TYK2

Gene Summary

Gene:TYK2; tyrosine kinase 2
Aliases: JTK1, IMD35
Location:19p13.2
Summary:This gene encodes a member of the tyrosine kinase and, more specifically, the Janus kinases (JAKs) protein families. This protein associates with the cytoplasmic domain of type I and type II cytokine receptors and promulgate cytokine signals by phosphorylating receptor subunits. It is also component of both the type I and type III interferon signaling pathways. As such, it may play a role in anti-viral immunity. A mutation in this gene has been associated with hyperimmunoglobulin E syndrome (HIES) - a primary immunodeficiency characterized by elevated serum immunoglobulin E. [provided by RefSeq, Jul 2008]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:non-receptor tyrosine-protein kinase TYK2
Source:NCBIAccessed: 30 August, 2019

Ontology:

What does this gene/protein do?
Show (15)
Pathways:What pathways are this gene/protein implicaed in?
Show (7)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 30 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 30 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (6)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: TYK2 (cancer-related)

Sun L, Feng L, Cui J
Increased expression of claudin-17 promotes a malignant phenotype in hepatocyte via Tyk2/Stat3 signaling and is associated with poor prognosis in patients with hepatocellular carcinoma.
Diagn Pathol. 2018; 13(1):72 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Hepatocellular carcinoma (HCC) is the second leading cause of cancer death in Asia; however, the molecular mechanism in its tumorigenesis remains unclear. Abnormal expression of claudins (CLDNs), a family of tight junction (TJ) proteins, plays an important role in the metastatic phenotype of epithelial-derived tumors by affecting tight junction structure, function and related cellular signaling pathways. In a previous study, we used a tissue chip assay to identify CLDN17 as an upregulated gene in HCC. Here we aimed to use molecular biology technology to explore the effect of CLDN17 on the malignant phenotype of HCC and the underlying molecular mechanism, with the objective of identifying a new target for HCC treatment and the control of HCC metastasis.
METHOD: The expression levels of CLDN17 in HCC tissues and histologically non-neoplastic hepatic tissues were explored by immunohistochemistry. Stable transfection of the hepatocyte line HL7702 with CLDN17 was detected by real-time polymerase chain reaction (PCR), western blotting and immunofluorescence. The impact of CLDN17 on the malignant phenotype of HL7702 cells in vitro was assessed by a Cell Counting Kit-8 (CCK8) assay, a Transwell assay and a wound-healing experiment. Western blotting was utilized to detect the activation state of Tyrosine kinase 2 (Tyk2) / signal transducer and activator of transcription3 (Stat3) pathway. A Tyk2 RNA interference (RNAi) was utilized to determine the impact of the Tyk2/Stat3 signaling pathway on the malignant phenotype of hepatocytes.
RESULTS: In this work, our research group first found that CLDN17 was highly expressed in HCC tissues and was associated with poor prognosis. In addition, we demonstrated that CLDN17 affected the Stat3 signaling pathway via Tyk2 and ultimately enhanced the migration ability of hepatocytes.
CONCLUSION: In conclusion, we confirmed that the upregulated expression of CLDN17 significantly enhances the migration ability of hepatocytes in vitro and we found that the activation of the Stat3 pathway by Tyk2 may an important mechanism by which CLDN17 promotes aggressiveness in hepatocytes.

Prutsch N, Gurnhofer E, Suske T, et al.
Dependency on the TYK2/STAT1/MCL1 axis in anaplastic large cell lymphoma.
Leukemia. 2019; 33(3):696-709 [PubMed] Related Publications
TYK2 is a member of the JAK family of tyrosine kinases that is involved in chromosomal translocation-induced fusion proteins found in anaplastic large cell lymphomas (ALCL) that lack rearrangements activating the anaplastic lymphoma kinase (ALK). Here we demonstrate that TYK2 is highly expressed in all cases of human ALCL, and that in a mouse model of NPM-ALK-induced lymphoma, genetic disruption of Tyk2 delays the onset of tumors and prolongs survival of the mice. Lymphomas in this model lacking Tyk2 have reduced STAT1 and STAT3 phosphorylation and reduced expression of Mcl1, a pro-survival member of the BCL2 family. These findings in mice are mirrored in human ALCL cell lines, in which TYK2 is activated by autocrine production of IL-10 and IL-22 and by interaction with specific receptors expressed by the cells. Activated TYK2 leads to STAT1 and STAT3 phosphorylation, activated expression of MCL1 and aberrant ALCL cell survival. Moreover, TYK2 inhibitors are able to induce apoptosis in ALCL cells, regardless of the presence or absence of an ALK-fusion. Thus, TYK2 is a dependency that is required for ALCL cell survival through activation of MCL1 expression. TYK2 represents an attractive drug target due to its essential enzymatic domain, and TYK2-specific inhibitors show promise as novel targeted inhibitors for ALCL.

Pritchard AL, Johansson PA, Nathan V, et al.
Germline mutations in candidate predisposition genes in individuals with cutaneous melanoma and at least two independent additional primary cancers.
PLoS One. 2018; 13(4):e0194098 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: While a number of autosomal dominant and autosomal recessive cancer syndromes have an associated spectrum of cancers, the prevalence and variety of cancer predisposition mutations in patients with multiple primary cancers have not been extensively investigated. An understanding of the variants predisposing to more than one cancer type could improve patient care, including screening and genetic counselling, as well as advancing the understanding of tumour development.
METHODS: A cohort of 57 patients ascertained due to their cutaneous melanoma (CM) diagnosis and with a history of two or more additional non-cutaneous independent primary cancer types were recruited for this study. Patient blood samples were assessed by whole exome or whole genome sequencing. We focussed on variants in 525 pre-selected genes, including 65 autosomal dominant and 31 autosomal recessive cancer predisposition genes, 116 genes involved in the DNA repair pathway, and 313 commonly somatically mutated in cancer. The same genes were analysed in exome sequence data from 1358 control individuals collected as part of non-cancer studies (UK10K). The identified variants were classified for pathogenicity using online databases, literature and in silico prediction tools.
RESULTS: No known pathogenic autosomal dominant or previously described compound heterozygous mutations in autosomal recessive genes were observed in the multiple cancer cohort. Variants typically found somatically in haematological malignancies (in JAK1, JAK2, SF3B1, SRSF2, TET2 and TYK2) were present in lymphocyte DNA of patients with multiple primary cancers, all of whom had a history of haematological malignancy and cutaneous melanoma, as well as colorectal cancer and/or prostate cancer. Other potentially pathogenic variants were discovered in BUB1B, POLE2, ROS1 and DNMT3A. Compared to controls, multiple cancer cases had significantly more likely damaging mutations (nonsense, frameshift ins/del) in tumour suppressor and tyrosine kinase genes and higher overall burden of mutations in all cancer genes.
CONCLUSIONS: We identified several pathogenic variants that likely predispose to at least one of the tumours in patients with multiple cancers. We additionally present evidence that there may be a higher burden of variants of unknown significance in 'cancer genes' in patients with multiple cancer types. Further screens of this nature need to be carried out to build evidence to show if the cancers observed in these patients form part of a cancer spectrum associated with single germline variants in these genes, whether multiple layers of susceptibility exist (oligogenic or polygenic), or if the occurrence of multiple different cancers is due to random chance.

