RRM2

Gene Summary

Gene:RRM2; ribonucleotide reductase regulatory subunit M2
Aliases: R2, RR2, RR2M, C2orf48
Location:2p25.1
Summary:This gene encodes one of two non-identical subunits for ribonucleotide reductase. This reductase catalyzes the formation of deoxyribonucleotides from ribonucleotides. Synthesis of the encoded protein (M2) is regulated in a cell-cycle dependent fashion. Transcription from this gene can initiate from alternative promoters, which results in two isoforms that differ in the lengths of their N-termini. Related pseudogenes have been identified on chromosomes 1 and X. [provided by RefSeq, Sep 2009]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:ribonucleoside-diphosphate reductase subunit M2
Source:NCBIAccessed: 01 September, 2019

Ontology:

What does this gene/protein do?
Show (17)
Pathways:What pathways are this gene/protein implicaed in?
Show (2)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 01 September 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 01 September, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (6)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: RRM2 (cancer-related)

Zhu X, Tan J, Liang Z, Zhou M
Comprehensive analysis of competing endogenous RNA network and 3-mRNA signature predicting survival in papillary renal cell cancer.
Medicine (Baltimore). 2019; 98(30):e16672 [PubMed] Related Publications
Long non-coding RNAs (lncRNAs) can act as competing endogenous RNAs (ceRNAs) to exert significant roles in regulating the expression of mRNAs by sequestering and binding miRNAs. To elucidate the functional roles and regulatory mechanism of lncRNAs in papillary renal cell cancer (pRCC), we conducted a comprehensive analysis of ceRNA network and constructed a mRNA signature to predict prognosis of pRCC.We collected mRNAs and lncRNAs expression profiles of 289 pRCC samples and 32 normal renal tissues, and miRNA expression profiles of 292 pRCC samples and 34 normal samples from The Cancer Genome Atlas (TCGA) database. Differential expressions of RNAs were evaluated by the "edgeR" package in R. Functional enrichment analysis of DEmRNA was performed by DAVID 6.8 and KEGG, while PPI network of top 200 DEmRNAs was conducted using the STRING database. The univariate and multivariate Cox regression were conducted to figure out the candidate DEmRNAs with predictive values in prognosis. Receiver operator characteristic (ROC) curve estimation was performed to achieve the area under the curve (AUC) of the ROC curve to judge mRNA-associated prognosic model. A ceRNA network was established relying on the basis of combination of lncRNA-miRNA interactions and miRNA-mRNA interactions.A total of 1928 DEmRNAs, 981 DElncRNAs, and 52 DEmiRNAs were identified at significance level of |log2Fold Change |>2 and adjusted P-value < .01. A 3-mRNA signatures consisting of ERG, RRM2, and EGF was constructed to predict survival in pRCC. Moreover, a pRCC-associated ceRNA network was constructed, with 57 lncRNAs, 11 miRNAs, and 28 mRNAs.Our study illustrated the regulatory mechanism of ceRNA network in papillary renal cancer. The identified mRNA signatures could be used to predict survival of pRCC.

Chai Y, Liu W, Wang C, et al.
Prognostic Role of Chicken Ovalbumin Upstream Promoter Transcription Factor II in Isocitrate Dehydrogenase-Mutant Glioma with 1p19q Co-Deletion.
J Mol Neurosci. 2019; 68(2):234-242 [PubMed] Related Publications
BACKGROUND: Chicken ovalbumin upstream promoter transcription factor II is known to play a crucial role in the tumor microenvironment. However, the role of NR2F2 in gliomas is unknown.
METHODS: The genomic and clinical data of 530 cases of lower grade gliomas (LGGs) patients and 167 cases of glioblastoma (GBM) patients in The Cancer Genome Atlas (TCGA) were extracted for analysis. R2 and UCSC Xena browser were used for Kaplan-Meier survival in the GSE16011 dataset and TCGA dataset, respectively. GraphPad Prism 7 was used to compare the differences in NR2F2 expression between various groups and subtypes.
RESULTS: LGG patients with low NR2F2 expression had a significantly favorable outcome compared with those with high NR2F2 expression (p < 0.05). By matching histological subtypes and gene expression profiles of LGG patients, grade II glioma group showed lowest levels of NR2F2 expression compared with grade III gliomas and GBM. Patients diagnosed with astrocytoma have highest expression of NR2F2 but lowest OS (p < 0.05). In LGGs, NR2F2 expression was significantly downregulated in patient group with IDH mutation and 1p19q co-deletion (p < 0.05).
CONCLUSION: Our study suggests that NR2F2 can be used as a prognostic marker in LGG patients with IDH mutation and 1p19 co-deletion.

Bai Y, Xiong L, Zhu M, et al.
Co-expression network analysis identified KIF2C in association with progression and prognosis in lung adenocarcinoma.
Cancer Biomark. 2019; 24(3):371-382 [PubMed] Related Publications
Lung cancer is a malignant tumor with high morbidity and mortality, of which 80% is non-small cell lung cancer (NSCLC). And lung adenocarcinoma (LUAD) is the most important and common subtype in the NSCLC. In current study, the microarray data GSE31210 containing LUAD (n= 226) and normal lung tissue (n= 20) was analyzed to identify 965 differentially expressed genes, on which weighted gene co-expression network analysis was performed. Finally, it was confirmed that there was a significant correlation between brown module and LUAD stage. In the significant module, a total of 54 network hub genes were identified, and six of them were also identified as hub genes of the protein-protein interaction network. In validation, KIF2C showed a higher correlation with disease stage than other hub genes (p< 0.001, R2 = 0.955). Functional enrichment suggests that KIF2C is associated with cell mitosis and cell cycle. Combined with clinicopathological parameters, we found that the high expression of KIF2C is closely related to the relapse and tumor stage of LUAD. Survival analysis showed a significant reduction in overall survival in LUAD patients with high expression of KIF2C. Gene set enrichment analysis (GSEA) also showed that the "cell cycle signaling pathway" and "P53 related pathway" were significantly enriched in LUAD samples with high expression of KIF2C (FDR < 0.05). In conclusion, based on the co-expression analysis, KIF2C was identified in the association with progression and prognosis of LUAD, which might refer a poor prognosis probably by regulating cell cycle signaling pathway.

