCO1B1; and the MTX effect mainly MTHFR and TYMS, and to assess whether these polymorphisms are predictors of treatment toxicity and/or MTX clearance.
MATERIALS AND METHODS: This study included 127 Lebanese acute lymphoblastic leukemia patients, of whom 117 were treated following the St Jude's Children Research Hospital protocol. Genotyping was performed using real-time PCR or restriction fragment length polymorphism. MTX levels were measured using a polarization fluorescence assay from Roche. MTX clearance was estimated on the basis of all available MTX levels measured after high-dose MTX treatment during the consolidation phase.
RESULTS: Five variants in four genes (MTHFR, ABCB1, ABCC2, and TYMS) were shown to be associated with toxicity, but neither was associated with MTX pharmacokinetic parameters. For instance, during the consolidation phase, a statistically significant association was found between MTHFR rs1801133 variant allele carriers and a decrease in hemoglobin levels [odds ratio (OR)=3.057; 95% confidence interval (CI): 1.217; 7.680]. In addition, a statistically significant association was found among neutropenia (absolute neutrophil count<500) and variant allele carriers of ABCB1 rs1045642 (OR=5.174; 95% CI: 1.674; 15.989) and ABCB1 rs1128503 (OR=3.364; 95% CI: 1.257; 9.004), respectively. ABCC2 rs717620 variant allele carriers needed significantly more time to reach a MTX level below 0.1 µmol/l (β=5.122; 95% CI: 1.412; 8.831). During the continuation phase, a statistically significant association was found between ABCC2 rs717620 and TYMS 28-bp tandem repeats carriers with the need to decrease weekly MTX doses (β=-4.905; 95% CI: -9; -0.809 and β=-5.770; 95% CI: -10.138; -1.403), respectively.
CONCLUSION: Genotyping for MTHFR, ABCB1, ABCC2, and TYMS polymorphisms may be useful in identifying patients at risk of increased MTX toxicity and the need for dose optimization before treatment initiation.

Moreira MA, Bagni C, de Pinho MB, et al.
Changes in gene expression profile in two multidrug resistant cell lines derived from a same drug sensitive cell line.
Leuk Res. 2014; 38(8):983-7 [PubMed] Related Publications
Resistance to chemotherapy is one of the most relevant aspects of treatment failure in cancer. Cell lines are used as models to study resistance. We analyzed the transcriptional profile of two multidrug resistant (MDR) cell lines (Lucena 1 and FEPS) derived from the same drug-sensitive cell K562. Microarray data identified 130 differentially expressed genes (DEG) between K562 vs. Lucena 1, 1932 between K562 vs. FEPS, and 1211 between Lucena 1 versus FEPS. The NOTCH pathway was affected in FEPS with overexpression of NOTCH2 and HEY1. The highly overexpressed gene in MDR cell lines was ABCB1, and both presented the ABCB1 promoter unmethylated.

Liu S, Yi Z, Ling M, et al.
Predictive potential of ABCB1, ABCC3, and GSTP1 gene polymorphisms on osteosarcoma survival after chemotherapy.
Tumour Biol. 2014; 35(10):9897-904 [PubMed] Related Publications
Genetic polymorphisms in drug metabolism and transport genes can influence the pharmacokinetics and pharmacodynamics of chemotherapy drugs. We investigated the role of genes involved in metabolic and transport pathways in response to chemotherapy and clinical outcome of osteosarcoma patients. The association between the eight polymorphisms with response to chemotherapy and clinical outcome of patients was carried out by unconditional logistic regression analysis and Cox proportional hazard models. Of 186 patients, 98 patients showed good response to chemotherapy, 64 died, and 97 showed progression at the end of the study. Patients carrying ABCB1 rs1128503 TT genotype and T allele were more likely to have a good response to chemotherapy. ABCC3 rs4148416 TT genotype and T allele and GSTP1 rs1695 GG genotype and G allele were associated with poor response to chemotherapy. In the Cox proportional hazards model, after adjusting for potential confounding factors, patients carrying ABCB1 rs1128503 TT genotype and T allele were associated with lower risk of progression-free survival (PFS) and overall survival (OS). ABCC3 rs4148416 TT genotype and T allele and GSTP1 rs1695 GG genotype and G allele were correlated with high risk of PFS and OS. The ABCB1 TT and GSTP1 GG genotypes were significantly associated with a shorter OS. In conclusion, variants of ABCB1 rs128503, ABCC3 rs4148416, and GSTP1 rs1695 are associated with response to chemotherapy and PFS and OS of osteosarcoma patients; these gene polymorphisms could help in the design of individualized therapy.