Kunchala P, Kuravi S, Jensen R, et al.
When the good go bad: Mutant NPM1 in acute myeloid leukemia.
Blood Rev. 2018; 32(3):167-183 [PubMed] Related Publications
Nucleophosmin 1 (NPM1) is a nucleolar phosphoprotein that performs diverse biological functions including molecular chaperoning, ribosome biogenesis, DNA repair, and genome stability. Acute myeloid leukemia (AML) is a heterogeneous disease, more than half of the AML cases exhibit normal karyotype (NK). Approximately 50-60 percent of patients with NK-AML carry NPM1 mutations which are characterized by cytoplasmic dislocation of the NPM1 protein. In AML, mutant NPM1 (NPM1c+) acts in a dominant negative fashion and also blocks the differentiation of myeloid cells through gain-of-function for the AML phenotype. Currently, there is limited knowledge on the gain-of-function mechanism of mutant NPM1. Here, we review the known mechanisms of mutant NPM1 in the pathogenesis of AML. We describe genetic abnormalities, the clinical significance of exon-12 mutations in the NPM1 gene, and chromosomal translocations including the recently discovered NPM1-TYK2, and NPM1-HAUS1. Also, we outline the possible therapeutic interventions for the treatment of AML by targeting NPM1. Overall, the review will summarize present knowledge on mutant NPM1 origin, pathogenesis, and therapy in AML.

Albacker LA, Wu J, Smith P, et al.
Loss of function JAK1 mutations occur at high frequency in cancers with microsatellite instability and are suggestive of immune evasion.
PLoS One. 2017; 12(11):e0176181 [PubMed] Free Access to Full Article Related Publications
Immune evasion is a well-recognized hallmark of cancer and recent studies with immunotherapy agents have suggested that tumors with increased numbers of neoantigens elicit greater immune responses. We hypothesized that the immune system presents a common selective pressure on high mutation burden tumors and therefore immune evasion mutations would be enriched in high mutation burden tumors. The JAK family of kinases is required for the signaling of a host of immune modulators in tumor, stromal, and immune cells. Therefore, we analyzed alterations in this family for the hypothesized signature of an immune evasion mutation. Here, we searched a database of 61,704 unique solid tumors for alterations in the JAK family kinases (JAK1/2/3, TYK2). We used The Cancer Genome Atlas and Cancer Cell Line Encyclopedia data to confirm and extend our findings by analyzing gene expression patterns. Recurrent frameshift mutations in JAK1 were associated with high mutation burden and microsatellite instability. These mutations occurred in multiple tumor types including endometrial, colorectal, stomach, and prostate carcinomas. Analyzing gene expression signatures in endometrial and stomach adenocarcinomas revealed that tumors with a JAK1 frameshift exhibited reduced expression of interferon response signatures and multiple anti-tumor immune signatures. Importantly, endometrial cancer cell lines exhibited similar gene expression changes that were expected to be tumor cell intrinsic (e.g. interferon response) but not those expected to be tumor cell extrinsic (e.g. NK cells). From these data, we derive two primary conclusions: 1) JAK1 frameshifts are loss of function alterations that represent a potential pan-cancer adaptation to immune responses against tumors with microsatellite instability; 2) The mechanism by which JAK1 loss of function contributes to tumor immune evasion is likely associated with loss of the JAK1-mediated interferon response.

Wonganan O, He YJ, Shen XF, et al.
6-Hydroxy-3-O-methyl-kaempferol 6-O-glucopyranoside potentiates the anti-proliferative effect of interferon α/β by promoting activation of the JAK/STAT signaling by inhibiting SOCS3 in hepatocellular carcinoma cells.
Toxicol Appl Pharmacol. 2017; 336:31-39 [PubMed] Related Publications
Suppressor of cytokine signaling 3 (SOCS3) is a key negative regulator of type I interferon (IFN α/β) signaling. Inhibition of SOCS3 by small molecules may be a new strategy to enhance the efficacy of type I IFN and reduce its side effects. We established a cell-based screening assay using human hepatoma HepG2 cells stably transfected with a plasmid wherein the luciferase reporter activity was propelled by interferon α-stimulated response element (ISRE), which is a motif specifically recognized by type I IFN-induced activation of Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway. After screening our chemical library, 6-hydroxy-3-O-methyl-kaempferol 6-O-glucopyranoside (K6G) was identified to be a potent activator of type I IFN with EC

Tasian SK, Loh ML, Hunger SP
Philadelphia chromosome-like acute lymphoblastic leukemia.
Blood. 2017; 130(19):2064-2072 [PubMed] Free Access to Full Article Related Publications
Philadelphia chromosome (Ph)-like acute lymphoblastic leukemia (ALL), also referred to as