Yi Y, Liu Y, Wu W, et al.
Reconstruction and analysis of circRNA‑miRNA‑mRNA network in the pathology of cervical cancer.
Oncol Rep. 2019; 41(4):2209-2225 [PubMed] Free Access to Full Article Related Publications
The present study was performed with the aim of understanding the mechanisms of pathogenesis and providing novel biomarkers for cervical cancer by constructing a regulatory circular (circ)RNA‑micro (mi)RNA‑mRNA network. Using an adjusted P-value of <0.05 and an absolute log value of fold-change >1, 16 and 156 miRNAs from GSE30656 and The Cancer Genome Atlas (TCGA), 5,321 mRNAs from GSE63514, 4,076 mRNAs from cervical squamous cell carcinoma and endocervical adenocarcinoma (from TCGA) and 75 circRNAs from GSE102686 were obtained. Using RNAhybrid, Venn and UpSetR plot, 12 circRNA‑miRNA pairs and 266 miRNA‑mRNA pairs were obtained. Once these pairs were combined, a circRNA‑miRNA‑mRNA network with 11 circRNA nodes, 4 miRNA nodes, 153 mRNA nodes and 203 edges was constructed. By constructing the protein‑protein interaction network using Molecular Complex Detection scores >5 and >5 nodes, 7 hubgenes (RRM2, CEP55, CHEK1, KIF23, RACGAP1, ATAD2 and KIF11) were identified. By mapping the 7 hubgenes into the preliminary circRNA‑miRNA‑mRNA network, a circRNA‑miRNA‑hubgenes network consisting of 5 circRNAs (hsa_circRNA_000596, hsa_circRNA_104315, hsa_circRNA_400068, hsa_circRNA_101958 and hsa_circRNA_103519), 2 mRNAs (hsa‑miR‑15b and hsa‑miR‑106b) and 7 mRNAs (RRM2, CEP55, CHEK1, KIF23, RACGAP1, ATAD2 and KIF11) was constructed. There were 22 circRNA‑miRNA‑mRNA regulatory axes identified in the subnetwork. By analyzing the overall survival for the 7 hubgenes using the Gene Expression Profiling Interactive Analysis tool, higher expression of RRM2 was demonstrated to be associated with a significantly poorer overall survival. PharmGkb analysis identified single nucleotide polymorphisms (SNPs) of rs5030743 and rs1130609 of RRM2, which can be treated with cladribine and cytarabine. RRM2 was also indicated to be involved in the gemcitabine pathway. The 5 circRNAs (hsa_circRNA_000596, hsa_circRNA_104315, hsa_circRNA_400068, hsa_circRNA_101958 and hsa_circRNA_103519) may function as competing endogenous RNAs and serve critical roles in cervical cancer. In addition, cytarabine may produce similar effects to gemcitabine and may be an optional chemotherapeutic drug for treating cervical cancer by targeting rs5030743 and rs1130609 or other similar SNPs. However, the specific mechanism of action should be confirmed by further study.

Osako Y, Yoshino H, Sakaguchi T, et al.
Potential tumor‑suppressive role of microRNA‑99a‑3p in sunitinib‑resistant renal cell carcinoma cells through the regulation of RRM2.
Int J Oncol. 2019; 54(5):1759-1770 [PubMed] Related Publications
Sunitinib is the most common primary molecular‑targeted agent for metastatic clear cell renal cell carcinoma (ccRCC); however, intrinsic or acquired sunitinib resistance has become a significant problem in medical practice. The present study focused on microRNA (miR)‑99a‑3p, which was significantly downregulated in clinical sunitinib‑resistant ccRCC tissues in previous screening analyses, and investigated the molecular network associated with it. The expression levels of miR‑99a‑3p and its candidate target genes were evaluated in RCC cells, including previously established sunitinib‑resistant 786‑o (SU‑R‑786‑o) cells, and clinical ccRCC tissues, using reverse transcription‑quantitative polymerase chain reaction. Gain‑of‑function studies demonstrated that miR‑99a‑3p significantly suppressed cell proliferation and colony formation in RCC cells, including the SU‑R‑786‑o cells, by inducing apoptosis. Based on in silico analyses and RNA sequencing data, followed by luciferase reporter assays, ribonucleotide reductase regulatory subunit‑M2 (RRM2) was identified as a direct target of miR‑99a‑3p in the SU‑R‑786‑o cells. Loss‑of‑function studies using small interfering RNA against RRM2 revealed that cell proliferation and colony growth were significantly inhibited via induction of apoptosis, particularly in the SU‑R‑786‑o cells. Furthermore, the RRM2 inhibitor Didox (3,4‑dihydroxybenzohydroxamic acid) exhibited anticancer effects in the SU‑R‑786‑o cells and other RCC cells. To the best of our knowledge, this is the first report demonstrating that miR‑99a‑3p directly regulates RRM2. Identifying novel genes targeted by tumor‑suppressive miR‑99a‑3p in sunitinib‑resistant RCC cells may improve our understanding of intrinsic or acquired resistance and facilitate the development of novel therapeutic strategies.