Eyre R, Harvey I, Stemke-Hale K, et al.
Reversing paclitaxel resistance in ovarian cancer cells via inhibition of the ABCB1 expressing side population.
Tumour Biol. 2014; 35(10):9879-92 [PubMed] Related Publications
The majority of deaths in ovarian cancer are caused by recurrent metastatic disease which is usually multidrug resistant. This progression has been hypothesised to be due in part to the presence of cancer stem cells, a subset of cells which are capable of self-renewal and are able to survive chemotherapy and migrate to distant sites. Side population (SP) cells, identified by the efflux of the DNA-binding dye Hoechst 33342 through ATP-binding cassette (ABC) transporters, are a known adult stem cell group and have been suggested as a cancer stem cell in various cancers. Despite the identification of SP cells in cancer cell lines and patient samples, little attention has been paid to the identification of specific ABC transporters within this cell fraction which efflux Hoechst dye and thus may facilitate drug resistance. In this study, we demonstrate that SP cells can be detected in both ovarian cancer cell lines and ascitic fluid samples, and these SP cells possess stem cell and drug resistance properties. We show that ABCB1 is the functioning ABC transporter in ovarian cancer cell lines, and expression of ABCB1 is associated with a paclitaxel-resistant phenotype. Moreover, silencing of ABCB1 using a specific morpholino oligonucleotide results in an inhibition of the SP phenotype and a sensitising of ovarian cancer cell lines to paclitaxel. ABCB1 should therefore be considered as a therapeutic target in ovarian cancer.

Takakuwa O, Oguri T, Uemura T, et al.
ABCB1 polymorphism as a predictive biomarker for amrubicin-induced neutropenia.
Anticancer Res. 2014; 34(7):3517-22 [PubMed] Related Publications
BACKGROUND: Amrubicin is a promising therapy for lung cancer, but is associated with a high incidence of severe neutropenia. The present study assessed the utility of ABCB1 and NAD(P)H quinone oxidoreductase 1 (NQO1) polymorphism as a predictor of amrubicin-induced neutropenia.
MATERIALS AND METHODS: Fifty-four Japanese lung cancer patients who received amrubicin chemotherapy were consecutively recruited and toxicities and SNPs (MDR1; C1236T, C3435T and G2677T/A, NQO1; C609T) were evaluated.
RESULTS: The incidence of neutropenia was higher in patients treated with 40 mg/m2 of amrubicin (n=32) compared to patients treated with 35 mg/m2 of amrubicin (n=22) (53.1% vs. 22.7%). Patients who were homogenous for the wild-type allele of C3435T were at significantly higher risk of neutropenia compared to patients with other genotypes. By contrast, the C609T genotype of NQO1 was not related to neutropenia.
CONCLUSION: C3435T polymorphisms of ABCB1 might be able to predict severe amrubicin-induced neutropenia.

Imrichova D, Coculova M, Messingerova L, et al.
Vincristine-induced expression of P-glycoprotein in MOLM-13 and SKM-1 acute myeloid leukemia cell lines is associated with coexpression of nestin transcript.
Gen Physiol Biophys. 2014; 33(4):425-31 [PubMed] Related Publications
Nestin is a class 6 filament protein typically expressed in neural stem/progenitor cells. However, nestin expression has been observed in other tissues during mammalian embryogenesis. In human neural stem/progenitor cells, coexpression of nestin and P-glycoprotein (P-gp, ABCB1 member of the ABC transporter family) was detected. P-gp-mediated drug efflux is the most common molecular cause of multidrug resistance in neoplastic cells. Nestin expression has also been detected in various human solid tumours as well as in the corresponding established cell lines. Interestingly, expression of nestin in different leukemia cells has been recently reported. Here, we show that expression of P-gp is associated with the simultaneous expression of nestin in acute myeloid leukemia cell lines (MOLM-13 and SKM-1) under the selective pressure of vincristine, a substance that may induce P-gp expression in neoplastic cells.

