TNFRSF10A

Gene Summary

Gene:TNFRSF10A; TNF receptor superfamily member 10a
Aliases: DR4, APO2, CD261, TRAILR1, TRAILR-1
Location:8p21.3
Summary:The protein encoded by this gene is a member of the TNF-receptor superfamily. This receptor is activated by tumor necrosis factor-related apoptosis inducing ligand (TNFSF10/TRAIL), and thus transduces cell death signal and induces cell apoptosis. Studies with FADD-deficient mice suggested that FADD, a death domain containing adaptor protein, is required for the apoptosis mediated by this protein. [provided by RefSeq, Jul 2008]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:tumor necrosis factor receptor superfamily member 10A
Source:NCBIAccessed: 31 August, 2019

Ontology:

What does this gene/protein do?
Show (13)
Pathways:What pathways are this gene/protein implicaed in?
Show (3)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 31 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 31 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (6)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: TNFRSF10A (cancer-related)

Wu LS, Wang XW, He W, et al.
TRAIL inhibits platelet-induced colorectal cancer cell invasion.
J Int Med Res. 2019; 47(2):962-972 [PubMed] Free Access to Full Article Related Publications
OBJECTIVE: Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a pro-apoptotic ligand that activates the extrinsic apoptosis pathway of cell death receptors. This study aimed to evaluate the relationship between TRAIL and platelet-induced tumor metastasis in colorectal cancer.
METHODS: Platelet P-selectin (CD62P) was measured by immunohistochemistry in tumor and adjacent normal tissues from 90 patients with colorectal cancer undergoing resection. Tumor cell invasion was assessed by transwell assay in the presence of platelets with or without TRAIL. The expression of TRAIL receptors DR4 and DR5 on platelets was assessed by flow cytometry, real-time polymerase chain reaction, and western blotting.
RESULTS: P-selectin (CD62P) expression was significantly increased in tumor tissues compared with adjacent normal tissues. High CD62P expression was significantly correlated with tumor stage and vascular invasion. Tumor cell migration was increased by coculture with platelets, but this effect was inhibited by TRAIL. Transforming growth factor (TGF)-β1 secretion was significantly reduced in TRAIL-treated platelets. The TRAIL receptor DR5 but not DR4 was expressed in platelets according to flow cytometry.
CONCLUSIONS: TRAIL could inhibit metastasis and colon cancer cell invasion by promoting platelet apoptosis and reducing the release of TGF-β1.

Zhao L, Okhovat JP, Hong EK, et al.
Preclinical Studies Support Combined Inhibition of BET Family Proteins and Histone Deacetylases as Epigenetic Therapy for Cutaneous T-Cell Lymphoma.
Neoplasia. 2019; 21(1):82-92 [PubMed] Free Access to Full Article Related Publications
Advanced-stage cutaneous T-cell lymphoma (CTCL) is usually a fatal malignancy despite optimal use of currently available treatments. In this preclinical study of novel CTCL therapy, we performed in vitro and ex vivo experiments to determine the efficacy of combination treatment with a panel of BET bromodomain inhibitors (BETi) (JQ1, OTX015, CPI-0610, I-BET762) and HDAC inhibitors (HDACi) (SAHA/Vorinostat, Romidepsin). BETi/HDACi combinations were synergistic (combination index <1) against cell viability and induced G0/G1 cell cycle arrest. Apoptosis was uniformly enhanced. From a mechanistic standpoint, proliferative drivers c-Myc, Cyclin D1, NFkB, and IL-15Rα were reduced. Inhibitory CDKN1A was increased. CDKN1B, IL-7R, IL-17Rα, STAT3, and STAT5 alterations varied. There were significant increases in extrinsic apoptotic pathway death receptors and ligands (FasL, DR4, DR5, TRAIL, and TNFR1). At clinically tolerable levels of single agents, Romidepsin (1 nM) + OTX015 (125 nM) induced the greatest apoptosis (60%_80%) at 96 hours. Ex vivo studies of leukemic CTCL cells obtained from patients with Sezary syndrome also showed higher levels of apoptosis (about 60%-90%) in response to combination treatments relative to single agents. In contrast, combination treatment of normal CD4+ T cells induced only minimal apoptosis (<10%). Our findings show that the mechanism of action of BETi/HDACi therapy in CTCL involves induction of both cell cycle arrest and apoptosis with reduced proliferative drivers and enhanced expression of apoptotic extrinsic pathway death receptors and ligands. Relative to single agents, the superior anti-CTCL effects of BETi/HDACi combinations in vitro and ex vivo provide a rationale for clinical trials exploring their efficacy as therapy for CTCL.

Doğan Şiğva ZÖ, Balci Okcanoğlu T, Biray Avci Ç, et al.
Investigation of the synergistic effects of paclitaxel and herbal substances and endemic plant extracts on cell cycle and apoptosis signal pathways in prostate cancer cell lines.
Gene. 2019; 687:261-271 [PubMed] Related Publications
Paclitaxel, which isolated from Taxus brevifolia, is recently started to be used against prostate cancer treatment and it is a very effective compound against cancer. In this study, we aimed to test the synergistic effect of two plant active compounds (sulphoraphane (SFN) and silymarin (SILY)) and several endemic plant species from Turkey (such as Phlomis leucophracta, Rubia davisiana, Alkanna tinctoria), which are known to have anticarcinogenic effect on androgen-independent PC3 and DU145, and androgen-dependent VCaP prostate cancer cell lines, with paclitaxel on the expression of cell cycle signaling and apoptosis regulator genes. Herbal substances and endemic herbal extracts were combined with Paclitaxel drug. IC