Lee MW, Kim DS, Kim HR, et al.
Inhibition of N-myc expression sensitizes human neuroblastoma IMR-32 cells expressing caspase-8 to TRAIL.
Cell Prolif. 2019; 52(3):e12577 [PubMed] Related Publications
OBJECTIVES: This study aims to explore the roles of N-myc and caspase-8 in TRAIL-resistant IMR-32 cells which exhibit MYCN oncogene amplification and lack caspase-8 expression.
MATERIALS AND METHODS: We established N-myc-downregulated IMR-32 cells using shRNA lentiviral particles targeting N-myc and examined the effect the N-myc inhibition on TRAIL susceptibility in human neuroblastoma IMR-32 cells expressing caspase-8.
RESULTS: Cisplatin treatment in IMR-32 cells increased the expression of death receptor 5 (DR5; TRAIL-R2), but not other receptors, via downregulation of NF-κB activity. However, the cisplatin-mediated increase in DR5 failed to induce cell death following TRAIL treatment. Furthermore, interferon (IFN)-γ pretreatment increased caspase-8 expression in IMR-32 cells, but cisplatin failed to trigger TRAIL cytotoxicity. We downregulated N-myc expression in IMR-32 cells using N-myc-targeting shRNA. These cells showed decreased growth rate and Bcl-2 expression accompanied by a mild collapse in the mitochondrial membrane potential as compared with those treated with scrambled shRNA. TRAIL treatment in N-myc-negative cells expressing caspase-8 following IFN-γ treatment significantly triggered apoptotic cell death. Concurrent treatment with cisplatin enhanced TRAIL-mediated cytotoxicity, which was abrogated by an additional pretreatment with DR5:Fc chimera protein.
CONCLUSIONS: N-myc and caspase-8 expressions are involved in TRAIL susceptibility in IMR-32 cells, and the combination of treatment with cisplatin and TRAIL may serve as a promising strategy for the development of therapeutics against neuroblastoma that is controlled by N-myc and caspase-8 expression.

Alves MR, Do Amaral NS, Marchi FA, et al.
Prostaglandin D2 expression is prognostic in high‑grade serous ovarian cancer.
Oncol Rep. 2019; 41(4):2254-2264 [PubMed] Related Publications
To identify biomarkers that could predict response or lack of response to conventional chemotherapy at the time of diagnosis of high‑grade serous ovarian carcinoma (HGSOC), the present study compared large‑scale gene expression from patients with short or long disease‑free survival times, according to the last cycle of chemotherapy, and validated these findings using reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) and conventional immunohistochemical (IHC) analysis. Samples were selected for microarray evaluation, at the time of diagnosis, using the following criteria: Identical debulking primary surgery, International Federation of Gynaecology and Obstetrics staging, histological subtype and grade. These were divided into 2 groups, regarding the outcome after 2 years of follow-up. Prostaglandin D2 synthase 21 kDa (brain) (PTGDS) was found to be expressed at a significantly higher level in the tumours of patients with a short disease‑free survival time, and this was validated by RT‑qPCR in all samples. Furthermore, the study evaluated PGD2, the protein product of the PTGDS gene, in a large cohort of 114 HGSOC patients using the Ventana Benchmark automated platform, and IHC positivity was correlated with clinicopathological data and outcome. The global gene expression analysis identified 1,149 genes that were differentially expressed in microarray data, according to the patient outcome. Further analysis RT‑qPCR validated PTGDS gene expression in the same samples (r=0.945; P<0.001). IHC analysis showed an inverse profile, with positivity for PGD2 strongly associated with an increase in disease‑free survival (P=0.009), the absence of relapse (P=0.039) and sensitivity to platinum‑based therapy (P=0.016). Multiple Cox regression showed that IHC evaluation of PGD2 was also a prognostic marker associated with relapse (hazard ratio, 0.37; P=0.002). Overall, the results showed that IHC evaluation of PGD2 is an independent marker of good prognosis in HGSOC. This finding contributes to our understanding of the mechanism of tumour regulation and to investigations into biomarkers that predict response to chemotherapy.

Wu M, Liu Z, Zhang A, Li N
Identification of key genes and pathways in hepatocellular carcinoma: A preliminary bioinformatics analysis.
Medicine (Baltimore). 2019; 98(5):e14287 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most prevalent cancers worldwide. However, the precise mechanisms of the development and progression of HCC remain unclear. The present study attempted to identify and functionally analyze the differentially expressed genes between HCC and cirrhotic tissues by using comprehensive bioinformatics analyses.
METHODS: The GSE63898 gene expression profile was downloaded from the Gene Expression Omnibus (GEO) and analyzed using the online tool GEO2R to identify differentially expressed genes (DEGs). Gene ontology (GO) functional analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of the DEGs were performed in DAVID. The STRING database was used to evaluate the interactions of DEGs and to construct a protein-protein interaction (PPI) network using Cytoscape software. Hub genes were selected using the cytoHubba plugin and were validated with the cBioPortal database.
RESULTS: A total of 301 DEGs were identified between HCC and cirrhotic tissues. The GO analysis results showed that these DEGs were significantly enriched in certain biological processes including negative regulation of growth and cell chemotaxis. Several significant pathways, including the p53 signaling pathway, were identified as being closely associated with these DEGs. The top 12 hub genes were screened and included TTK, NCAPG, TOP2A, CCNB1, CDK1, PRC1, RRM2, UBE2C, ZWINT, CDKN3, AURKA, and RACGAP1. The cBioPortal analysis found that alterations in hub genes could result in significantly reduced disease-free survival in HCC.
CONCLUSION: The present study identified a series of key genes and pathways that may be involved in the tumorigenicity and progression of HCC, providing a new understanding of the underlying molecular mechanisms of carcinogenesis in HCC.