Wang Y, Zhang D, Wu K, et al.
Long noncoding RNA MRUL promotes ABCB1 expression in multidrug-resistant gastric cancer cell sublines.
Mol Cell Biol. 2014; 34(17):3182-93 [PubMed] Article available free on PMC after 01/03/2015 Related Publications
Multidrug resistance (MDR) is the most common cause of chemotherapy failure in gastric cancer (GC) treatment; however, the underlying molecular mechanisms remain elusive. Long noncoding RNAs (lncRNAs) can be involved in carcinogenesis, but the effects of lncRNAs on MDR are poorly understood. We show here that the lncRNA MRUL (MDR-related and upregulated lncRNA), located 400 kb downstream of ABCB1 (ATP-binding cassette, subfamily B, member 1), was significantly upregulated in two multidrug-resistant GC cell sublines, SGC7901/ADR and SGC7901/VCR. Furthermore, the relative expression levels of MRUL in GC tissues were negatively correlated with in vitro growth inhibition rates of GC specimens treated with chemotherapeutic drugs and indicated a poor prognosis for GC patients. MRUL knockdown in SGC7901/ADR and SGC7901/VCR cells led to increased rates of apoptosis, increased accumulation, and reduced doxorubicin (Adriamycin [ADR]) release in the presence of ADR or vincristine. Moreover, MRUL depletion reduced ABCB1 mRNA levels in a dose- and time-dependent manner. Heterologous luciferase reporter assays demonstrated that MRUL might positively affect ABCB1 expression in an orientation- and position-independent manner. Our findings indicate that MRUL promotes ABCB1 expression and is a potential target to reverse the MDR phenotype of GC MDR cell sublines.

Ma H, Zhou H, Li P, et al.
Effect of ST3GAL 4 and FUT 7 on sialyl Lewis X synthesis and multidrug resistance in human acute myeloid leukemia.
Biochim Biophys Acta. 2014; 1842(9):1681-92 [PubMed] Related Publications
Sialyl Lewis X (sLe X, CD15s) is a key antigen produced on tumor cell surfaces during multidrug resistance (MDR) development. The present study investigated the effect of α1, 3 fucosyltransferase VII (FucT VII) and α2, 3 sialyltransferase IV (ST3Gal IV) on sLe X oligosaccharides synthesis as well as their impact on MDR development in acute myeloid leukemia cells (AML). FUT7 and ST3GAL4 were overexpressed in three AML MDR cells and bone marrow mononuclear cells (BMMC) of AML patients with MDR by real-time polymerase chain reaction (PCR). A close association was found between the expression levels of FUT7 and ST3GAL4 and the amount of sLe X oligosaccharides, as well as the phenotypic variation of MDR of HL60 and HL60/ADR cells both in vitro and in vivo. Manipulation of these two genes' expression modulated the activity of phosphoinositide-3 kinase (PI3K)/Akt signaling pathway, thereby regulating the proportionally mutative expression of P-glycoprotein (P-gp) and multidrug resistance related protein 1 (MRP1), both of which are known to be involved in MDR. Blocking the PI3K/Akt pathway by its specific inhibitor LY294002 or Akt short hairpin RNA (shRNA) resulted in the reduced MDR of HL60/ADR cells. This study indicated that sLe X involved in the development of MDR of AML cells probably through FUT7 and ST3GAL4 regulating the activity of PI3K/Akt signaling pathway and the expression of P-gp and MRP1.

Wilson BJ, Saab KR, Ma J, et al.
ABCB5 maintains melanoma-initiating cells through a proinflammatory cytokine signaling circuit.
Cancer Res. 2014; 74(15):4196-207 [PubMed] Article available free on PMC after 01/08/2015 Related Publications
The drug efflux transporter ABCB5 identifies cancer stem-like cells (CSC) in diverse human malignancies, where its expression is associated with clinical disease progression and tumor recurrence. ABCB5 confers therapeutic resistance, but other functions in tumorigenesis independent of drug efflux have not been described that might help explain why it is so broadly overexpressed in human cancer. Here we show that in melanoma-initiating cells, ABCB5 controls IL1β secretion, which serves to maintain slow cycling, chemoresistant cells through an IL1β/IL8/CXCR1 cytokine signaling circuit. This CSC maintenance circuit involved reciprocal paracrine interactions with ABCB5-negative cancer cell populations. ABCB5 blockade induced cellular differentiation, reversed resistance to multiple chemotherapeutic agents, and impaired tumor growth in vivo. Together, our results defined a novel function for ABCB5 in CSC maintenance and tumor growth.