Kim SL, Min IS, Park YR, et al.
Lipocalin 2 inversely regulates TRAIL sensitivity through p38 MAPK-mediated DR5 regulation in colorectal cancer.
Int J Oncol. 2018; 53(6):2789-2799 [PubMed] Related Publications
TNF-related apoptosis-inducing ligand (TRAIL) induces apoptosis through death receptors (DRs)4 and/or 5 expressed on the cell surface. Multiple clinical trials are underway to evaluate the antitumor activity of recombinant human TRAIL and agonistic antibodies to DR4 or DR5. However, their therapeutic potential is limited by the high frequency of cancer resistance. In this study, we provide evidence demonstrating the role of lipocalin 2 (LCN2) in the TRAIL-mediated apoptosis of human colorectal cancer (CRC). By analyzing the mRNA expression data of 71 CRC tissues from patients, we found that DR5 was preferentially expressed in CRC tissues with a low LCN2 expression level compared to tissues with a high LCN2 expression level. Moreover, we analyzed the association between DR5 and LCN2 expression and this analysis revealed that DR5 expression in CRC tended to be inversely associated with LCN2 expression. By contrast, no association was found between the DR4 and LCN2 expression levels. The expression patterns of LCN2 in human CRC cell lines also exhibited an inverse association with DR5 expression. The knockdown of LCN2 by siRNA in the TRAIL‑resistant CRC cells expressing high levels of LCN2 led to a significant increase in TRAIL-induced apoptosis through the upregulation of DR5 protein and mRNA expression. The mechanism through which LCN2 silencing sensitized the CRC cells to TRAIL was dependent on the extrinsic pathway of apoptosis. In addition, we identified that the knockdown of LCN2 enhanced the sensitivity of the cells to TRAIL through the p38 MAPK/CHOP-dependent upregulation of DR5. Taken together, the findings of this study suggest that LCN2 is responsible for TRAIL sensitivity and LCN2 may thus prove to be a promising target protein in DR-targeted CRC therapy.

Zhu Z, Zhao L, Brittingham A, et al.
Anticancer Res. 2018; 38(9):5079-5086 [PubMed] Related Publications
BACKGROUND/AIM: Cervical cancer is one of the deadliest gynecological cancers in USA. The role of Trichomonas Vaginalis (T. Vag) in the etiology or pathogenesis of cervical cancer is still poorly understood and controversial.
MATERIALS AND METHODS: Clonogenic assay, PCNA staining, TUNEL staining and caspase-3 activity assay were used to investigate the direct in vitro effect of T. Vag on human cervical cancer by using HeLa cells. We further investigated the potential molecular mechanisms using RT-PCR and immunohistochemical staining.
RESULTS: We found that culture supernatant of T. Vag inhibited growth of HeLa cervical cancer cells and this correlated with up-regulation of p15. We also found that culture supernatant of T. Vag induced apoptosis of HeLa cells and this correlated with up-regulation of Fas, TRAIL and TRAILR1.
CONCLUSION: Culture supernatant of T. Vag inhibits growth of HeLa cervical cancer cells by inhibition of proliferation and promotion of apoptosis. Our study might be helpful to address the association between the development of cervical cancer and infection of T. Vag.

Anding AL, Jones JD, Newton MA, et al.
4-HPR Is an Endoplasmic Reticulum Stress Aggravator and Sensitizes Breast Cancer Cells Resistant to TRAIL/Apo2L.
Anticancer Res. 2018; 38(8):4403-4416 [PubMed] Related Publications
BACKGROUND/AIM: N-(4-hydroxyphenyl)retinamide (4-HPR) is a synthetic retinoid, less toxic than the parent all-trans retinoic acid (RA). Unlike RA, 4-HPR induces apoptosis in tumor cells. Because 4-HPR can hydrolyze to liberate RA, a potent human teratogen, the unhydrolyzable ketone analog of 4-HPR, 4-hydroxybenzylretinone (4-HBR) has been prepared and has been found to cause apoptosis in tumor cells and shrink carcinogen-induced rat mammary tumors as 4-HPR does. Herein, we examined the mechanism whereby 4-HPR and 4-HBR induce apoptosis and death in breast cancer cells.
MATERIALS AND METHODS: Gene expression profiling was conducted in MCF-7 cells over a 1.5- to 6-h time course and changes were validated by quantitative polymerase chain reaction (qPCR). Growth arrest and DNA damage-inducible protein 153 (GADD153 or C/EBP homologous protein, CHOP) was knocked down and the effect on 4-HPR-induced cell death and gene expression was assessed. 4-HPR synergy with tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL or Apo2 ligand) was also examined.
RESULTS: Drug treatment induced increased expression of endoplasmic reticulum (ER) stress-related and pro-apoptotic genes. Gene expression changes were verified by qPCR in three invasive ductal breast carcinoma cell lines (MCF-7, T-47D, MDA-MB-231). GADD153 showed the largest increase in the microarray experiment; however, knockdown of GADD153 did not abrogate apoptosis and death. Genes related to the extrinsic pathway of apoptosis including a receptor for TRAIL, death receptor 5 (DR5), were up-regulated by drug treatment. A dose of 4-HPR that alone is ineffective in killing TRAIL-resistant MCF-7 cells, synergized with recombinant TRAIL to induce breast cancer cell death.
CONCLUSION: 4-HPR and analogs might be useful in sensitizing tumor cells to death receptor agonists.

Ishikawa C, Senba M, Mori N
Mitotic kinase PBK/TOPK as a therapeutic target for adult T‑cell leukemia/lymphoma.
Int J Oncol. 2018; 53(2):801-814 [PubMed] Related Publications
Adult T‑cell leukemia/lymphoma (ATLL) is a disorder involving human T-cell leukemia virus type 1 (HTLV‑1)-infected T‑cells characterized by increased clonal neoplastic proliferation. PDZ-binding kinase (PBK) [also known as T‑lymphokine-activated killer cell-originated protein kinase (TOPK)] is a serine/threonine kinase expressed in proliferative cells and is phosphorylated during mitosis. In this study, the expression and phosphorylation of PBK/TOPK were examined by western blot analysis and RT‑PCR. We found that PBK/TOPK was upregulated and phosphorylated in HTLV‑1-transformed T‑cell lines and ATLL‑derived T‑cell lines. Notably, CDK1/cyclin B1, which phosphorylates PBK/TOPK, was overexpressed in these cells. HTLV‑1 infection upregulated PBK/TOPK expression in peripheral blood mononuclear cells (PBMCs) in co-culture assays. The potent PBK/TOPK inhibitors, HI‑TOPK‑032, and fucoidan from brown algae, decreased the proliferation and viability of these cell lines in a dose‑dependent manner. By contrast, the effect of HI‑TOPK‑032 on PBMCs was less pronounced. Treatment with HI‑TOPK‑032 resulted in G1 cell cycle arrest, and decreased CDK6 expression and pRb phosphorylation, which are critical determinants of progression through the G1 phase. In addition, HI‑TOPK‑032 induced apoptosis, as evidenced by morphological changes, the cleavage of poly(ADP-ribose) polymerase with the activation of caspase‑3, -8 and -9, and an increase in the sub‑G1 cell population and APO2.7-positive cells. Moreover, HI‑TOPK‑032 inhibited the expression of cellular inhibitor of apoptosis 2 (c-IAP2), X-linked inhibitor of apoptosis protein (XIAP), survivin and myeloid cell leukemia‑1 (Mcl‑1), and induced the expression of Bak and interferon-induced protein with tetratricopeptide repeats (IFIT)1, 2 and 3. It is noteworthy that the use of this inhibitor led to the inhibition of the phosphorylation of IκB kinase (IKK)α, IKKβ, IκBα, phosphatase and tensin homolog (PTEN) and Akt, and to the decreased protein expression of JunB and JunD, suggesting that PBK/TOPK affects the nuclear factor-κB, Akt and activator protein‑1 signaling pathways. In vivo, the administration of HI‑TOPK‑032 suppressed tumor growth in an ATLL xenograft model. Thus, on the whole, this study on the identification and functional analysis of PBK/TOPK suggests that this kinase is a promising molecular target for ATLL treatment.