Yu C, Hong H, Zhang S, et al.
Identification of key genes and pathways involved in microsatellite instability in colorectal cancer.
Mol Med Rep. 2019; 19(3):2065-2076 [PubMed] Free Access to Full Article Related Publications
Microsatellite instability (MSI) has emerged as one of the key biological features of colorectal cancer (CRC). However, controversies remain regarding the association between the MSI status and clinicopathological characteristics of CRC. Therefore, it is crucial to identify potential key genes and pathways associated with MSI in CRC. In the present study, the GSE25071 gene expression profile was retrieved, with thirty‑eight cases of microsatellite stable (MSS), five of MSI‑High (MSI‑H) and three of MSI‑Low (MSI‑L) CRC patients. The differentially expressed genes (DEGs) were analyzed by Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes pathway enrichment, gene set enrichment analysis (GSEA) and gene co‑expression network analysis. Weighted gene correlation network analysis (WGCNA) was used for the gene modules and correlation of clinical traits. A total of forty‑nine DEGs were identified between MSI‑H and MSS, including six upregulated and forty‑three downregulated DEGs. Only the DEGs of MSI‑H and MSS were subjected to subsequent analysis (limited number of DEGs of MSI‑L and MSS, MSI‑H and MSI‑L). RNA metabolic process, endoplasmic reticulum and chemokine receptor binding were the top ranked terms in GO enrichment. The hub genes of co‑expression network of DEGs included zinc finger protein (ZNF) 813, ZNF426, ZNF611, ZNF320 and ZNF573. The GSEA of MSI‑H and MSS indicated that the mammalian target of rapamycin complex 1 signaling was significantly enriched with a nominal P‑value of 0.038 and normalized enrichment score of 0.446. The WGCNA results showed that the pink module was the top in correlation with MSI status (R2=0.5, P=0.0004). The genes in the pink module were significantly enriched in proteins targeting to endoplasmic reticulum, cytosolic part, structural constituent of ribosome and ribosome pathway. The hub genes identified in the pink module were ribosomal protein L12 (RPL12), RPS3A, RPS9, RPL27A, RPL7, RPL28, RPL14, RPS17, mitochondrial ribosomal protein L16, and G elongation factor, mitochondrial 2. The present study identified key genes and pathways associated with MSI, providing insightful mechanisms.

Hai L, Liu P, Yu S, et al.
Jagged1 is Clinically Prognostic and Promotes Invasion of Glioma-Initiating Cells by Activating NF-κB(p65) Signaling.
Cell Physiol Biochem. 2018; 51(6):2925-2937 [PubMed] Related Publications
BACKGROUND/AIMS: Jagged1 is the ligands of the Notch signaling and has been shown to promote glioma-initiating cells (GICs) in glioblastoma. The role of Jagged1 in GICs invasion and underlying molecular mechanisms remain unclear.
METHODS: Survival data from R2 genomics analysis, the Cancer Genome Atlas (TCGA), the Chinese Glioma Genome Atlas (CGGA) and visualization platform database were used to evaluate the effects of Jagged1 on overall patient survival. we investigated Jagged1 induced the GICs cells' invasion by matrix degradation assays and Transwell cell invasion assays in vitro, then we further explored the underlying molecular mechanisms using Co-immunoprecipitation (co-IP) analysis.
RESULTS: High expression of Jagged1 in human glioma was associated with poor survival. Clinical data analysis showed that the Jagged1 was positively correlated with NF-κB(p65). Jagged1-induced invasion of GICs cells through activation of NF-κB(p65) pathway. In vivo, knockdown of Jagged1 could suppress the tumorigenicity of GICs cells through NF-κB(p65) signaling.
CONCLUSION: Insights gained from these findings suggest that Jagged1 plays an important oncogenic role in GICs malignancy by activation of NF-κB(p65) signaling, and Jagged1 could be employed as an effective therapeutic target for GICs.

Gan BL, Zhang LJ, Gao L, et al.
Downregulation of miR‑224‑5p in prostate cancer and its relevant molecular mechanism via TCGA, GEO database and in silico analyses.
Oncol Rep. 2018; 40(6):3171-3188 [PubMed] Free Access to Full Article Related Publications
The function of the expression of microRNA (miR)‑224‑5p in prostate adenocarcinoma (PCa) remains to be elucidated, therefore, the present study aimed to investigate the clinical significance and potential molecular mechanism of miR‑224‑5p in PCa. Data on the expression of miR‑224‑5p in PCa were extracted from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), ArrayExpress and previous literature, and meta‑analyses with standardized mean difference (SMD) and summary receiver operating characteristic (sROC) methods were performed for statistical analyses. The prospective target genes of miR‑224‑5p were collected by overlapping the differentially expressed mRNAs in TCGA and GEO, and target genes predicted by miRWalk2.0. Subsequently, in silico analysis was performed to examine the associated pathways of miR‑224‑5p in PCa. The expression of miR‑224‑5p was markedly lower in PCa; the overall SMD was ‑0.562, and overall sROC area under the curve was 0.80. In addition, Kyoto Encyclopedia of Genes and Genomes analysis revealed that the prospective target genes of miR‑224‑5p were largely enriched in the amino sugar and nucleotide sugar metabolism signaling pathway, and three genes [UDP‑N‑acetylglucosamine pyrophosphorylase 1 (UAP1), hexokinase 2 (HK2) and chitinase 1 (CHIT1)] enriched in this pathway showed higher expression (P<0.05). In addition, key genes in the protein‑protein interaction network analysis [DNA topoisomerase 2‑α (TOP2A), ATP citrate lyase (ACLY) and ribonucleotide reductase regulatory subunit M2 (RRM2)] exhibited significantly increased expression (P<0.05). The results suggested that the downregulated expression of miR‑224‑5p may be associated with the clinical progression and prognosis of PCa. Furthermore, miR‑224‑5p likely exerts its effects by targeting genes, including UAP1, HK2, CHIT1, TOP2A, ACLY and RRM2. However, in vivo and in vitro experiments are required to confirm these findings.