Du Y, Su T, Zhao L, et al.
Associations of polymorphisms in DNA repair genes and MDR1 gene with chemotherapy response and survival of non-small cell lung cancer.
PLoS One. 2014; 9(6):e99843 [PubMed] Article available free on PMC after 01/08/2015 Related Publications
OBJECTIVES: We aimed to determine the associations of genetic polymorphisms of excision repair cross-complementation group 1 (ERCC1) rs11615, xeroderma pigmentosum group D (XPD/ERCC2) rs13181, X-ray repair cross complementing group 1 (XRCC1) rs25487, XRCC3 rs1799794, and breast cancer susceptibility gene 1 (BRCA1) rs1799966 from the DNA repair pathway and multiple drug resistance 1 (MDR1/ABCB1) rs1045642 with response to chemotherapy and survival of non-small cell lung cancer (NSCLC) in a Chinese population.
MATERIALS AND METHODS: A total of 352 NSCLC patients were enrolled to evaluate the associations of the six SNPs with response to chemotherapy and overall survival. Logistic regressions were applied to test the associations of genetic polymorphisms with response to chemotherapy in 161 advanced NSCLC patients. Overall survival was analyzed in 161 advanced and 156 early stage NSCLC patients using the Kaplan-Meier method with log-rank test, respectively. Multivariate Cox proportional hazards model was performed to determine the factors independently associated with NSCLC prognosis.
RESULTS: BRCA1 rs1799966 minor allele C (TC+CC vs. TT, OR = 0.402, 95% CI = 0.204-0.794, p = 0.008) and MDR1/ABCB1 rs1045642 minor allele A (GA +AA vs. GG, OR = 0.478, 95% CI = 0.244-0.934, p = 0.030) were associated with a better response to chemotherapy in advanced NSCLC patients. Survival analyses indicated that BRCA1 rs1799966 TC+CC genotypes were associated with a decreased risk of death (HR = 0.617, 95% CI = 0.402-0.948, p = 0.028) in advanced NSCLC patients, and the association was still significant after the adjustment for covariates. Multivariate Cox regression analysis showed that ERCC1 rs11615 AA genotype (P = 0.020) and smoking (p = 0.037) were associated with increased risks of death in early stage NSCLC patients after surgery.
CONCLUSIONS: Polymorphisms of genes in DNA repair pathway and MDR1 could contribute to chemotherapy response and survival of patients with NSCLC.

Wang Y, Masuyama H, Nobumoto E, et al.
The inhibition of constitutive androstane receptor-mediated pathway enhances the effects of anticancer agents in ovarian cancer cells.
Biochem Pharmacol. 2014; 90(4):356-66 [PubMed] Related Publications
BACKGROUND: Ovarian cancer is commonly treated with anticancer agents; however, many tumors become resistant. Resistance is regulated, in part, by P-glycoprotein, which is encoded by the gene multiple drug resistance 1 (MDR1) and functions as a transmembrane efflux pump for the elimination of anticancer agents. Constitutive androstane receptor (CAR) is a nuclear receptor that regulates drug metabolism through control of MDR1 and other genes.
PURPOSE: We examined whether the inhibition of CAR-mediated pathway could influence the cytotoxicity of three anticancer drugs, cisplatin, paclitaxel, and arsenic trioxide, in ovarian cancer cells.
RESULTS: We observed that the cell proliferation of several ovarian cell lines expressing CAR significantly increased when CITCO was combined with anticancer agents compared with any anticancer agent alone. The up-regulation of MDR1 and UGT1A1 by anticancer agents was further enhanced in the presence of CITCO. We confirmed that combining CITCO with anticancer agents induced significantly lower levels of apoptosis than those achieved with any single anticancer drug. CAR down-regulation by RNA interference caused a significant increase in cell growth inhibition and enhancement of apoptosis in the presence of anticancer agents. Combination of CITCO with any anticancer agents significantly enhanced CAR-mediated transcription compared with any anticancer agents alone and CAR down-regulation completely inhibited the transcription in the presence of CITCO and/or anticancer agents.
CONCLUSION: Inhibition of CAR pathway could be a novel therapeutic approach for the augmentation of sensitivity to anticancer agents, or to overcome resistance, in the treatment of ovarian cancer.

Xiong B, Ma L, Hu X, et al.
Characterization of side population cells isolated from the colon cancer cell line SW480.
Int J Oncol. 2014; 45(3):1175-83 [PubMed] Related Publications
Side population (SP) cells may play a crucial role in tumorigenesis and the recurrence of cancer. Many types of cell lines and tissues have demonstrated the presence of SP cells, including colon cancer cell lines. This study aimed to identify cancer stem cells (CSCs) in the SP of the colon cancer cell line SW480. SP cells were isolated by fluorescence-activated cell sorting (FACS), followed by serum-free medium (SFM) culture. The self-renewal, differentiated progeny, clone formation, proliferation, invasion ability, cell cycle, chemosensitivity and tumorigenic properties in SP and non-SP (NSP) cells were investigated through in vitro culture and in vivo serial transplantation. The expression profiles of ATP-binding cassette (ABC) protein transporters and stem cell-related genes were examined by RT-PCR and western blot analysis. The human colon cancer cell lines SW480, Lovo and HCT116 contain 1.1 ± 0.10, 0.93 ± 0.11 and 1.33 ± 0.05% SP cells, respectively. Flow cytometry analysis revealed that SP cells could differentiate into SP and NSP cells. SP cells had a higher proliferation potency and CFE than NSP cells. Compared to NSP cells, SP cells were also more resistant to CDDP and 5-FU, and were more invasive and displayed increased tumorigenic ability. Moreover, SP cells showed higher mRNA and protein expression of ABCG2, MDR1, OCT-4, NANOG, SOX-2, CD44 and CD133. SP cells isolated from human colon cancer cell lines harbor CSC properties that may be related to the invasive potential and therapeutic resistance of colon cancer.