Reinhardt A, Liu H, Ma Y, et al.
Tumor Cell-selective Synergism of TRAIL- and ATRA-induced Cytotoxicity in Breast Cancer Cells.
Anticancer Res. 2018; 38(5):2669-2682 [PubMed] Related Publications
BACKGROUND/AIM: One of the major problems in breast cancer treatment is pharmacoresistance. Therefore, exploration of treatment alternatives is of clinical relevance. The present work focused on tumor cell-inhibiting effects of a combination of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and all trans retinoic acid (ATRA) in breast cancer cells.
MATERIALS AND METHODS: Breast cancer cell lines (BT-20, BT-474, MDA-MB-231, MDA-MB-436, MDA-MB-453, MCF-7, SKBR3, T47D, ZR-75-1) and the mammary epithelial cell line MCF-10A were treated with TRAIL and ATRA alone and in combination. Cell viability was assessed via 3-(4,5)-dimethylthiahiazo(-z-yl)-3,5-di-phenytetrazoliumromide (MTT) assay, the potential of cell colony formation via clonogenic assay, cell death induction via cell-cycle analysis by fluorescence-activated cell sorting (FACS), terminal deoxynucleotidyltransferase-mediated UTP nick end labeling (TUNEL) assay and Cell death detection ELISA
RESULTS: TRAIL and ATRA evoked synergistic inhibition of breast cancer cell viability based on cytostatic and cytotoxic mechanisms. This correlated with augmented fragmentation of nuclear DNA, up-regulation of TRAIL receptor, down-regulation of cyclin D1 and enhancement of caspase activity. MCF-10A cells were merely slightly susceptible to TRAIL and ATRA.
CONCLUSION: The cytostatic and cytotoxic effects of the combination of TRAIL and ATRA are tumor cell-selective.

Hayes-Jordan AA, Ma X, Menegaz BA, et al.
Efficacy of ONC201 in Desmoplastic Small Round Cell Tumor.
Neoplasia. 2018; 20(5):524-532 [PubMed] Free Access to Full Article Related Publications
Desmoplastic Small Round Cell Tumor (DSRCT) is a rare sarcoma tumor of adolescence and young adulthood, which harbors a recurrent chromosomal translocation between the Ewing's sarcoma gene (EWSR1) and the Wilms' tumor suppressor gene (WT1). Patients usually develop multiple abdominal tumors with liver and lymph node metastasis developing later. Survival is poor using a multimodal therapy that includes chemotherapy, radiation and surgical resection, new therapies are needed for better management of DSRCT. Triggering cell apoptosis is the scientific rationale of many cancer therapies. Here, we characterized for the first time the expression of pro-apoptotic receptors, tumor necrosis-related apoptosis-inducing ligand receptors (TRAILR1-4) within an established human DSRCT cell line and clinical samples. The molecular induction of TRAIL-mediated apoptosis using agonistic small molecule, ONC201 in vitro cell-based proliferation assay and in vivo novel orthotopic xenograft animal models of DSRCT, was able to inhibit cell proliferation that was associated with caspase activation, and tumor growth, indicating that a cell-based delivery of an apoptosis-inducing factor could be relevant therapeutic agent to control DSRCT.

Turner KA, Manouchehri JM, Kalafatis M
Sensitization of recombinant human tumor necrosis factor-related apoptosis-inducing ligand-resistant malignant melanomas by quercetin.
Melanoma Res. 2018; 28(4):277-285 [PubMed] Free Access to Full Article Related Publications
Malignant melanoma is the most commonly diagnosed skin cancer associated with a high rate of metastasis. Low-stage melanoma is easily treated, but metastatic malignant melanoma is an extremely treatment-resistant malignancy with low survival rates. The application of recombinant human tumor necrosis factor-related apoptosis-inducing ligand (rhTRAIL) for the treatment of metastatic malignant melanoma holds considerable promise because of its selective proapoptotic activity towards cancer cells and not nontransformed cells. Unfortunately, the clinical utilization of rhTRAIL has been terminated due to the resistance of many cancer cells to undergo apoptosis in response to rhTRAIL. However, rhTRAIL-resistance can be abrogated through the cotreatment with compounds derived from 'Mother Nature' such as quercetin that can modulate cellular components responsible for rhTRAIL-resistance. Here, we show that rhTRAIL-resistant malignant melanomas are sensitized by quercetin. Quercetin action is manifested by the upregulation of rhTRAIL-binding receptors DR4 and DR5 on the surface of cancer cells and by increased rate of the proteasome-mediated degradation of the antiapoptotic protein FLIP. Our data provide for a new efficient and nontoxic treatment of malignant melanoma.