Liang WH, Li N, Yuan ZQ, et al.
DSCAM-AS1 promotes tumor growth of breast cancer by reducing miR-204-5p and up-regulating RRM2.
Mol Carcinog. 2019; 58(4):461-473 [PubMed] Related Publications
Breast cancer (BC) is a common malignancy worldwide. More than 3 700 000 women die of BC every year. DSCAM-AS1 was overexpressed several kinds of cancer and miR-204-5p was lowly expressed, which indicated that miR-204-5p had anti-tumor activity and DSCAM-AS1 had pro-tumor activity. We intended to analyze DSCAM-AS1, miR-204-5p, and ribonucleotide reductase M2 (RRM2). Microarray analysis and quantitative Real Time fluorescence Polymerase Chain Reaction (qRT-PCR) were employed to determine DSCAM-AS1 and miR-204-5p expression. Luciferase reporter assay was applied to examine the target relationship between DSCAM-AS1, miR-204-5p, and RRM2. Cell Counting Kit-8 (CCK-8 assay), transwell assay, and flow cytometry were used to detect cell proliferation, invasion, and apoptosis. The expression of DSCAM-AS1, miR-204-5p, and RRM2 were confirmed by Western blot. We also conducted in vivo assay to verify the effect of DSCAM-AS1. DSCAM-AS1 was up-regulated, while miR-204-5p was down-regulated in BC tissues and cells. DSCAM-AS1 directly targeted miR-204-5p. DSCAM-AS1 promoted the proliferation and invasion of BC cells by reducing miR-204-5p and inhibiting miR-204-5p expression. DSCAM-AS1 expression was related to the expression of RRM2, and miR-204-5p could reverse the function of DSCAM-AS1. RRM2 was up-regulated in BC cells, and miR-204-5p inhibited RRM2 expression by targeting RRM2. Overexpression of RRM2 stimulated proliferation and cell invasion and impeded apoptosis. In vivo experiments showed that knockdown of DSCAM-AS1 decreased the tumorigenesis of BC cells, increased the expression of miR-204-5p. DSCAM-AS1 promoted proliferation and impaired apoptosis of BC cells by reducing miR-204-5p and enhancing RRM2 expression. DSCAM-AS1/miR-204-5p/RRM2 may serve as novel therapeutic targets for BC.

Muniswamy VJ, Raval N, Gondaliya P, et al.
'Dendrimer-Cationized-Albumin' encrusted polymeric nanoparticle improves BBB penetration and anticancer activity of doxorubicin.
Int J Pharm. 2019; 555:77-99 [PubMed] Related Publications
Glioblastoma is one of the most rapaciously growing cancer within the brain with an average lifespan of 12-15 months (5-year survival <3-4%). Doxorubicin (DOX) is clinically utilized as a first line drug in the treatment of Glioblastoma, however, its restricted entry into the brain via the blood-brain barrier (BBB), limited blood-tumor barrier (BTB) permeability, hemotoxicity, short mean half-life of 1-3 hr as well as rapid body clearance results in tremendously diminished bioactivity in glioblastoma. Dendrimer-Cationized-Albumin (dCatAlb) was synthesized following the carboxyl activation technique and the synthesized biopolymer was characterized by FTIR, MALDI-TOF and zeta potential. The prepared dCatAlb was encrusted on DOX-loaded PLGA nanoparticle core to develop a novel hybrid DOX nanoformulation (dCatAlb-pDNP; particle size: 156 ± 10.85 nm; ƺ: -10.0 ± 2.1 mV surface charge). The formulated dCatAlb-pDNP showed a unique pH-dependent DOX release profile, diminished hemolytic toxicity, higher drug uptake (<0.001) and cytotoxicity in U87MG glioblastoma cells, increase levels of caspase-3 gene in U87MG cells (approximately 5.35-fold higher) inferred that anticancer activity is primarily taking place through caspase-mediated apoptosis mechanism. The developed novel DOX nanoformulation also showed superior trans-epithelial permeation transport across monolayer bEnd.3 cells as well as notable biocompatibility and stability. The dCatAlb-pDNP showed enhanced BBB permeation efficacy as confirmed permeation assay in bEnd.3 cell-based model. The long-term formulation stability of developed nanoformulations was studied by storing them at 5 ± 2 °C and 30 ± 2 °C/60 ± 5% Relative Humidity (% RH) in the stability chamber for a period of 60 days (ICHQ1A (R2)). The outcomes of this investigation evidently indicate that dCatAlb-pDNP offers superior anticancer activity of DOX in glioblastoma cells while significantly improving its BBB permeation. The developed formulation is a biocompatible, safer and commercially viable approach to delivering DOX selectively in sustained manner glioblastoma while countering its hemolytic toxic effect, which is a major ongoing issue with conventional DOX injectable available in the market today.

Sun C, Cheng X, Wang C, et al.
Gene expression profiles analysis identifies a novel two-gene signature to predict overall survival in diffuse large B-cell lymphoma.
Biosci Rep. 2019; 39(1) [PubMed] Free Access to Full Article Related Publications
Diffuse large B-cell lymphoma (DLBCL) is the most common hematologic malignancy, however, specific tumor-associated genes and signaling pathways are yet to be deciphered. Differentially expressed genes (DEGs) were computed based on gene expression profiles from GSE32018, GSE56315, and The Cancer Genome Atlas (TCGA) DLBC. Overlapping DEGs were then evaluated for gene ontology (GO), pathways enrichment, DNA methylation, protein-protein interaction (PPI) network analysis as well as survival analysis. Seventy-four up-regulated and 79 down-regulated DEGs were identified. From PPI network analysis, majority of the DEGs were involved in cell cycle, oocyte meiosis, and epithelial-to-mesenchymal transition (EMT) pathways. Six hub genes including

McFarland JM, Ho ZV, Kugener G, et al.
Improved estimation of cancer dependencies from large-scale RNAi screens using model-based normalization and data integration.
Nat Commun. 2018; 9(1):4610 [PubMed] Free Access to Full Article Related Publications
The availability of multiple datasets comprising genome-scale RNAi viability screens in hundreds of diverse cancer cell lines presents new opportunities for understanding cancer vulnerabilities. Integrated analyses of these data to assess differential dependency across genes and cell lines are challenging due to confounding factors such as batch effects and variable screen quality, as well as difficulty assessing gene dependency on an absolute scale. To address these issues, we incorporated cell line screen-quality parameters and hierarchical Bayesian inference into DEMETER2, an analytical framework for analyzing RNAi screens ( https://depmap.org/R2-D2 ). This model substantially improves estimates of gene dependency across a range of performance measures, including identification of gold-standard essential genes and agreement with CRISPR/Cas9-based viability screens. It also allows us to integrate information across three large RNAi screening datasets, providing a unified resource representing the most extensive compilation of cancer cell line genetic dependencies to date.