Li W, Zhai B, Zhi H, et al.
Association of ABCB1, β tubulin I, and III with multidrug resistance of MCF7/DOC subline from breast cancer cell line MCF7.
Tumour Biol. 2014; 35(9):8883-91 [PubMed] Related Publications
Docetaxel is a first-line chemotherapeutic agent for treating advanced breast cancer. The development of chemoresistance or multidrug resistance (MDR), however, results in breast cancer chemotherapy failure. This study aims to explore the molecular mechanisms underlying docetaxel-resistance in treatment of breast cancer. The docetaxel-resistant subline MCF7/DOC, derived from the parental sensitive breast cancer cell line MCF7, was established by intermittent exposure to moderate concentrations of docetaxel, followed by examination of its phenotypes. The MCF7/DOC subline showed cross resistance against paclitaxel, doxorubicin, methotrexate, and 5-Fu. Compared to the parental MCF7, MCF7/DOC cells were enlarged with heterogeneous sizes and a cobblestone and polygonal appearance. They were arrested at G2/M phase and proliferated slowly. The colony formation potential of MCF7/DOC in soft agar was significantly increased. MCF7/DOC cells showed reduced intracellular accumulation and increased efflux of rhodamine 123. The mRNA expression level of adenosine triphosphate binding cassette (ABC) transporter family, i.e., ABCB1, ABCC1, ABCC2, ABCG2, and β tubulin isotypes were characterized by quantitative PCR. High-level expression of ABCB1, βI, and βIII tubulin mRNA in MCF7/DOC was detected. Downregulation of ABCB1, βI, and βIII tubulin mediated by three combined siRNAs resulted in stronger growth inhibition of MCF7/DOC than inhibition of the expression of individual genes. ABCB1, βI, and βIII tubulin might contribute to the MDR of MCF7/DOC and be potential therapeutic targets for overcoming MDR of breast cancer.

Othman RT, Kimishi I, Bradshaw TD, et al.
Overcoming multiple drug resistance mechanisms in medulloblastoma.
Acta Neuropathol Commun. 2014; 2:57 [PubMed] Article available free on PMC after 01/08/2015 Related Publications
INTRODUCTION: Medulloblastoma (MB) is the most common malignant paediatric brain tumour. Recurrence and progression of disease occurs in 15-20% of standard risk and 30-40% of high risk patients. We analysed whether circumvention of chemoresistance pathways (drug export, DNA repair and apoptotic inhibition) can restore chemotherapeutic efficacy in a panel of MB cell lines.
RESULTS: We demonstrate, by immunohistochemistry in patient tissue microarrays, that ABCB1 is expressed in 43% of tumours and is significantly associated with high-risk. We show that ABCB1, O6-methylguanine-DNA-methyltransferase (MGMT) and BCL2 family members are differentially expressed (by quantitative reverse transcription polymerase chain reaction, Western blotting and flow cytometry) in MB cell lines. Based on these findings, each pathway was then inhibited or circumvented and cell survival assessed using clonogenic assays. Inhibition of ABCB1 using vardenafil or verapamil resulted in a significant increase in sensitivity to etoposide in ABCB1-expressing MB cell lines. Sensitivity to temozolomide (TMZ) was MGMT-dependent, but two novel imidazotetrazine derivatives (N-3 sulfoxide and N-3 propargyl TMZ analogues) demonstrated ≥7 fold and ≥3 fold more potent cytotoxicity respectively compared to TMZ in MGMT-expressing MB cell lines. Activity of the BAD mimetic ABT-737 was BCL2A1 and ABCB1 dependent, whereas the pan-BCL2 inhibitor obatoclax was effective as a single cytotoxic agent irrespective of MCL1, BCL2, BCL2A1, or ABCB1 expression.
CONCLUSIONS: ABCB1 is associated with high-risk MB; hence, inhibition of ABCB1 by vardenafil may represent a valid approach in these patients. Imidazotetrazine analogues of TMZ and the BH3 mimetic obatoclax are promising clinical candidates in drug resistant MB tumours expressing MGMT and BCL2 anti-apoptotic members respectively.