Herrmann A, Lahtz C, Nagao T, et al.
CTLA4 Promotes Tyk2-STAT3-Dependent B-cell Oncogenicity.
Cancer Res. 2017; 77(18):5118-5128 [PubMed] Free Access to Full Article Related Publications
CTL-associated antigen 4 (CTLA4) is a well-established immune checkpoint for antitumor immune responses. The protumorigenic function of CTLA4 is believed to be limited to T-cell inhibition by countering the activity of the T-cell costimulating receptor CD28. However, as we demonstrate here, there are two additional roles for CTLA4 in cancer, including via CTLA4 overexpression in diverse B-cell lymphomas and in melanoma-associated B cells. CTLA4-CD86 ligation recruited and activated the JAK family member Tyk2, resulting in STAT3 activation and expression of genes critical for cancer immunosuppression and tumor growth and survival. CTLA4 activation resulted in lymphoma cell proliferation and tumor growth, whereas silencing or antibody-blockade of CTLA4 in B-cell lymphoma tumor cells in the absence of T cells inhibits tumor growth. This inhibition was accompanied by reduction of Tyk2/STAT3 activity, tumor cell proliferation, and induction of tumor cell apoptosis. The CTLA4-Tyk2-STAT3 signal pathway was also active in tumor-associated nonmalignant B cells in mouse models of melanoma and lymphoma. Overall, our results show how CTLA4-induced immune suppression occurs primarily via an intrinsic STAT3 pathway and that CTLA4 is critical for B-cell lymphoma proliferation and survival.

Johnson HM, Ahmed CM
Noncanonical IFN Signaling: Mechanistic Linkage of Genetic and Epigenetic Events.
Mediators Inflamm. 2016; 2016:9564814 [PubMed] Free Access to Full Article Related Publications
The canonical model of cytokine signaling via the JAK/STAT pathway dominates our view of signal transduction but provides no insight into the significance of the simultaneous presence of activated JAKs and STATs in the nucleus of cells treated with cytokines. Such a mechanistic shortcoming challenges the usefulness of the model in its present form. Focusing on the interferon (IFN) cytokines, we have developed a noncanonical model of IFN signaling that naturally connects activated JAKs and STATs at or near response elements of genes that are activated by the IFNs. Specifically, cells treated with IFN

Hirbe AC, Kaushal M, Sharma MK, et al.
Clinical genomic profiling identifies TYK2 mutation and overexpression in patients with neurofibromatosis type 1-associated malignant peripheral nerve sheath tumors.
Cancer. 2017; 123(7):1194-1201 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive sarcomas that arise at an estimated frequency of 8% to 13% in individuals with neurofibromatosis type 1 (NF1). Compared with their sporadic counterparts, NF1-associated MPNSTs (NF1-MPNSTs) develop in young adults, frequently recur (approximately 50% of cases), and carry a dismal prognosis. As such, most individuals affected with NF1-MPNSTs die within 5 years of diagnosis, despite surgical resection combined with radiotherapy and chemotherapy.
METHODS: Clinical genomic profiling was performed using 1000 ng of DNA from 7 cases of NF1-MPNST, and bioinformatic analyses were conducted to identify genes with actionable mutations.
RESULTS: A total of 3 women and 4 men with NF1-MPNST were identified (median age, 38 years). Nonsynonymous mutations were discovered in 4 genes (neurofibromatosis type 1 [NF1], ROS proto-oncogene 1 [ROS1], tumor protein p53 [TP53], and tyrosine kinase 2 [TYK2]), which in addition were mutated in other MPNST cases in this sample set. Consistent with their occurrence in individuals with NF1, all tumors had at least 1 mutation in the NF1 gene. Whereas TP53 gene mutations are frequently observed in other cancers, ROS1 mutations are common in melanoma (15%-35%), another neural crest-derived malignancy. In contrast, TYK2 mutations are uncommon in other malignancies (<7%). In the current series, recurrent TYK2 mutations were identified in 2 cases of NF1-MPNST (30% of cases), whereas TYK2 protein overexpression was observed in 60% of MPNST cases using an independently generated tissue microarray, regardless of NF1 status.
CONCLUSIONS: Clinical genomic analysis of the current series of NF1-MPNST cases found that TYK2 is a new gene mutated in MPNST. Future work will focus on examining the utility of TYK2 expression as a biomarker and therapeutic target for these cancers. Cancer 2017;123:1194-1201. © 2016 American Cancer Society.

Rui L, Drennan AC, Ceribelli M, et al.
Epigenetic gene regulation by Janus kinase 1 in diffuse large B-cell lymphoma.
Proc Natl Acad Sci U S A. 2016; 113(46):E7260-E7267 [PubMed] Free Access to Full Article Related Publications
Janus kinases (JAKs) classically signal by activating STAT transcription factors but can also regulate gene expression by epigenetically phosphorylating histone H3 on tyrosine 41 (H3Y41-P). In diffuse large B-cell lymphomas (DLBCLs), JAK signaling is a feature of the activated B-cell (ABC) subtype and is triggered by autocrine production of IL-6 and IL-10. Whether this signaling involves STAT activation, epigenetic modification of chromatin, or both mechanisms is unknown. Here we use genetic and pharmacological inhibition to show that JAK1 signaling sustains the survival of ABC DLBCL cells. Whereas STAT3 contributed to the survival of ABC DLBCL cell lines, forced STAT3 activity could not protect these cells from death following JAK1 inhibition, suggesting epigenetic JAK1 action. JAK1 regulated the expression of nearly 3,000 genes in ABC DLBCL cells, and the chromatin surrounding many of these genes was modified by H3Y41-P marks that were diminished by JAK1 inhibition. These JAK1 epigenetic target genes encode important regulators of ABC DLBCL proliferation and survival, including IRF4, MYD88, and MYC. A small molecule JAK1 inhibitor cooperated with the BTK inhibitor ibrutinib in reducing IRF4 levels and acted synergistically to kill ABC DLBCL cells, suggesting that this combination should be evaluated in clinical trials.