Shishodia G, Koul S, Dong Q, Koul HK
Tetrandrine (TET) Induces Death Receptors Apo Trail R1 (DR4) and Apo Trail R2 (DR5) and Sensitizes Prostate Cancer Cells to TRAIL-Induced Apoptosis.
Mol Cancer Ther. 2018; 17(6):1217-1228 [PubMed] Related Publications
TNF-related apoptosis-inducing ligand (TRAIL) selectively induces apoptosis in cancer cells, but not in normal cells; as such, it is a promising therapeutic agent. However, therapeutic resistance limits its clinical use in many malignancies, including prostate cancer. Strategies to sensitize cancer cells to TRAIL are urgently needed. We demonstrate here that small-molecule tetrandrine (TET) potentially sensitizes previously resistant (LNCaP and C4-2B cells) and mildly sensitive (PC3 cells) prostate cancer cells to TRAIL-induced apoptosis, and they do so by upregulating mRNA expression and protein levels of death receptors Apo Trail R1 (DR4) and Apo Trail R2 (DR5). Using shRNA knockdown, we show critical requirement of DR4 and DR5 in sensitization of prostate cancer cells to TRAIL. We show that double knockdown of DR4 and DR5 abrogated the apoptotic effects of TET and TRAIL. We also demonstrate that TET-induced DR4 and DR5 expression is independent of p53 status. Given that loss of p53 is associated with progression of prostate cancer to CRPC and NEPC, our results show that TET, by acting as a TRAIL-sensitizing agent in prostate cancer, could serve as a potential therapeutic agent in CRPC and NEPC, for which there is no cure to date.

Faraoni I, Aloisio F, De Gabrieli A, et al.
The poly(ADP-ribose) polymerase inhibitor olaparib induces up-regulation of death receptors in primary acute myeloid leukemia blasts by NF-κB activation.
Cancer Lett. 2018; 423:127-138 [PubMed] Related Publications
Olaparib is a potent orally bioavailable poly(ADP-ribose) polymerase inhibitor (PARPi), approved for BRCA-mutated ovarian and breast cancers. We recently showed that olaparib at clinically achievable concentrations exerts anti-proliferative and pro-apoptotic effects in vitro as monotherapy against primary acute myeloid leukemia (AML) blasts, while sparing normal bone marrow (BM) hematopoietic cells. Since AML expresses low levels of death receptors that may contribute to apoptosis resistance, in this study we investigated whether the anti-leukemia activity of olaparib involves modulation of FAS and TRAIL receptors DR5 and DR4. Our data show that the primary AML samples tested express FAS and DR5 transcripts at levels lower than normal BM. In this context, apoptosis triggered by olaparib is associated with a dose-dependent up-regulation of death receptors expression and caspase 8 activation. Olaparib-mediated FAS up-regulation requires NF-κB activation, as indicated by the increase of p65 phosphorylation and decrease of IκBα. Moreover, FAS up-regulation is abrogated by pretreatment of AML cells with two different NF-κB inhibitors. These results indicate that NF-κB activation and consequent induction of death receptor expression contribute to the anti-leukemia effect of olaparib in AML.

Wu S, Meng Q, Zhang C, et al.
DR4 mediates the progression, invasion, metastasis and survival of colorectal cancer through the Sp1/NF1 switch axis on genomic locus.
Int J Cancer. 2018; 143(2):289-297 [PubMed] Related Publications
The single nucleotide polymorphism (SNP), -397G > T (rs13278062) polymorphism, in the promoter of Death Receptor 4 (DR4) had been reported to be associated with a significantly increased risk for bladder cancer. However, the association of this SNP with the risk of colorectal cancer has not been reported. In this study, we performed a case-control study in 1,078 colorectal cancer patients and 1,175 matched healthy controls to evaluate the association of the potential functional genetic variants in DR4 with risk and survival of colorectal cancer. PCR-TaqMan were used to genotype the rs13278062, rs1000294 and rs2235126 polymorphisms. We found that subjects carrying the rs13278062 GT/TT genotypes had a significantly lower risk and increased survival time when compared to the GG genotype. We also constructed the rs13278062 GT/TT genotype in SW480 and SW620 cells (rs13278062 is GG in both cell lines) with the CRISPR/Cas9 system. Flow cytometry experiments showed that the rs13278062 TT genotype promoted apoptosis in colorectal cancer cells. In vitro and in vivo experiments established that the rs13278062 G to T mutation inhibited carcinogenesis and metastasis of colorectal cancer. Chromatin immunoprecipitation (ChIP) assays revealed that the rs13278062 G > T polymorphism altered the binding affinity of the transcription factors Sp1/NF1 to the rs13278062 mutation region. Immunohistochemistry, western blot, and qPCR corroborated that the rs13278062 GT/TT genotypes increased the expression of DR4 protein in colorectal cancer tissues and cells. In conclusion, these findings indicate that DR4 mediated progression, invasion, metastasis and survival of colorectal cancer via the Sp1/NF1 switch axis on genomics locus.

Jaudan A, Sharma S, Malek SNA, Dixit A
Induction of apoptosis by pinostrobin in human cervical cancer cells: Possible mechanism of action.
PLoS One. 2018; 13(2):e0191523 [PubMed] Free Access to Full Article Related Publications
Pinostrobin (PN) is a naturally occurring dietary bioflavonoid, found in various medicinal herbs/plants. Though anti-cancer potential of many such similar constituents has been demonstrated, critical biochemical targets and exact mechanism for their apoptosis-inducing actions have not been fully elucidated. The present study was aimed to investigate if PN induced apoptosis in cervical cancer cells (HeLa) of human origin. It is demonstrated that PN at increasing dose effectivity reduced the cell viability as well as GSH and NO2- levels. Condensed nuclei with fragmented chromatin and changes in mitochondrial matrix morphology clearly indicated the role of mitochondria in PN induced apoptosis. A marked reduction in mitochondrial membrane potential and increased ROS production after PN treatment showed involvement of free radicals, which in turn further augment ROS levels. PN treatment resulted in DNA damage, which could have been triggered by an increase in ROS levels. Decrease in apoptotic cells in the presence of caspase 3 inhibitor in PN-treated cells suggested that PN induced apoptosis via caspase dependent pathways. Additionally, a significant increase in the expression of proteins of extrinsic (TRAIL R1/DR4, TRAIL R2/DR5, TNF RI/TNFRSF1A, FADD, Fas/TNFRSF6) and intrinsic pathway (Bad, Bax, HTRA2/Omi, SMAC/Diablo, cytochrome C, Pro-Caspase-3, Cleaved Caspase-3) was observed in the cells exposed to PN. Taken together, these observations suggest that PN efficiently induces apoptosis through ROS mediated extrinsic and intrinsic dependent signaling pathways, as well as ROS mediated mitochondrial damage in HeLa cells.