Hollingshead MG, Stockwin LH, Alcoser SY, et al.
Gene expression profiling of 49 human tumor xenografts from in vitro culture through multiple in vivo passages--strategies for data mining in support of therapeutic studies.
BMC Genomics. 2014; 15:393 [PubMed] Article available free on PMC after 01/08/2015 Related Publications
BACKGROUND: Development of cancer therapeutics partially depends upon selection of appropriate animal models. Therefore, improvements to model selection are beneficial.
RESULTS: Forty-nine human tumor xenografts at in vivo passages 1, 4 and 10 were subjected to cDNA microarray analysis yielding a dataset of 823 Affymetrix HG-U133 Plus 2.0 arrays. To illustrate mining strategies supporting therapeutic studies, transcript expression was determined: 1) relative to other models, 2) with successive in vivo passage, and 3) during the in vitro to in vivo transition. Ranking models according to relative transcript expression in vivo has the potential to improve initial model selection. For example, combining p53 tumor expression data with mutational status could guide selection of tumors for therapeutic studies of agents where p53 status purportedly affects efficacy (e.g., MK-1775). The utility of monitoring changes in gene expression with extended in vivo tumor passages was illustrated by focused studies of drug resistance mediators and receptor tyrosine kinases. Noteworthy observations included a significant decline in HCT-15 colon xenograft ABCB1 transporter expression and increased expression of the kinase KIT in A549 with serial passage. These trends predict sensitivity to agents such as paclitaxel (ABCB1 substrate) and imatinib (c-KIT inhibitor) would be altered with extended passage. Given that gene expression results indicated some models undergo profound changes with in vivo passage, a general metric of stability was generated so models could be ranked accordingly. Lastly, changes occurring during transition from in vitro to in vivo growth may have important consequences for therapeutic studies since targets identified in vitro could be over- or under-represented when tumor cells adapt to in vivo growth. A comprehensive list of mouse transcripts capable of cross-hybridizing with human probe sets on the HG-U133 Plus 2.0 array was generated. Removal of the murine artifacts followed by pairwise analysis of in vitro cells with respective passage 1 xenografts and GO analysis illustrates the complex interplay that each model has with the host microenvironment.
CONCLUSIONS: This study provides strategies to aid selection of xenograft models for therapeutic studies. These data highlight the dynamic nature of xenograft models and emphasize the importance of maintaining passage consistency throughout experiments.

Zheng T, Yin D, Lu Z, et al.
Nutlin-3 overcomes arsenic trioxide resistance and tumor metastasis mediated by mutant p53 in Hepatocellular Carcinoma.
Mol Cancer. 2014; 13:133 [PubMed] Article available free on PMC after 01/08/2015 Related Publications
BACKGROUND: Arsenic trioxide has been demonstrated as an effective anti-cancer drug against leukemia and solid tumors both in vitro and in vivo. However, recent phase II trials demonstrated that single agent arsenic trioxide was poorly effective against hepatocellular carcinoma (HCC), which might be due to drug resistance.
METHODS: Mutation detection of p53 gene in arsenic trioxide resistant HCC cell lines was performed. The therapeutic effects of arsenic trioxide and Nutlin-3 on HCC were evaluated both in vitro and in vivo. A series of experiments including MTT, apoptosis assays, co-Immunoprecipitation, siRNA transfection, lentiviral infection, cell migration, invasion, and epithelial-mesenchy-mal transition (EMT) assays were performed to investigate the underlying mechanisms.
RESULTS: The acquisition of p53 mutation contributed to arsenic trioxide resistance and enhanced metastatic potential of HCC cells. Mutant p53 (Mutp53) silence could re-sensitize HCC resistant cells to arsenic trioxide and inhibit the metastatic activities, while mutp53 overexpression showed the opposite effects. Neither arsenic trioxide nor Nutlin-3 could exhibit obvious effects against arsenic trioxide resistant HCC cells, while combination of them showed significant effects. Nutlin-3 can not only increase the intracellular arsenicals through inhibition of p-gp but also promote the p73 activation and mutp53 degradation mediated by arsenic trioxide. In vivo experiments indicated that Nutlin-3 can potentiate the antitumor activities of arsenic trioxide in an orthotopic hepatic tumor model and inhibit the metastasis to lung.
CONCLUSIONS: Acquisitions of p53 mutations contributed to the resistance of HCC to arsenic trioxide. Nutlin-3 could overcome arsenic trioxide resistance and inhibit tumor metastasis through p73 activation and promoting mutant p53 degradation mediated by arsenic trioxide.