Waanders E, Scheijen B, Jongmans MC, et al.
Germline activating TYK2 mutations in pediatric patients with two primary acute lymphoblastic leukemia occurrences.
Leukemia. 2017; 31(4):821-828 [PubMed] Related Publications
The contribution of genetic predisposing factors to the development of pediatric acute lymphoblastic leukemia (ALL), the most frequently diagnosed cancer in childhood, has not been fully elucidated. Children presenting with multiple de novo leukemias are more likely to suffer from genetic predisposition. Here, we selected five of these patients and analyzed the mutational spectrum of normal and malignant tissues. In two patients, we identified germline mutations in TYK2, a member of the JAK tyrosine kinase family. These mutations were located in two adjacent codons of the pseudokinase domain (p.Pro760Leu and p.Gly761Val). In silico modeling revealed that both mutations affect the conformation of this autoregulatory domain. Consistent with this notion, both germline mutations promote TYK2 autophosphorylation and activate downstream STAT family members, which could be blocked with the JAK kinase inhibitor I. These data indicate that germline activating TYK2 mutations predispose to the development of ALL.

Andreasen S, Heegaard S, Grauslund M, Homøe P
The interleukin-6/Janus kinase/STAT3 pathway in pleomorphic adenoma and carcinoma ex pleomorphic adenoma of the lacrimal gland.
Acta Ophthalmol. 2016; 94(8):798-804 [PubMed] Related Publications
PURPOSE: Pleomorphic adenoma (PA) is the most common tumour of the lacrimal gland, but very little is known about its biology. It has a tendency to recur and an ability to transform into the high-grade malignancy carcinoma ex pleomorphic adenoma (ca-ex-PA), which is also largely unexplored. In this study, we examine the expression of the interleukin-6/Janus kinase/STAT3 (IL-6/JAK/STAT3) pathway components in PA and ca-ex-PA.
METHODS: Sixteen PAs and two ca-ex-PAs were examined with immunohistochemistry. Seven PAs were subjected to microdissection and subsequent qPCR.
RESULTS: The IL-6/JAK/STAT3 pathway was overexpressed in PA compared to normal lacrimal gland. Overexpression of phosphorylated JAK1 (p-JAK1) and cyclin D1 was significantly overexpressed in ductal cells compared with myoepithelial cells in PA. A shift from p-JAK1 to p-JAK2 and p-Tyk2 overexpression was seen between PA and ca-ex-PA, combined with a high p-STAT3 expression in the latter.
CONCLUSION: The IL-6/JAK/STAT3 pathway is overexpressed in PA, and this overexpression was even more pronounced in ca-ex-PA, with a shift in the JAKs mediating STAT3 phosphorylation. Future studies are needed to clarify whether PA and ca-ex-PA could be treated with targeted therapy directed against components of the IL-6/JAK/STAT3 pathway.

Prasad A, Rabionet R, Espinet B, et al.
Identification of Gene Mutations and Fusion Genes in Patients with Sézary Syndrome.
J Invest Dermatol. 2016; 136(7):1490-1499 [PubMed] Related Publications
Sézary syndrome is a leukemic form of cutaneous T-cell lymphoma with an aggressive clinical course. The genetic etiology of the disease is poorly understood, with chromosomal abnormalities and mutations in some genes being involved in the disease. The goal of our study was to understand the genetic basis of the disease by looking for driver gene mutations and fusion genes in 15 erythrodermic patients with circulating Sézary cells, 14 of them fulfilling the diagnostic criteria of Sézary syndrome. We have discovered genes that could be involved in the pathogenesis of Sézary syndrome. Some of the genes that are affected by somatic point mutations include ITPR1, ITPR2, DSC1, RIPK2, IL6, and RAG2, with some of them mutated in more than one patient. We observed several somatic copy number variations shared between patients, including deletions and duplications of large segments of chromosome 17. Genes with potential function in the T-cell receptor signaling pathway and tumorigenesis were disrupted in Sézary syndrome patients, for example, CBLB, RASA2, BCL7C, RAMP3, TBRG4, and DAD1. Furthermore, we discovered several fusion events of interest involving RASA2, NFKB2, BCR, FASN, ZEB1, TYK2, and SGMS1. Our work has implications for the development of potential therapeutic approaches for this aggressive disease.

Zhao LJ, He SF, Wang W, et al.
Interferon alpha antagonizes STAT3 and SOCS3 signaling triggered by hepatitis C virus.
Cytokine. 2016; 80:48-55 [PubMed] Related Publications
We aimed to investigate regulation of signal transducer and activator of transcription 3 (STAT3) and suppressor of cytokine signaling 3 (SOCS3) by interferon alpha (IFN-α) and to analyze the relationship between STAT3 and SOCS3 during hepatitis C virus (HCV) infection. Changes in STAT3 and SOCS3 were analyzed at both mRNA and protein levels in human hepatoma cells infected with HCV (J6/JFH1). At 72h of HCV infection, STAT3 expression was decreased with sustained phosphorylation, and IFN-α increased such decrease and phosphorylation. HCV increased SOCS3 expression, while IFN-α impaired such increase, indicating different regulation of STAT3 and SOCS3 by IFN-α. IFN-α-induced expression and phosphorylation of upstream kinases of the JAK/STAT pathway, Tyk2 and Jak1, were suppressed by HCV. Moreover, knockdown of STAT3 by RNA interference led to decreases in HCV RNA replication and viral protein expression, without affecting either the expression of Tyk2 and Jak1 or the SOCS3 induction in response to IFN-α. These results show that IFN-α antagonizes STAT3 and SOCS3 signaling triggered by HCV and that STAT3 regulation correlates inversely with SOCS3 induction by IFN-α, which may be important in better understanding the complex interplay between IFN-α and signal molecules during HCV infection.

Martinello R, Milani A, Geuna E, et al.
Investigational ErbB-2 tyrosine kinase inhibitors for the treatment of breast cancer.
Expert Opin Investig Drugs. 2016; 25(4):393-403 [PubMed] Related Publications
INTRODUCTION: ErbB2 overexpression and/or gene amplification is present in 20% of all breast cancers and characterizes an aggressive form of this disease. Despite the availability of several active drugs that have yielded substantial survival improvements, most patients with ErbB2-positive metastatic disease will develop tumor progression, either because of primary or acquired resistance. Therefore, research has focused on drugs that can more efficiently interfere with ErbB2 and with other members of the epidermal growth factor receptor family.
AREAS COVERED: This review focuses on those investigational drugs that inhibit ErbB2 tyrosine kinase activity (TKIs) for treating breast cancer.
EXPERT OPINION: ErbB-targeting TKIs show encouraging activity in patients with ErbB-positive tumors that are resistant to conventional ErbB-therapies (mostly trastuzumab), confirming pre-clinical observations. Efficient interference with the ErbB-network signaling implies also a potential use in ErbB2-normal tumors, where the phenotype is sustained by ErbB-aberrant signaling. Finally, early data suggests that ErbB-targeting TKIs could be active in treating patients with activating ErbB2 mutations. Ongoing and future research efforts should elucidate what is, according to the peculiarities of these compounds, their positioning in the treatment of women with breast cancer.