Nahacka Z, Svadlenka J, Peterka M, et al.
TRAIL induces apoptosis but not necroptosis in colorectal and pancreatic cancer cells preferentially via the TRAIL-R2/DR5 receptor.
Biochim Biophys Acta Mol Cell Res. 2018; 1865(3):522-531 [PubMed] Related Publications
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a cytokine that can trigger apoptosis in many types of human cancer cells via engagement of its two pro-apoptotic receptors TRAIL-R1 (DR4) and TRAIL-R2 (DR5). TRAIL can also activate several other signaling pathways such as activation of stress kinases, canonical NF-κB signaling and necroptosis. Though both receptors are ubiquitously expressed, their relative participation in TRAIL-induced signaling is still largely unknown. To analyze TRAIL receptor-specific signaling, we prepared Strep-tagged, trimerized variants of recombinant human TRAIL with high affinity for either DR4 or DR5 receptor. Using these receptor-specific ligands, we examined the contribution of individual pro-apoptotic receptors to TRAIL-induced signaling pathways. We found that in TRAIL-resistant colorectal HT-29 cells but not in pancreatic PANC-1 cancer cells, DISC formation and initial caspase-8 processing proceeds comparably via both DR4- and DR5-activated signaling. TRAIL-induced apoptosis, enhanced by the inhibitor of the Bcl-2 family ABT-737, or by the translation inhibitor homoharringtonine, proceeded in both cell lines predominantly via the DR5 receptor. ShRNA-mediated downregulation of DR4 or DR5 receptors in HT-29 cells also pointed to a stronger contribution of DR5 in TRAIL-induced apoptosis. In contrast to apoptosis, necroptotic signaling was activated similarly by both DR4- or DR5-specific ligands. Activation of auxiliary signaling pathways involving NF-κB or stress kinases proceeded under apoptotic conditions mainly in a DR5-dependent manner, while these signaling pathways were during necroptosis similarly activated by either of these ligands. Our study provides the first systematic insight into DR4-/DR5-specific signaling in colorectal and pancreatic cancer cells.

Guo T, Zhang Y, Qu X, et al.
miR-200a enhances TRAIL-induced apoptosis in gastric cancer cells by targeting A20.
Cell Biol Int. 2018; 42(5):506-514 [PubMed] Related Publications
Tumor necrosis factor-alpha-related apoptosis-inducing ligand (TRAIL) triggers apoptosis by inducing the death-inducing signaling complex (DISC) formation. Recently, TNFα-induced protein 3 (TNFAIP3, A20) was reported to prevent TRAIL-induced caspase 8 cleavage in the DISC by mediating ubiquitination of RIP1 in glioblastoma. However, whether A20 regulates caspase 8 cleavage in the DISC when TRAIL induces apoptosis in gastric cancer cells is unknown. In the present study, A20 interacted with RIP1 and DR4 in MGC803 and SGC7901 gastric cancer cells. Treatment with TRAIL promoted the A20-mediated polyubiquitination of RIP1, caspase 8 translocation into the DISC, and the interaction between caspase 8 and ubiquitinated RIP1. Inhibition of A20 expression prevented the polyubiquitination of RIP1 and promoted caspase 8 cleavage. Moreover, our data clarified that A20 is a target of miR-200a. Overexpression of miR-200a inhibited A20 expression and polyubiquitination of RIP1 and then promoted cleavage of caspase 8 and TRAIL-triggered apoptosis. Taken together, our results indicate that miR-200a enhanced TRAIL-triggered apoptosis in gastric cancer cells by targeting A20.

Tong W, Qiu L, Qi M, et al.
GANT-61 and GDC-0449 induce apoptosis of prostate cancer stem cells through a GLI-dependent mechanism.
J Cell Biochem. 2018; 119(4):3641-3652 [PubMed] Related Publications
Aberrant reactivation of the Sonic Hedgehog (SHH) signaling pathway promotes prostate cancer (PC) growth and progression by regulating cancer-related genes through its downstream effectors GLI1 and GLI2. Therefore, targeting the SHH-GLI pathway provides an alternative approach to avoid cancer progression. The aim of this study was to delineate the underlying molecular mechanisms by which GDC-0449 (a SMO receptor inhibitor) and GANT-61 (a GLI transcription factor inhibitor) regulate cellular proliferation and self-renewal in human PC stem cells (ProCSCs). Inhibition of the SHH signaling pathway by GANT-61 induced apoptosis with more efficacy than by GDC-0449 in ProCSCs and PC cell lines. GLI1 and GLI2 expression, promoter-binding activity and GLI-responsive luciferase reporter activity were all decreased with either GDC-0449 or GANT-61 treatment. Expression of Fas, DR4, DR5, and cleavage of caspase-3 and PARP were increased, whereas levels of PDGFR-α and Bcl-2 were reduced. Double knockout of GLI1 and GLI2 using shRNA abolished the effects observed with either GDC-0449 or GANT-61 treatment. Collectively, our results showed that GANT-61 and GDC-0449 induced ProCSC apoptosis by directly or indirectly inhibiting the activities of the GLI family transcription factors, may enhance the efficacy of PC treatment.

Alsalawy NF, Darwish RK, Kamal MM, et al.
Evaluation of trail receptor 1 (DR4) polymorphisms C626G and A683C as risk factors of hepatocellular carcinoma.
J Med Virol. 2018; 90(3):490-496 [PubMed] Related Publications
Tumor necrosis factor related apoptosis-inducing ligand (TRAIL) plays an important role in many cancers including hepatocellular carcinoma (HCC). The aim of this study is to investigate the association of the DR4 polymorphisms C626G (Thr209Arg, rs20575) and A683C (Glu228Ala, rs20576) with the occurrence of HCC in Egyptian patients chronically infected with HCV. The study included 80 patients with HCV-related HCC (group 1) and 80 patients with HCV-related liver cirrhosis (group 2) who are naïve to treatment. Clinical and laboratory data were recorded. Genotyping of TRAIL receptor DR4 polymorphism C626G rs20575 and A683C rs20576 SNP was done by Real-Time PCR using taqman probes technology. The mean age of HCC patients was 57.6 ± 8.4 years with 62 patients (77.5%) were males. While group 2 mean age was 49.5 ± 10.29 years with 50% were males. The frequency distribution of rs20575 genotypes showed a statistically significant difference between the two studied groups (P = 0.02), the carriers of the C allele were 2.01 times more likely to develop HCC than the carriers of the G allele (P = 0.003), while no significant difference in rs20576 genotypes distribution was found between the studied groups (P = 0.680). On combining the carriers of C allele of rs20575 and the carriers of A allele of rs20576, a significant difference was detected (P > 0.001) with 2.85 higher risk of HCC development in patients who carried both genetic risk alleles simultaneously. The significant difference in DR4 polymorphisms among HCC and cirrhotic patients suggests their role as potential risk factors of HCC development.