Xing Y, Wang ZH, Ma DH, Han Y
FTY720 enhances chemosensitivity of colon cancer cells to doxorubicin and etoposide via the modulation of P-glycoprotein and multidrug resistance protein 1.
J Dig Dis. 2014; 15(5):246-59 [PubMed] Related Publications
OBJECTIVE: This study aimed to investigate the effects of FTY720 on inducing cell growth inhibition and enhancing the cytotoxicity of anti-cancer drugs in the human colon cancer cell line HCT-8 and its multidrug-resistant cell line HCT-8/5-fluorouracil (HCT-8/5-Fu).
METHODS: Cell viability and apoptosis after being treated with FTY720 alone or in combination with doxorubicin (DOX) and etoposide (VP16) were tested in HCT-8 and HCT-8/5-Fu cells. The changes in P-glycoprotein (P-gp) and multidrug resistance protein 1 (MRP1) were determined at the mRNA and functional levels.
RESULTS: FTY720 showed anti-proliferative activity against cancer cells in a dose-dependent and time-dependent manner and could enhance the cytotoxicity of DOX and VP16 in both HCT-8 and HCT-8/5-Fu cell lines. In addition, treatment with FTY720 resulted in the promotion of VP16-induced cell apoptosis and an increased accumulation of intracellular DOX and two specific fluorescent substrates of P-gp and MRP1 through the inhibition of efflux and the suppression of gene expression.
CONCLUSION: FTY720 exerts its chemosensitization effect in HCT-8 and HCT-8/5-Fu cell lines by promoting cell apoptosis and inhibiting P-gp and MRP1, which could be applied as a potential co-adjuvant therapeutic modality.

Ganju A, Yallapu MM, Khan S, et al.
Nanoways to overcome docetaxel resistance in prostate cancer.
Drug Resist Updat. 2014; 17(1-2):13-23 [PubMed] Article available free on PMC after 05/04/2015 Related Publications
Prostate cancer is the most common non-cutaneous malignancy in American men. Docetaxel is a useful chemotherapeutic agent for prostate cancer that has been available for over a decade, but the length of the treatment and systemic side effects hamper compliance. Additionally, docetaxel resistance invariably emerges, leading to disease relapse. Docetaxel resistance is either intrinsic or acquired by adopting various mechanisms that are highly associated with genetic alterations, decreased influx and increased efflux of drugs. Several combination therapies and small P-glycoprotein inhibitors have been proposed to improve the therapeutic potential of docetaxel in prostate cancer. Novel therapeutic strategies that may allow reversal of docetaxel resistance include alterations of enzymes, improving drug uptake and enhancement of apoptosis. In this review, we provide the most current docetaxel reversal approaches utilizing nanotechnology. Nanotechnology mediated docetaxel delivery is superior to existing therapeutic strategies and a more effective method to induce P-glycoprotein inhibition, enhance cellular uptake, maintain sustained drug release, and improve bioavailability.

Hoang B, Ernsting MJ, Murakami M, et al.
Docetaxel-carboxymethylcellulose nanoparticles display enhanced anti-tumor activity in murine models of castration-resistant prostate cancer.
Int J Pharm. 2014; 471(1-2):224-33 [PubMed] Article available free on PMC after 25/08/2015 Related Publications
Docetaxel (DTX) remains the only effective drug for prolonging survival and improving quality of life of metastatic castration resistant prostate cancer (mCRPC) patients. Despite some clinical successes with DTX-based therapies, advent of cumulative toxicity and development of drug resistance limit its long-term clinical application. The integration of nanotechnology for drug delivery can be exploited to overcome the major intrinsic limitations of DTX therapy for mCRPC. We evaluated whether reformulation of DTX by facile conjugation to carboxymethylcellulose nanoparticles (Cellax) can improve the efficacy and safety of the drug in s.c. and bone metastatic models of CRPC. A single dose of the nanoparticles completely regressed s.c. PC3 tumor xenografts in mice. In addition, Cellax elicited fewer side effects compared to native DTX. Importantly, Cellax did not increase the expression of drug resistance molecules in androgen-independent PC3 prostate cancer cells in comparison with DTX. Lastly, in a bone metastatic model of CRPC, Cellax treatment afforded a 2- to 3-fold improvement in survival and enhancements in quality-of-life of the animals over DTX and saline controls. These results demonstrate the potential of Cellax in improving the treatment of mCRPC.