Leitner NR, Witalisz-Siepracka A, Strobl B, Müller M
Tyrosine kinase 2 - Surveillant of tumours and bona fide oncogene.
Cytokine. 2017; 89:209-218 [PubMed] Related Publications
Tyrosine kinase 2 (TYK2) is a member of the Janus kinase (JAK) family, which transduces cytokine and growth factor signalling. Analysis of TYK2 loss-of-function revealed its important role in immunity to infection, (auto-) immunity and (auto-) inflammation. TYK2-deficient patients unravelled high similarity between mice and men with respect to cellular signalling functions and basic immunology. Genome-wide association studies link TYK2 to several autoimmune and inflammatory diseases as well as carcinogenesis. Due to its cytokine signalling functions TYK2 was found to be essential in tumour surveillance. Lately TYK2 activating mutants and fusion proteins were detected in patients diagnosed with leukaemic diseases suggesting that TYK2 is a potent oncogene. Here we review the cell intrinsic and extrinsic functions of TYK2 in the characteristics preventing and enabling carcinogenesis. In addition we describe an unexpected function of kinase-inactive TYK2 in tumour rejection.

Shah K, Bradbury NA
Lemur Tyrosine Kinase 2, a novel target in prostate cancer therapy.
Oncotarget. 2015; 6(16):14233-46 [PubMed] Free Access to Full Article Related Publications
Progression from early forms of prostate cancer to castration-resistant disease is associated with an increase in signal transduction activity. The majority of castration-resistance cancers persist in the expression of the androgen receptor (AR), as well as androgen-dependent genes. The AR is regulated not only by it associated steroid hormone, but also by manifold regulatory and signaling molecules, including several kinases. We undertook evaluation of the role of Lemur Tyrosine Kinase 2 (LMTK2) in modulating AR activity, as several Genome Wide Association Studies (GWAS) have shown a marked association of LMTK2 activity with the development of prostate cancer. We confirm that not only is LMTK2 mRNA reduced in prostate cancer tissue, but also LMTK2 protein levels are markedly diminished. Knockdown of LMTK2 protein in prostate cell lines greatly increased the transcription of androgen-responsive genes. In addition, LMTK2 knockdown led to an increase in prostate cancer stem cell populations in LNCaP cells, indicative of increased tumorogenicity. Using multiple approaches, we also demonstrate that LMTK2 interacts with the AR, thus putting LMTK2 as a component of a signaling complex modulating AR activity. Our finding that LMTK2 is a negative regulator of AR activity defines a novel cellular pathway for activation of AR-responsive genes in castrate resistant-prostate cancer. Moreover, pharmacologic manipulation of LMTK2 activity will provide a novel therapeutic target for more effective treatments for patients with castrate-resistant prostate cancer.

Crescenzo R, Abate F, Lasorsa E, et al.
Convergent mutations and kinase fusions lead to oncogenic STAT3 activation in anaplastic large cell lymphoma.
Cancer Cell. 2015; 27(4):516-32 [PubMed] Free Access to Full Article Related Publications
A systematic characterization of the genetic alterations driving ALCLs has not been performed. By integrating massive sequencing strategies, we provide a comprehensive characterization of driver genetic alterations (somatic point mutations, copy number alterations, and gene fusions) in ALK(-) ALCLs. We identified activating mutations of JAK1 and/or STAT3 genes in ∼20% of 88 [corrected] ALK(-) ALCLs and demonstrated that 38% of systemic ALK(-) ALCLs displayed double lesions. Recurrent chimeras combining a transcription factor (NFkB2 or NCOR2) with a tyrosine kinase (ROS1 or TYK2) were also discovered in WT JAK1/STAT3 ALK(-) ALCL. All these aberrations lead to the constitutive activation of the JAK/STAT3 pathway, which was proved oncogenic. Consistently, JAK/STAT3 pathway inhibition impaired cell growth in vitro and in vivo.

Kaowinn S, Cho IR, Moon J, et al.
Pancreatic adenocarcinoma upregulated factor (PAUF) confers resistance to pancreatic cancer cells against oncolytic parvovirus H-1 infection through IFNA receptor-mediated signaling.
Biochem Biophys Res Commun. 2015; 459(2):313-318 [PubMed] Related Publications
Pancreatic adenocarcinoma upregulated factor (PAUF), a novel oncogene, plays a crucial role in the development of pancreatic cancer, including its metastasis and proliferation. Therefore, PAUF-expressing pancreatic cancer cells could be important targets for oncolytic virus-mediated treatment. Panc-1 cells expressing PAUF (Panc-PAUF) showed relative resistance to parvovirus H-1 infection compared with Panc-1 cells expressing an empty vector (Panc-Vec). Of interest, expression of type I IFN-α receptor (IFNAR) was higher in Panc-PAUF cells than in Panc-Vec cells. Increased expression of IFNAR in turn increased the activation of Stat1 and Tyk2 in Panc-PAUF cells compared with that in Panc-Vec cells. Suppression of Tyk2 and Stat1, which are important downstream molecules for IFN-α signaling, sensitized pancreatic cancer cells to parvovirus H-1-mediated apoptosis. Further, constitutive suppression of PAUF sensitized Bxpc3 pancreatic cancer cells to parvovirus H-1 infection. Taken together, these results suggested that PAUF conferred resistance to pancreatic cancer cells against oncolytic parvovirus H-1 infection through IFNAR-mediated signaling.