Depuydt P, Koster J, Boeva V, et al.
Meta-mining of copy number profiles of high-risk neuroblastoma tumors.
Sci Data. 2018; 5:180240 [PubMed] Free Access to Full Article Related Publications
Neuroblastoma, a pediatric tumor of the sympathetic nervous system, is predominantly driven by copy number aberrations, which predict survival outcome in global neuroblastoma cohorts and in low-risk cases. For high-risk patients there is still a need for better prognostic biomarkers. Via an international collaboration, we collected copy number profiles of 556 high-risk neuroblastomas generated on different array platforms. This manuscript describes the composition of the dataset, the methods used to process the data, including segmentation and aberration calling, and data validation. t-SNE analysis shows that samples cluster according to MYCN status, and shows a difference between array platforms. 97.3% of samples are characterized by the presence of segmental aberrations, in regions frequently affected in neuroblastoma. Focal aberrations affect genes known to be involved in neuroblastoma, such as ALK and LIN28B. To conclude, we compiled a unique large copy number dataset of high-risk neuroblastoma tumors, available via R2 and a Shiny web application. The availability of patient survival data allows to further investigate the prognostic value of copy number aberrations.

Das B, Roy J, Jain N, Mallick B
Tumor suppressive activity of PIWI-interacting RNA in human fibrosarcoma mediated through repression of RRM2.
Mol Carcinog. 2019; 58(3):344-357 [PubMed] Related Publications
P-element induced wimpy testis (PIWI)-interacting RNAs (piRNAs) are a promising class of small regulatory RNAs, earlier believed to control transposable elements (TEs) activity in germlines are now reported in somatic and cancer cells. The aberrant expression of piRNAs has been documented in various cancers wherein they modulate tumorigenesis either as oncogenes or tumor suppressors by curbing target gene expression. However, there is no report yet on the association of piRNAs in fibrosarcoma, an early metastatic lethal tumor. For the first time, we reported a piRNA, piR-39980 in fibrosarcoma and investigated its potential role in malignancy by employing several methods such as qRT-PCR, MTT assay, transwell invasion and migration assay, wound healing assay, flow cytometric cell cycle analysis, Annexin V-PE apoptosis assay, AO/EB dual staining assay, and chromatin condensation assay. We observed that piR-39980 significantly attenuated proliferation, migration, invasion, and colony forming ability as well as induced apoptotic cell death of HT1080 fibrosarcoma cells when transiently overexpressed with its piRNA mimics. The dual luciferase reporter assay confirmed that piR-39980 promotes apoptosis and inhibits proliferation in fibrosarcoma by repressing RRM2 through direct targeting at its 3'UTR through extensive sequence complementary binding, unlike microRNA targeting. In summary, this study revealed that piR-39980 has a strong anti-tumor effect and hence could be a promising RNA-based therapeutic agent for the malignancy of fibrosarcoma.

Wang F, Zheng Z, Guan J, et al.
Identification of a panel of genes as a prognostic biomarker for glioblastoma.
EBioMedicine. 2018; 37:68-77 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Glioblastoma multiforme (GBM) is a fatal disease without effective therapy. Identification of new biomarkers for prognosis would enable more rational selections of strategies to cure patients with GBM and prevent disease relapse.
METHODS: Seven datasets derived from GBM patients using microarray or next generation sequencing in R2 online database (http://r2.amc.nl) were extracted and then analyzed using JMP software. The survival distribution was calculated according to the Kaplan-Meier method and the significance was determined using log-rank statistics. The sensitivity of a panel of GBM cell lines in response to temozolomide (TMZ), salinomycin, celastrol, and triptolide treatments was evaluated using MTS and tumor-sphere formation assay.
FINDINGS: We identified that CD44, ATP binding cassette subfamily C member 3 (ABCC3), and tumor necrosis factor receptor subfamily member 1A (TNFRSF1A) as highly expressed genes in GBMs are associated with patients' poor outcomes and therapy resistance. Furthermore, these three markers combined with MGMT, a conventional GBM marker, can classify GBM patients into five new subtypes with different overall survival time in response to treatment. The four-gene signature and the therapy response of GBMs to a panel of therapeutic compounds were confirmed in a panel of GBM cell lines.
INTERPRETATION: The data indicate that the four-gene panel can be used as a therapy response index for GBM patients and potential therapeutic targets. These results provide important new insights into the early diagnosis and the prognosis for GBM patients and introduce potential targets for GBM therapeutics. FUND: Baylor Scott & White Health Startup Fund (E.W.); Collaborative Faculty Research Investment Program (CFRIP) of Baylor University, Baylor Scott & White Health, and Baylor College of Medicine (E.W., T.S., J.H.H.); NIH R01 NS067435 (J.H.H.); Scott & White Plummer Foundation Grant (J.H.H.); National Natural Science Foundation of China 816280007 (J.H.H. and Fu.W.).

Kunanopparat A, Issara-Amphorn J, Leelahavanichkul A, et al.
Delta-like ligand 4 in hepatocellular carcinoma intrinsically promotes tumour growth and suppresses hepatitis B virus replication.
World J Gastroenterol. 2018; 24(34):3861-3870 [PubMed] Free Access to Full Article Related Publications
AIM: To investigate the role of Delta-like ligand 4 (DLL4) on tumour growth in hepatitis B virus (HBV)-associated hepatocellular carcinoma (HCC)
METHODS: We suppressed
RESULTS: Eighteen days after implantation, tumour volume in mice implanted with shDLL4 HepG2.2.15 was significantly smaller than in mice implanted with control HepG2.2.15 (
CONCLUSION: This study demonstrates that DLL4 is important in regulating the tumour growth of HBV-associated HCC as well as the neovascularization and suppression of HBV replication.