Miura JT, Johnston FM, Thomas J, et al.
Molecular profiling in gastric cancer: examining potential targets for chemotherapy.
J Surg Oncol. 2014; 110(3):302-6 [PubMed] Related Publications
BACKGROUND AND OBJECTIVES: Current NCCN guidelines recommend epirubicin (E), cisplatin (C), and 5-fluorouracil (F) as a first-line therapeutic approach for operable gastric adenocarcinoma (GC). Molecular profiling (MP) was used to evaluate the expression of chemotherapy targeted biomarkers associated with ECF therapy and other first-line cytotoxic regimens for GC.
METHODS: GC specimens were analyzed by immunohistochemistry (IHC) for TOP2A, TS, ERCC1, PGP, and TOPO1 expression (Caris Life Sciences, Phoenix, AZ) from 2009 to 2012.
RESULTS: A total of 230 GC specimens were analyzed. The median age of patients was 61 (IQR: 50-72) years with the majority being male (n = 139, 60%). IHC actionable targets included: 60% (n = 138) high TOP2A, 55% (n = 127) negative ERCC1, and 63% (n = 145) negative TS, indicating potential benefit from E, C, and F, respectively. Simultaneous expression analysis demonstrated only 24% (n = 55) of patients had gene expression levels that suggested uniform sensitivity to ECF. Biomarker results of 6.5% (n = 15) of patients revealed a potential complete lack of sensitivity to first-line ECF.
CONCLUSIONS: MP of GC has the potential to define patients who would derive the greatest benefit from current therapies. Prospective controlled studies are required to validate the role of biomarkers in the management of GC patients.

Li JZ, Tian ZQ, Jiang SN, Feng T
Effect of variation of ABCB1 and GSTP1 on osteosarcoma survival after chemotherapy.
Genet Mol Res. 2014; 13(2):3186-92 [PubMed] Related Publications
We conducted a comprehensive study to investigate the role of genes involved in metabolic and transport pathways in response to chemotherapy and clinical outcome of osteosarcoma patients. Genotyping of seven gene polymorphisms was performed on a 384-well plate format on the Sequenom MassARRAY platform in 162 patients with osteosarcoma. We studied the correlation of the seven gene polymorphisms with response to chemotherapy and clinical outcome of patients. Individuals with the ABCB1 TT genotype had a higher probability of responding poorly to chemotherapy, indicated by an odds ratio (OR) of 2.64 (95%CI=1.04-6.83). Similarly, the genotype of GSTP1 GG was significantly associated with improved responses to chemotherapy, indicated by an OR of 3.33 (95%CI=1.26-8.99). The ABCB1 TT and GSTP1 GG genotypes were significantly associated with a shorter overall survival (OS). Our study found that two gene polymorphisms in two transporter genes and one Phase II metabolism enzymes are associated with response to chemotherapy and OS in osteosarcoma patients, suggesting the potential of the two gene polymorphisms as prognostic biomarkers for osteosarcoma.

Sun L, Liu L, Liu X, et al.
Gastric cancer cell adhesion to laminin enhances acquired chemotherapeutic drug resistance mediated by MGr1-Ag/37LRP.
Oncol Rep. 2014; 32(1):105-14 [PubMed] Related Publications
Adhesion of cancer cells to the extracellular matrix (ECM) causes a novel acquired chemotherapeutic drug‑resistant phenotype, referred to as cell adhesion-mediated drug resistance (CAM-DR). Our previous studies suggested that the adhesion molecule MGr1-Ag/37LRP may promote multidrug resistance in gastric cancer cells. Therefore, we investigated MGr1-Ag/37LRP binding-induced adhesion, and its role in CAM-DR. Initial studies revealed that, after adhesion to the ECM, the multidrug-resistant gastric cancer cell lines SGC7901/VCR and SGC7901/ADR showed significantly higher mean adhesive cell numbers than non‑resistant SGC7901 cells. We then investigated expression of MGr1-Ag/37LRP in gastric cancer cells adhering to laminin. Western blotting, RT-PCR and dual-luciferase reporter assays showed that laminin induced MGr1-Ag/37LRP expression and activity. In vitro and in vivo assays revealed that small interfering RNA against MGr1-Ag/37LRP significantly reduced CAM-DR in SGC7901/VCR cells. In vivo and in vitro analyses revealed that binding of MGr1-Ag/37LRP decreased intracellular drug accumulation by increasing P-glycoprotein and multidrug-associated protein expression, and inhibited drug-induced apoptosis by regulating Bcl-2 and Bax expression. These results indicate that MGr1-Ag/37LRP contributes to laminin-mediated CAM-DR in gastric cancer cells, and is a potentially effective target for reversing this phenomenon in gastric cancer.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. ABCB1, Cancer Genetics Web: http://www.cancer-genetics.org/ABCB1.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 27 February, 2015     Cancer Genetics Web, Established 1999