Ishikawa C, Senba M, Hashimoto T, et al.
Expression and significance of Pim-3 kinase in adult T-cell leukemia.
Eur J Haematol. 2017; 99(6):495-504 [PubMed] Related Publications
BACKGROUND: Human T-cell leukemia virus type 1 (HTLV-1) causes adult T-cell leukemia (ATL). Viral Tax protein plays a major role in ATL development. Pim family of serine/threonine kinases is composed of Pim-1, -2, and -3. The potential of Pim family as a target in ATL was analyzed.
METHODS: RT-PCR and Western blotting were used to determine the expression of Pim kinases, Tax, and intracellular signal molecules. Knockdown of Pim-3 and RelA was performed using small interfering RNA. The effects on cell proliferation, viability, cell cycle, and apoptosis were analyzed by WST-8, propidium iodide, and APO2.7 assay. NF-κB DNA binding activity was investigated by electrophoretic mobility shift assay.
RESULTS: Pim-3 expression was restricted to HTLV-1-infected T-cell lines. Tax induced Pim-3 expression through NF-κB. Knockdown of Pim-3 showed growth inhibition of HTLV-1-infected T cells. NJC97-NH, a novel inhibitor of the Pim-1/3 kinases, inhibited cell viability. NJC97-NH induced G2/M cell cycle arrest associated with downregulation of cyclin A and cyclin B1 expression, as well as apoptosis accompanied with downregulation of XIAP and Mcl-1 expression through inhibition of NF-κB pathway, mediated through decrease in IκBα and RelA phosphorylation.
CONCLUSION: Pim-3 is a potentially suitable target for the development of novel therapeutic agents against ATL.

Liu H, Su D, Zhang J, et al.
Improvement of Pharmacokinetic Profile of TRAIL via Trimer-Tag Enhances its Antitumor Activity in vivo.
Sci Rep. 2017; 7(1):8953 [PubMed] Free Access to Full Article Related Publications
TNF-related apoptosis-inducing ligand (TRAIL/Apo2L) has long been considered a tantalizing target for cancer therapy because it mediates activation of the extrinsic apoptosis pathway in a tumor-specific manner by binding to and trimerizing its functional receptors DR4 or DR5. Despite initial promise, both recombinant human TRAIL (native TRAIL) and dimeric DR4/DR5 agonist monoclonal antibodies (mAbs) failed in multiple human clinical trials. Here we show that in-frame fusion of human C-propeptide of α1(I) collagen (Trimer-Tag) to the C-terminus of mature human TRAIL leads to a disulfide bond-linked homotrimer which can be expressed at high levels as a secreted protein from CHO cells. The resulting TRAIL-Trimer not only retains similar bioactivity and receptor binding kinetics as native TRAIL in vitro which are 4-5 orders of magnitude superior to that of dimeric TRAIL-Fc, but also manifests more favorable pharmacokinetic and antitumor pharmacodynamic profiles in vivo than that of native TRAIL. Taken together, this work provides direct evidence for the in vivo antitumor efficacy of TRAIL being proportional to systemic drug exposure and suggests that the previous clinical failures may have been due to rapid systemic clearance of native TRAIL and poor apoptosis-inducing potency of dimeric agonist mAbs despite their long serum half-lives.

Kurt IC, Sur I, Kaya E, et al.
KDM2B, an H3K36-specific demethylase, regulates apoptotic response of GBM cells to TRAIL.
Cell Death Dis. 2017; 8(6):e2897 [PubMed] Free Access to Full Article Related Publications
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) can selectively kill tumor cells. TRAIL resistance in cancers is associated with aberrant expression of the key components of the apoptotic program. However, how these components are regulated at the epigenetic level is not understood. In this study, we investigated novel epigenetic mechanisms regulating TRAIL response in glioblastoma multiforme (GBM) cells by a short-hairpin RNA loss-of-function screen. We interrogated 48 genes in DNA and histone modification pathways and identified KDM2B, an H3K36-specific demethylase, as a novel regulator of TRAIL response. Accordingly, silencing of KDM2B significantly enhanced TRAIL sensitivity, the activation of caspase-8, -3 and -7 and PARP cleavage. KDM2B knockdown also accelerated the apoptosis, as revealed by live-cell imaging experiments. To decipher the downstream molecular pathways regulated by KDM2B, levels of apoptosis-related genes were examined by RNA-sequencing upon KDM2B loss, which revealed derepression of proapoptotic genes Harakiri (HRK), caspase-7 and death receptor 4 (DR4) and repression of antiapoptotic genes. The apoptosis phenotype was partly dependent on HRK upregulation, as HRK knockdown significantly abrogated the sensitization. KDM2B-silenced tumors exhibited slower growth in vivo. Taken together, our findings suggest a novel mechanism, where the key apoptosis components are under epigenetic control of KDM2B in GBM cells.

Kong X, Luo J, Xu T, et al.
Plumbagin enhances TRAIL-induced apoptosis of human leukemic Kasumi‑1 cells through upregulation of TRAIL death receptor expression, activation of caspase-8 and inhibition of cFLIP.
Oncol Rep. 2017; 37(6):3423-3432 [PubMed] Related Publications
Although the patients with t(8;21) acute myeloid leukemia (AML) have a favorable prognosis compared with other non-acute promyelocytic leukemia AML patients, only ~50% patients with this relatively favorable subtype can survive for 5 years and refractory/relapse is common in clinical practice. So it is necessary to find novel agents to treat this type of AML. In this study, the effects and the mechanisms of plumbagin and recombinant soluble tumor necrosis factor‑α-related apoptosis-inducing ligand (rsTRAIL) on leukemic Kasumi‑1 cells were primarily investigated. Plumbagin and/or rsTRAIL could significantly inhibit the growth of Kasumi‑1 cells and induce apoptosis in vitro and in vivo. Plumbagin enhanced TRAIL-induced apoptosis of Kasumi‑1 cells in association with mitochondria damage, caspase activation, upregulation of death receptors (DRs) and decreased cFLIP expression. The effects of plumbagin on the expression of DR5, Bax and cFLIP could be partially abolished by the reactive oxygen species (ROS) scavenger NAC. Glutathione (GSH) depletion by plumbagin increased the production of ROS. In vivo, there was no obvious toxic pathologic change in the heart, liver and kidney tissues in any of the groups. Comparing with the control mice, a significantly increased number of apoptotic cells were observed in the combined treated mice by flow cytometry. Plumbagin also increased the expression of DR4 and DR5 in cells of xenograft tumors. Collectively, our results suggest that both plumbagin and rsTRAIL could be used as a single agent or synergistical agents to induce apoptosis of leukemic Kasumi‑1 cells in vitro and in vivo.