Wang C, Li Y, Li YW, et al.
HOTAIR lncRNA SNPs rs920778 and rs1899663 are associated with smoking, male gender, and squamous cell carcinoma in a Chinese lung cancer population.
Acta Pharmacol Sin. 2018; 39(11):1797-1803 [PubMed] Article available free on PMC after 01/11/2019 Related Publications
The abnormal expression of the long noncoding RNA (lncRNA) HOX transcript intergenic antisense RNA (HOTAIR) plays an important role in the development of various cancers; however, single nucleotide polymorphisms (SNPs) in HOTAIR and their association with primary lung cancer susceptibility have not yet been reported. Here, we performed a case-control study including 262 primary lung cancer patients and 451 cancer-free control individuals to investigate the association between four haplotype-tagging SNPs (rs920778, rs12826786, rs4759314, and rs1899663) in the HOTAIR lncRNA and the risk of developing primary lung cancer. We found a significant association between the SNPs rs920778 and rs1899663 in the HOTAIR and primary lung cancer susceptibility (P < 0.05). Moreover, homozygous C/T (C/T + TT) for rs920778 (C > T) sites was significantly associated with gender, smoking history, and pathological type. In addition, linkage disequilibrium and haplotype analysis of HOTAIR gene polymorphisms for susceptibility to lung cancer revealed a high degree of linkage disequilibrium between the rs920778 and rs1899663 loci (D' = 0.86, r2 = 0.52). The population of rs920778, rs1899663, and rs4759314 had a significantly increased risk of lung cancer (P < 0.001). In summary, the present study provides persuasive evidence that SNP rs920778 is closely correlated with susceptibility to primary lung cancer. Future studies are warranted to validate and expand these findings, and to further dissect the importance of these SNPs in the development of primary lung cancer.

You W, Henneberg M
Prostate Cancer Incidence is Correlated to Total Meat Intake– a Cross-National Ecologic Analysis of 172 Countries
Asian Pac J Cancer Prev. 2018; 19(8):2229-2239 [PubMed] Article available free on PMC after 01/11/2019 Related Publications
Objective: To examine the association of total meat (animal flesh) consumption to prostate cancer incidence (PC61) at population level. Subjects and Methods: Data from 172 countries were extracted for analysis. Associations between country specific per capita total meat intake and PC61 incidence at country level were examined using Pearson’s r and Spearman rho, partial correlation, stepwise multiple linear regression analyses with ageing, GDP, Is (index of magnitude of prostate cancer gene accumulation at population level), obesity prevalence and urbanization included as the confounding factors. Countries were also grouped for regional association analysis. The data were log-transformed for analysis in SPSS. Microsoft Excel, and ANOVA Post hoc Scheffe tests were applied to calculate and compare mean differences between country groupings. Results: Worldwide, total meat intake was strongly and positively associated with PC61 incidence in Pearson’s r (r= 0.595, p<0.001) and Spearman rho (r= 0.637, p<0.001) analyses. This relationship remained significant in partial correlation (r= 0.295, p<0.001) when ageing, GDP, Is, obesity prevalence and urbanization were kept statistically constant. GDP was weakly and insignificantly associated with PC61 when total meat intake was kept statistically constant. Stepwise multiple linear regression identified that total meat was a significant predictor of PC61 with total meat intake and all the five confounders included as the independent variables (R2=0.417). Post hoc Scheffe tests revealed nine significant mean differences of PC61 between the six WHO regions, but all disappeared when the contributing effect of total meat on PC61 incidence rate was removed. GDP was not identified as the statistically significant predictor of PC61 in either of the models including or excluding total meat as the independent variable. Conclusions: Total meat intake is an independent predictor of PC61 worldwide, and the determinant of regional variation of PC61. The longitudinal cohort studies are proposed to explore the association further.

Koch C, Schmidt N, Winkelmann R, et al.
Anti-EGF Receptor-Based Conversion Chemotherapy in RAS Wild-Type Colorectal Cancer Patients: Impact on Survival and Resection Rates.
Digestion. 2018; 98(4):263-269 [PubMed] Related Publications
BACKGROUND: Initially unresectable colorectal liver metastases can become resectable after chemotherapy. Combination chemotherapy with epidermal growth factor receptor (EGFR) antibodies has shown consistent high response rates in patients with all rat sarcoma (RAS) wild-type tumors.
METHODS: Out of a cohort of 424 patients with metastatic colorectal cancer, we identified 30 patients with initially unresectable Kirsten RAS (KRAS) exon 2 wild-type colorectal liver metastases who received neoadjuvant chemotherapy with anti-EGFR agents between January 2008 and February 2014. In all patients, extended RAS analysis (KRAS and NRAS exon 3 codon 59/61 and exon 4 codon 117/146) was carried out retrospectively.
RESULTS: RAS mutation analysis identified further KRAS mutations in 4/30 patients (13.3%). In none of these 4 patients a R0 resection was achieved. In contrast, 15/26 (57.7%) RAS wild-type patients were R0 resected. Median overall survival was > 63.3 months in R0-resected patients versus 30.0 months in those with a R1 or R2 resection (HR 0.23; [95% CI 0.10-0.75; p = 0.008).
CONCLUSION: Our data suggest that a RAS wild-type and a R0 resection are the strongest predictors for overall survival.