Slattery ML, Lundgreen A
The influence of the CHIEF pathway on colorectal cancer-specific mortality.
PLoS One. 2014; 9(12):e116169 [PubMed] Free Access to Full Article Related Publications
Many components of the CHIEF (Convergence of Hormones, Inflammation, and Energy Related Factors) pathway could influence survival given their involvement in cell growth, apoptosis, angiogenesis, and tumor invasion stimulation. We used ARTP (Adaptive Rank Truncation Product) to test if genes in the pathway were associated with colorectal cancer-specific mortality. Colon cancer (n = 1555) and rectal cancer (n = 754) cases were followed over five years. Age, center, stage at diagnosis, and tumor molecular phenotype were considered when calculating ARTP p values. A polygenic risk score was used to summarize the magnitude of risk associated with this pathway. The JAK/STAT/SOC was significant for colon cancer survival (PARTP = 0.035). Fifteen genes (DUSP2, INFGR1, IL6, IRF2, JAK2, MAP3K10, MMP1, NFkB1A, NOS2A, PIK3CA, SEPX1, SMAD3, TLR2, TYK2, and VDR) were associated with colon cancer mortality (PARTP < 0.05); JAK2 (PARTP  = 0.0086), PIK3CA (PARTP = 0.0098), and SMAD3 (PARTP = 0.0059) had the strongest associations. Over 40 SNPs were significantly associated with survival within the 15 significant genes (PARTP < 0.05). SMAD3 had the strongest association with survival (HRGG 2.46 95% CI 1.44,4.21 PTtrnd = 0.0002). Seven genes (IL2RA, IL8RA, IL8RB, IRF2, RAF1, RUNX3, and SEPX1) were significantly associated with rectal cancer (PARTP < 0.05). The HR for colorectal cancer-specific mortality among colon cancer cases in the upper at-risk alleles group was 11.81 (95% CI 7.07, 19. 74) and was 10.99 (95% CI 5.30, 22.78) for rectal cancer. These results suggest that several genes in the CHIEF pathway are important for colorectal cancer survival; the risk associated with the pathway merits validation in other studies.

Velusamy T, Kiel MJ, Sahasrabuddhe AA, et al.
A novel recurrent NPM1-TYK2 gene fusion in cutaneous CD30-positive lymphoproliferative disorders.
Blood. 2014; 124(25):3768-71 [PubMed] Related Publications
The spectrum of cutaneous CD30-positive lymphoproliferative disorders (LPDs) includes lymphomatoid papulosis and primary cutaneous anaplastic large cell lymphoma. Chromosomal translocations targeting tyrosine kinases in CD30-positive LPDs have not been described. Using whole-transcriptome sequencing, we identified a chimeric fusion involving NPM1 (5q35) and TYK2 (19p13) that encodes an NPM1-TYK2 protein containing the oligomerization domain of NPM1 and an intact catalytic domain in TYK2. Fluorescence in situ hybridization revealed NPM1-TYK2 fusions in 2 of 47 (4%) primary cases of CD30-positive LPDs and was absent in other mature T-cell neoplasms (n = 151). Functionally, NPM1-TYK2 induced constitutive TYK2, signal transducer and activator of transcription 1 (STAT1), STAT3, and STAT5 activation. Conversely, a kinase-defective NPM1-TYK2 mutant abrogated STAT1/3/5 signaling. Finally, short hairpin RNA-mediated silencing of TYK2 abrogated lymphoma cell growth. This is the first report of recurrent translocations involving TYK2, and it highlights the novel therapeutic opportunities in the treatment of CD30-positive LPDs with TYK2 translocations.

Roberts KG, Li Y, Payne-Turner D, et al.
Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia.
N Engl J Med. 2014; 371(11):1005-15 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Philadelphia chromosome-like acute lymphoblastic leukemia (Ph-like ALL) is characterized by a gene-expression profile similar to that of BCR-ABL1-positive ALL, alterations of lymphoid transcription factor genes, and a poor outcome. The frequency and spectrum of genetic alterations in Ph-like ALL and its responsiveness to tyrosine kinase inhibition are undefined, especially in adolescents and adults.
METHODS: We performed genomic profiling of 1725 patients with precursor B-cell ALL and detailed genomic analysis of 154 patients with Ph-like ALL. We examined the functional effects of fusion proteins and the efficacy of tyrosine kinase inhibitors in mouse pre-B cells and xenografts of human Ph-like ALL.
RESULTS: Ph-like ALL increased in frequency from 10% among children with standard-risk ALL to 27% among young adults with ALL and was associated with a poor outcome. Kinase-activating alterations were identified in 91% of patients with Ph-like ALL; rearrangements involving ABL1, ABL2, CRLF2, CSF1R, EPOR, JAK2, NTRK3, PDGFRB, PTK2B, TSLP, or TYK2 and sequence mutations involving FLT3, IL7R, or SH2B3 were most common. Expression of ABL1, ABL2, CSF1R, JAK2, and PDGFRB fusions resulted in cytokine-independent proliferation and activation of phosphorylated STAT5. Cell lines and human leukemic cells expressing ABL1, ABL2, CSF1R, and PDGFRB fusions were sensitive in vitro to dasatinib, EPOR and JAK2 rearrangements were sensitive to ruxolitinib, and the ETV6-NTRK3 fusion was sensitive to crizotinib.
CONCLUSIONS: Ph-like ALL was found to be characterized by a range of genomic alterations that activate a limited number of signaling pathways, all of which may be amenable to inhibition with approved tyrosine kinase inhibitors. Trials identifying Ph-like ALL are needed to assess whether adding tyrosine kinase inhibitors to current therapy will improve the survival of patients with this type of leukemia. (Funded by the American Lebanese Syrian Associated Charities and others.).