Xu C, Shi L, Chen W, et al.
MiR-106b inhibitors sensitize TRAIL-induced apoptosis in hepatocellular carcinoma through increase of death receptor 4.
Oncotarget. 2017; 8(26):41921-41931 [PubMed] Free Access to Full Article Related Publications
TNF-related apoptosis-inducing ligand (TRAIL), which is a member of the TNF superfamily, can induce tumor cell apoptosis. However, multiple types of tumor, including hepatocellular carcinoma, show tolerance to TRAIL. Previous studies have demonstrated that tumor cells usually change their expression profile of microRNA (miRNA) to obtain the ability of tolerance to drugs. However, whether such change of miRNA on TRAIL sensitivity is seen in hepatocellular carcinoma still needs to be explored. In this study, we observed overexpression of miR-106b in both HCC patients' tumor tissues and cell lines. Furthermore, we found that overexpression of miR-106b is associated with the sensitivity of TRAIL to HCC. Silencing of miR-106b with antisense oligonucleotide (anti-miR-106b) is proved to enhance the TRAIL-induced apoptosis and reduce the acquired drug resistance to TRAIL in HCC. Mechanically, we didn't observe the obvious change of pro-apoptotic proteins (Bax and Bid) and anti-apoptotic proteins (Bcl-2, Mcl-1 and Bcl-xl) after treatment of anti-miR-106b. However, we used the methods of bioinformatics, flow cytometry, cellular and molecular methods to prove that miR-106b directly targeted to death receptor 4 (DR4) 3'-UTR (3'-Untranslated Regions). MiR-106b inhibitors induced increase of DR4 expression and therefore enhancing TRAIL-mediated apoptosis in HCC. In summary, these results suggest the application of miR-106b inhibitors in HCC treatment. Combination with miR-106b inhibitors and TRAIL may be a novel clinical treatment method on HCC treatment in the future.

Sun J, Yu X, Wang C, et al.
RIP-1/c-FLIPL Induce Hepatic Cancer Cell Apoptosis Through Regulating Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL).
Med Sci Monit. 2017; 23:1190-1199 [PubMed] Free Access to Full Article Related Publications
BACKGROUND Almost all hepatic cancer cells have resistance to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis. c-FLIPL and RIP-1 are apoptotic negative regulatory factors. This study investigated the role of c-FLIPL and RIP-1 in hepatic cancer cell resistance to TRAIL-induced apoptosis. MATERIAL AND METHODS HepG2 cells were treated by TRAIL, RIP-1 siRNA, and/or BY11-7082. Cell viability was detected by MTT assay. Cell apoptosis was tested by flow cytometry. DISC component proteins, RIP-1, and p-p65 were measured by Western blot. Caspase-8 and caspase-3 were determined by spectrophotometry. RESULTS Single TRAIL treatment showed no significant impact on cell proliferation and apoptosis. HepG2 cells expressed high levels of RIP1 and c-FLIPL, while a high concentration of TRAIL upregulated RIP-1 and c-FLIPL expression but not DR4 and DR5. Single TRAIL treatment did not obviously activate caspase-8 and caspase-3. RIP-1 or c-FLIPL siRNA markedly induced cell apoptosis and enhanced caspase-8 and caspase-3 activities. Combined transfection obviously increased apoptotic cells. TRAIL markedly upregulated RIP-1 expression and enhanced p-p65 protein. Downregulating RIP-1 and/or BAY11-7082 significantly reduced NF-kB transcriptional activity, blocked cells in G0/G1 phase, weakened proliferation, elevated caspase-8 and caspase-3 activities, and promoted cell apoptosis. CONCLUSIONS TRAIL can enhance RIP1 and c-FLIPL expression in HepG2 cells. High expression of RIP1 and c-FLIPL is an important reason for TRAIL resistance. Downregulation of RIP1 and c-FLIPL can relieve caspase-8 suppression, activate caspase-3, and promote cell apoptosis. TRAIL mediates apoptosis resistance through upregulating RIP-1 expression, enhancing NF-kB transcriptional activity, and weakening caspase activity.

Iurlaro R, Püschel F, León-Annicchiarico CL, et al.
Glucose Deprivation Induces ATF4-Mediated Apoptosis through TRAIL Death Receptors.
Mol Cell Biol. 2017; 37(10) [PubMed] Free Access to Full Article Related Publications
Metabolic stress occurs frequently in tumors and in normal tissues undergoing transient ischemia. Nutrient deprivation triggers, among many potential cell death-inducing pathways, an endoplasmic reticulum (ER) stress response with the induction of the integrated stress response transcription factor ATF4. However, how this results in cell death remains unknown. Here we show that glucose deprivation triggered ER stress and induced the unfolded protein response transcription factors ATF4 and CHOP. This was associated with the nontranscriptional accumulation of TRAIL receptor 1 (TRAIL-R1) (DR4) and with the ATF4-mediated, CHOP-independent induction of TRAIL-R2 (DR5), suggesting that cell death in this context may involve death receptor signaling. Consistent with this, the ablation of TRAIL-R1, TRAIL-R2, FADD, Bid, and caspase-8 attenuated cell death, although the downregulation of TRAIL did not, suggesting ligand-independent activation of TRAIL receptors. These data indicate that stress triggered by glucose deprivation promotes the ATF4-dependent upregulation of TRAIL-R2/DR5 and TRAIL receptor-mediated cell death.