Slattery ML, Lundgreen A, Hines LM, et al.
Genetic variation in the JAK/STAT/SOCS signaling pathway influences breast cancer-specific mortality through interaction with cigarette smoking and use of aspirin/NSAIDs: the Breast Cancer Health Disparities Study.
Breast Cancer Res Treat. 2014; 147(1):145-58 [PubMed] Free Access to Full Article Related Publications
The Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathway is involved in immune function and cell growth; genetic variation in this pathway could influence breast cancer risk. We examined 12 genes in the JAK/STAT/SOCS signaling pathway with breast cancer risk and mortality in an admixed population of Hispanic (2,111 cases, 2,597 controls) and non-Hispanic white (1,481 cases, 1,585 controls) women. Associations were assessed by Indigenous American (IA) ancestry. After adjustment for multiple comparisons, JAK1 (three of ten SNPs) and JAK2 (4 of 11 SNPs) interacted with body mass index (BMI) among pre-menopausal women, while STAT3 (four of five SNPs) interacted significantly with BMI among post-menopausal women to alter breast cancer risk. STAT6 rs3024979 and TYK2 rs280519 altered breast cancer-specific mortality among all women. Associations with breast cancer-specific mortality differed by IA ancestry; SOCS1 rs193779, STAT3 rs1026916, and STAT4 rs11685878 associations were limited to women with low IA ancestry, and associations with JAK1 rs2780890, rs2254002, and rs310245 and STAT1 rs11887698 were observed among women with high IA ancestry. JAK2 (5 of 11 SNPs), SOCS2 (one of three SNPs), and STAT4 (2 of 20 SNPs) interacted with cigarette smoking status to alter breast cancer-specific mortality. SOCS2 (one of three SNPs) and all STAT3, STAT5A, and STAT5B SNPs significantly interacted with use of aspirin/NSAIDs to alter breast cancer-specific mortality. Genetic variation in the JAK/STAT/SOCS pathway was associated with breast cancer-specific mortality. The proportion of SNPs within a gene that significantly interacted with lifestyle factors lends support for the observed associations.

Lupardus PJ, Ultsch M, Wallweber H, et al.
Structure of the pseudokinase-kinase domains from protein kinase TYK2 reveals a mechanism for Janus kinase (JAK) autoinhibition.
Proc Natl Acad Sci U S A. 2014; 111(22):8025-30 [PubMed] Free Access to Full Article Related Publications
Janus kinases (JAKs) are receptor-associated multidomain tyrosine kinases that act downstream of many cytokines and interferons. JAK kinase activity is regulated by the adjacent pseudokinase domain via an unknown mechanism. Here, we report the 2.8-Å structure of the two-domain pseudokinase-kinase module from the JAK family member TYK2 in its autoinhibited form. We find that the pseudokinase and kinase interact near the kinase active site and that most reported mutations in cancer-associated JAK alleles cluster in or near this interface. Mutation of residues near the TYK2 interface that are analogous to those in cancer-associated JAK alleles, including the V617F and "exon 12" JAK2 mutations, results in increased kinase activity in vitro. These data indicate that JAK pseudokinases are autoinhibitory domains that hold the kinase domain inactive until receptor dimerization stimulates transition to an active state.

Mathieu MG, Miles AK, Ahmad M, et al.
The helicase HAGE prevents interferon-α-induced PML expression in ABCB5+ malignant melanoma-initiating cells by promoting the expression of SOCS1.
Cell Death Dis. 2014; 5:e1061 [PubMed] Free Access to Full Article Related Publications
The tumour suppressor PML (promyelocytic leukaemia protein) regulates several cellular pathways involving cell growth, apoptosis, differentiation and senescence. PML also has an important role in the regulation of stem cell proliferation and differentiation. Here, we show the involvement of the helicase HAGE in the transcriptional repression of PML expression in ABCB5+ malignant melanoma-initiating cells (ABCB5+ MMICs), a population of cancer stem cells which are responsible for melanoma growth, progression and resistance to drug-based therapy. HAGE prevents PML gene expression by inhibiting the activation of the JAK-STAT (janus kinase-signal transducers and activators of transcription) pathway in a mechanism which implicates the suppressor of cytokine signalling 1 (SOCS1). Knockdown of HAGE led to a significant decrease in SOCS1 protein expression, activation of the JAK-STAT signalling cascade and a consequent increase of PML expression. To confirm that the reduction in SOCS1 expression was dependent on the HAGE helicase activity, we showed that SOCS1, effectively silenced by small interfering RNA, could be rescued by re-introduction of HAGE into cells lacking HAGE. Furthermore, we provide a mechanism by which HAGE promotes SOCS1 mRNA unwinding and protein expression in vitro. Finally, using a stem cell proliferation assay and tumour xenotransplantation assay in non-obese diabetic/severe combined immunodeficiency mice, we show that HAGE promotes MMICs-dependent tumour initiation and tumour growth by preventing the anti-proliferative effects of interferon-α (IFNα). Our results suggest that the helicase HAGE has a key role in the resistance of ABCB5+ MMICs to IFNα treatment and that cancer therapies targeting HAGE may have broad implications for the treatment of malignant melanoma.

Pratt J, Annabi B
Induction of autophagy biomarker BNIP3 requires a JAK2/STAT3 and MT1-MMP signaling interplay in Concanavalin-A-activated U87 glioblastoma cells.
Cell Signal. 2014; 26(5):917-24 [PubMed] Related Publications
Plant lectins have been considered as possible anti-tumor drugs because of their property to induce autophagic cell death. Given that expression of membrane type-1 matrix metalloproteinase (MT1-MMP) has been found to regulate expression of the autophagy biomarker Bcl-2/adenovirus E1B 19kDa interacting protein 3 (BNIP3), we sought to investigate possible signaling interplay mechanisms between MT1-MMP and BNIP3 in Concanavalin-A (ConA) lectin-activated U87 glioblastoma cells. ConA induced acidic vacuole organelle formation as well as BNIP3 and MT1-MMP gene and protein expressions, whereas only BNIP3 expression was dose-dependently inhibited by the JAK2 tyrosine kinase inhibitor AG490 suggesting a requirement for some STAT-mediated signaling. Gene silencing of MT1-MMP and of STAT3 abrogated ConA-induced STAT3 phosphorylation and BNIP3 expression. Correlative analysis shows that STAT3 signaling events occur downstream from MT1-MMP induction. Overexpression of a full length MT1-MMP recombinant protein led to increased BNIP3 gene and protein expressions. The cytoplasmic domain of MT1-MMP was also found necessary for transducing STAT3 phosphorylation. Among JAK1, JAK2, JAK3, and TYK2, only JAK2 gene silencing abrogated ConA's effects on MT1-MMP and BNIP3 gene and protein expressions. Our study elucidates how MT1-MMP signals autophagy, a process which could contribute to the chemoresistance phenotype in brain cancer cells.