Tunc D, Dere E, Karakas D, et al.
Cytotoxic and apoptotic effects of the combination of palladium (II) 5,5-diethylbarbiturate complex with bis(2-pyridylmethyl)amine and curcumin on non small lung cancer cell lines.
Bioorg Med Chem. 2017; 25(5):1717-1723 [PubMed] Related Publications
Metal-based chemotherapeutics such as cisplatin are widely used treatment of lung cancer which is the major cause of cancer-related mortality worldwide. Recent studies demonstrated that novel metal-based compounds have strong cytotoxic activity in a similar way as cisplatin. Therefore, metal-based compounds have been synthesized and investigated in order to determine their cytotoxic activities. It has been also reported curcumin, which has been derived from turmeric plant, has powerful cytotoxic effect on various cancer cell lines. In the light of these data, it has been investigated the cytotoxic effects of combination of curcumin (0.78-100μM) and palladium (II) 5,5-diethylbarbiturate complex with bis(2-pyridylmethyl)amine [Pd(II) complex] (0.39-50μM) against non small lung cancer cell lines, A549 and H1299. It has been found that combination of Pd(II) complex and curcumin enhanced the cytotoxic activity and apoptotic cell death at 48h, compared to single use of each agent, only in H1299 cell line (combination index <1). Apoptosis was evident by annexin v staining positivity, increased caspase 3/7 activity and the presence of pyknotic nuclei. Pro-apoptotic genes of TNFRSF10A and HRK were found to be involved in apoptotic cell death. In conclusion, the application of this combination may be regarded as a novel and effective approach for the treatment of lung cancer due to its promising cytotoxic and apoptotic effect.

Dimberg LY, Towers CG, Behbakht K, et al.
A Genome-Wide Loss-of-Function Screen Identifies SLC26A2 as a Novel Mediator of TRAIL Resistance.
Mol Cancer Res. 2017; 15(4):382-394 [PubMed] Free Access to Full Article Related Publications
TRAIL is a potent death-inducing ligand that mediates apoptosis through the extrinsic pathway and serves as an important endogenous tumor suppressor mechanism. Because tumor cells are often killed by TRAIL and normal cells are not, drugs that activate the TRAIL pathway have been thought to have potential clinical value. However, to date, most TRAIL-related clinical trials have largely failed due to the tumor cells having intrinsic or acquired resistance to TRAIL-induced apoptosis. Previous studies to identify resistance mechanisms have focused on targeted analysis of the canonical apoptosis pathway and other known regulators of TRAIL receptor signaling. To identify novel mechanisms of TRAIL resistance in an unbiased way, we performed a genome-wide shRNA screen for genes that regulate TRAIL sensitivity in sublines that had been selected for acquired TRAIL resistance. This screen identified previously unknown mediators of TRAIL resistance including angiotensin II receptor 2, Crk-like protein, T-Box Transcription Factor 2, and solute carrier family 26 member 2 (SLC26A2). SLC26A2 downregulates the TRAIL receptors, DR4 and DR5, and this downregulation is associated with resistance to TRAIL. Its expression is high in numerous tumor types compared with normal cells, and in breast cancer,

Dufour F, Rattier T, Constantinescu AA, et al.
TRAIL receptor gene editing unveils TRAIL-R1 as a master player of apoptosis induced by TRAIL and ER stress.
Oncotarget. 2017; 8(6):9974-9985 [PubMed] Free Access to Full Article Related Publications
TRAIL induces selective tumor cell death through TRAIL-R1 and TRAIL-R2. Despite the fact that these receptors share high structural homologies, induction of apoptosis upon ER stress, cell autonomous motility and invasion have solely been described to occur through TRAIL-R2. Using the TALEN gene-editing approach, we show that TRAIL-R1 can also induce apoptosis during unresolved unfolded protein response (UPR). Likewise, TRAIL-R1 was found to co-immunoprecipitate with FADD and caspase-8 during ER stress. Its deficiency conferred resistance to apoptosis induced by thaspigargin, tunicamycin or brefeldin A. Our data also demonstrate that tumor cell motility and invasion-induced by TRAIL-R2 is not cell autonomous but induced in a TRAIL-dependant manner. TRAIL-R1, on the other hand, is unable to trigger cell migration owing to its inability to induce an increase in calcium flux. Importantly, all the isogenic cell lines generated in this study revealed that apoptosis induced TRAIL is preferentially induced by TRAIL-R1. Taken together, our results provide novel insights into the physiological functions of TRAIL-R1 and TRAIL-R2 and suggest that targeting TRAIL-R1 for anticancer therapy is likely to be more appropriate owing to its lack of pro-motile signaling capability.

Kanatli I, Akkaya B, Uysal H, et al.
Analysis of TNF-related apoptosis-inducing ligand and receptors and implications in thymus biology and myasthenia gravis.
Neuromuscul Disord. 2017; 27(2):128-135 [PubMed] Related Publications
Myasthenia Gravis is an autoantibody-mediated, neuromuscular junction disease, and is usually associated with thymic abnormalities presented as thymic tumors (~10%) or hyperplastic thymus (~65%). The exact role of thymus in Myasthenia Gravis development is not clear, yet many patients benefit from thymectomy. The apoptotic ligand TNF-Related Apoptosis-Inducing Ligand is thought to be involved in the regulation of thymocyte counts, although conflicting results are reported. We investigated differential expression profiles of TNF-Related Apoptosis-Inducing Ligand and its transmembrane receptors, Nuclear Factor-kB activation status, and apoptotic cell counts in healthy thymic tissue and pathological thymus from Myasthenia Gravis patients. All tissues expressed TNF-Related Apoptosis-Inducing Ligand and its receptors, with hyperplastic tissue having the highest expression levels of death receptors DR4 and DR5. No detectable Nuclear Factor-kB activation, at least via the canonical Protein Kinase A-mediated p65 Ser276 phosphorylation, was evident in any of the tissues studied. Apoptotic cell counts were higher in MG-associated tissue compared to the normal thymus. Possible use of the TNF-Related Apoptosis-Inducing Ligand within the concept of an apoptotic ligand-mediated medical thymectomy in thymoma- or thymic hyperplasia-associated Myasthenia Gravis is also discussed.

Aztopal N, Karakas D, Cevatemre B, et al.
A trans-platinum(II) complex induces apoptosis in cancer stem cells of breast cancer.
Bioorg Med Chem. 2017; 25(1):269-276 [PubMed] Related Publications
Recent accumulating evidence has supported the notion that tumors have hierarchically organized heterogeneous cell populations and a small subpopulation of cells, termed cancer stem cells (CSCs), are responsible for tumor initiation, maintenance as well as drug resistance. Therefore, targeting the CSCs along with the other cancer cells has been the most important topic during the last decade. In the present study, we evaluated the cytotoxic activity of trans-[PtCl

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. TNFRSF10A, Cancer Genetics Web: http://www.cancer-genetics.org/TNFRSF10A.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 31 August, 2019     Cancer Genetics Web, Established 1999