Chen CC, Chu CB, Liu KJ, et al.
Gene expression profiling for analysis acquired oxaliplatin resistant factors in human gastric carcinoma TSGH-S3 cells: the role of IL-6 signaling and Nrf2/AKR1C axis identification.
Biochem Pharmacol. 2013; 86(7):872-87 [PubMed] Related Publications
Oxaliplatin treatment is a mainstay of treatment for advanced gastrointestinal tract cancer, but the underlying mechanisms of acquired oxaliplatin resistance remain largely obscured. We previously demonstrated that increased DNA repair capacity and copper-transporting ATPase 1 (ATP7A) level contributed to oxaliplatin resistance in the human gastric carcinoma cell line TSGH-S3 (S3). In the present study, we applied gene array technology to identify additional resistance factors in S3 cells. We found that interleukin-6 (IL-6), aldo-keto reductase 1C1 (AKR1C1), and AKR1C3 are the top 3 upregulated genes in S3 cells when compared with parent TSGH cells. Despite a higher level of endogenous IL-6 in S3, IL-6 receptor (IR-6R, gp-80, and gp-130) levels were similar between TSGH and S3 cells. The addition of exogenous IL-6, IL-6 targeted siRNA, or neutralizing antibodies neither affected Stat3 activation, a downstream target of IL-6, nor changed oxaliplatin sensitivity in S3 cells. However, manipulation of AKR1C activity with siRNA or AKR1C inhibitors significantly reversed oxaliplatin resistance. AKR1Cs are classical antioxidant response element (ARE) genes that can be transcriptionally upregulated by nuclear factor erythroid 2-related factor 2 (Nrf2). Knockdown of Nrf2 not only decreased the levels of AKR1C1, AKR1C2, and AKR1C3 mRNA and protein but also reversed oxaliplatin resistance in S3 cells. Taken together, these results suggest that activation of the Nrf2/AKR1C axis may contribute to oxaliplatin resistance in S3 cells but that the IL-6 signaling pathway did not contribute to resistance. Manipulation of Nrf2/AKR1Cs activity may be useful for management of oxaliplatin-refractory gastric cancers.

Kuang BH, Zhang MQ, Xu LH, et al.
Proline-rich tyrosine kinase 2 and its phosphorylated form pY881 are novel prognostic markers for non-small-cell lung cancer progression and patients' overall survival.
Br J Cancer. 2013; 109(5):1252-63 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Our previous study revealed that proline-rich tyrosine kinase 2 (Pyk2) is implicated in both anchorage-independent growth and anoikis resistance in lung cancer cells. This study aims to explore the expression and clinical significance of Pyk2 and its phosphorylated forms in non-small-cell lung cancer (NSCLC).
METHODS: The mRNA and protein levels of Pyk2 or cancer stem cell markers (ALDH1a1, ABCG2 and Bmi-1) were either examined by reverse transcription-PCR or western blotting. An immunohistochemistry (IHC) assay was conducted to analyse the expression of Pyk2 and its phosphorylated forms in 128 NSCLC cases.
RESULTS: The levels of Pyk2 mRNA, total protein, and its phosphorylated form pY881 were higher in lung cancer lesions than in the paired noncancerous tissues. The IHC analysis showed the levels of the Pyk2 and Pyk2[pY881] proteins were highly expressed in 70 (54.7%) and 77 (60.2%) cases, respectively. Both Pyk2 and Pyk2[pY881] were independent prognostic factors for NSCLC patients. The gain and loss study of Pyk2 function revealed that Pyk2 could upregulate the expression of ALDH1a1, ABCG2 and Bmi-1 and enhance the ability of colony formation in soft agar assay in A549 and H460 cells.
CONCLUSION: Both Pyk2 and phosphorylated Pyk2[pY881] are potential prognostic factors and therapeutic targets for NSCLC.

Malilas W, Koh SS, Kim S, et al.
Cancer upregulated gene 2, a novel oncogene, enhances migration and drug resistance of colon cancer cells via STAT1 activation.
Int J Oncol. 2013; 43(4):1111-6 [PubMed] Related Publications
Cancer upregulated gene (CUG) 2, as a novel oncogene, has been predominantly detected in various cancer tissues, such as ovary, liver, lung and colon. We recently showed that CUG2 elevates STAT1 activity, leading to resistance to infection by oncolytic vesicular stomatitis virus. To investigate a possible role for CUG2-induced activation of STAT1 in oncogenesis, we first established a colon cancer cell line stably expressing CUG2 (Colon26L5-CUG2). Colon26L5-CUG2 exhibited higher levels not only in phosphorylation of STAT1, but also phosphorylation of Jak1/Tyk2 compared to that of the control (Colon26L5-Vec) cell line. Inhibition of Akt or ERK activity reduced phosphorylation of STAT1 in Colon26L5-CUG2 cells whereas inhibition of p38 MAPK did not significantly decrease levels of STAT1 phosphorylation, indicating that cell proliferation signals may be involved in CUG2-mediated activation of STAT1. Suppression of STAT1 expression diminished cell migration and wound healing compared to the control cells. In addition, since CUG2 expression conferred resistance to DNA damage caused by doxorubicin treatment, we investigated whether STAT1 is involved in resistance to doxorubicin-induced cell death. We found that STAT1 was not activated in Colon26L5-Vec cells while phosphorylated STAT1 was maintained in Colon26L5-CUG2 cells during doxorubicin treatment. Furthermore, suppression of STAT1 expression sensitized Colon26L5-CUG2 cells to doxorubicin-induced apoptosis whereas the control cells exhibited resistance to doxorubicin. Taken together, our results suggest that CUG2 enhances metastasis and drug resistance through STAT1 activation, which eventually contributes to tumor progression.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. TYK2, Cancer Genetics Web: http://www.cancer-genetics.org/TYK2.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 30 August, 2019     Cancer Genetics Web, Established 1999