Shen J, Cao B, Wang Y, et al.
Hippo component YAP promotes focal adhesion and tumour aggressiveness via transcriptionally activating THBS1/FAK signalling in breast cancer.
J Exp Clin Cancer Res. 2018; 37(1):175 [PubMed] Article available free on PMC after 01/11/2019 Related Publications
BACKGROUND: Focal adhesion plays an essential role in tumour invasiveness and metastasis. Hippo component YAP has been widely reported to be involved in many aspects of tumour biology. However, its role in focal adhesion regulation in breast cancer remains unexplored.
METHODS: Tissue microarray was used to evaluate YAP expression in clinical breast cancer specimens by immunohistochemical staining. Cell migration and invasion abilities were measured by Transwell assay. A cell adhesion assay was used to measure the ability of cell adhesion to gelatin. The focal adhesion was visualized through immunofluorescence. Phosphorylated FAK and other proteins were detected by Western blot analysis. Gene expression profiling was used to screen differently expressed genes, and gene ontology enrichment was performed using DAVID software. The gene mRNA levels were measured by quantitative real-time PCR. The activity of the THBS1-promoter was evaluated by dual luciferase assay. Chromatin immunoprecipitation (ChIP) was used to verify whether YAP could bind to the THBS1-promoter region. The prediction of potential protein-interaction was performed with the String program. The ChIP sequence data of TEAD was obtained from the ENCODE database and analysed via the ChIP-seek tool. The gene expression dataset (GSE30480) of purified tumour cells from primary breast tumour tissues and metastatic lymph nodes was used in the gene set enrichment analysis. Prognostic analysis of the TCGA dataset was performed by the SurvExpress program. Gene expression correlation of the TCGA dataset was analysed via R2: Genomics Analysis and Visualization Platform.
RESULTS: Our study provides evidence that YAP acts as a promoter of focal adhesion and tumour invasiveness via regulating FAK phosphorylation in breast cancer. Further experiments reveal that YAP could induce FAK phosphorylation through a TEAD-dependent manner. Using gene expression profiling and bioinformatics analysis, we identify the FAK upstream gene, thrombospondin 1, as a direct transcriptional target of YAP-TEAD. Silencing THBS1 could reverse the YAP-induced FAK activation and focal adhesion.
CONCLUSION: Our results unveil a new signal axis, YAP/THBS1/FAK, in the modulation of cell adhesion and invasiveness, and provides new insights into the crosstalk between Hippo signalling and focal adhesion.

Nana AW, Wu SY, Yang YS, et al.
Nano-Diamino-Tetrac (NDAT) Enhances Resveratrol-Induced Antiproliferation by Action on the RRM2 Pathway in Colorectal Cancers.
Horm Cancer. 2018; 9(5):349-360 [PubMed] Related Publications
Cancer resistance to chemotherapeutic agents is a major issue in the management of cancer patients. Overexpression of the ribonucleotide reductase regulatory subunit M2 (RRM2) has been associated with aggressive cancer behavior and chemoresistance. Nano-diamino-tetrac (NDAT) is a nanoparticulate derivative of tetraiodothyroacetic acid (tetrac), which exerts anticancer properties via several mechanisms and downregulates RRM2 gene expression in cancer cells. Resveratrol is a stilbenoid phytoalexin which binds to a specific site on the cell surface integrin αvβ3 to trigger cancer cell death via nuclear translocation of COX-2. Here we report that resveratrol paradoxically activates RRM2 gene expression and protein translation in colon cancer cells. This unanticipated effect inhibits resveratrol-induced COX-2 nuclear accumulation. RRM2 downregulation, whether achieved by RNA interference or treatment with NDAT, enhanced resveratrol-induced COX-2 gene expression and nuclear uptake which is essential to integrin αvβ3-mediated-resveratrol-induced antiproliferation in cancer cells. Elsewhere, NDAT downregulated resveratrol-induced RRM2 expression in vivo but potentiated the anticancer effect of the stilbene. These findings suggest that RRM2 appears as a cancer cell defense mechanism which can hinder the anticancer effect of the stilbene via the integrin αvβ3 axis. Furthermore, the antagonistic effect of RRM2 against resveratrol is counteracted by the administration of NDAT.

Lehrer S, Rheinstein PH, Rosenzweig KE
Glioblastoma Multiforme: Fewer Tumor Copy Number Segments of the
Cancer Genomics Proteomics. 2018 Jul-Aug; 15(4):273-278 [PubMed] Article available free on PMC after 01/11/2019 Related Publications
BACKGROUND/AIM: Glioblastoma multiforme (GBM) is the most common primary tumor of the central nervous system. The serum and glucocorticoid-regulated kinase SGK1 gene is required for the growth and survival of GBM stem-like cells under both normoxic and hypoxic conditions. It has been reported that oxygenation significantly affects cellular genetic expression; 30% of the genes required in hypoxia were not required under normoxic conditions. Therefore, we examined SGK1 expression to determine if it may be a novel potential drug target for GBM.
MATERIALS AND METHODS: We assessed the association between SGK1 and glioblastoma patient overall survival using the GBM cohort in TCGA (The Cancer Genome Atlas) database (TCGA-GBM). To access and analyze the data we used the UCSC Xena browser (https://xenabrowser.net). Survival data of the GBM subgroup were extracted for analysis and generation of Kaplan-Meier curves for overall survival. The best cut-off was identified by methods described in the R2 web-based application (http://r2.amc.nl).
RESULTS: We analyzed patient survival by tumor SGK1 copy number segments after removal of common germ-line copy-number variants (CNVs). Copy number segments (log2 tumor/normal) ≤0.009700 were associated with significantly poorer survival (p=0.016).
CONCLUSION: Increased median overall survival associated with increased SGK1 copy number segments may be a reflection of better tumor oxygenation. Therefore, besides being a drug target, SGK1 may also be a prognostic marker. Among molecular tumor markers, only the methylation status of the O-6-methylguanine-DNA methyltransferase (MGMT) gene has shown a significant association with survival in patients with GBM.

Chen P, Wu JN, Shu Y, et al.
Gemcitabine resistance mediated by ribonucleotide reductase M2 in lung squamous cell carcinoma is reversed by GW8510 through autophagy induction.
Clin Sci (Lond). 2018; 132(13):1417-1433 [PubMed] Related Publications
Although chemotherapeutic regimen containing gemcitabine is the first-line therapy for advanced lung squamous cell carcinoma (LSCC), gemcitabine resistance remains an important clinical problem. Some studies suggest that overexpressions of ribonucleotide reductase (RNR) subunit M2 (RRM2) may be involved in gemcitabine resistance. We used a novel RRM2 inhibitor, GW8510, as a gemcitabine sensitization agent to investigate the therapeutic utility in reversing gemcitabine resistance in LSCC. Results showed that the expressions of RRM2 were increased in gemcitabine intrinsic resistant LSCC cells upon gemcitabine treatment. GW8510 not only suppressed LSCC cell survival, but also sensitized gemcitabine-resistant cells to gemcitabine through autophagy induction mediated by RRM2 down-regulation along with decrease in dNTP levels. The combination of GW8510 and gemcitabine produced a synergistic effect on killing LSCC cells. The synergism of the two agents was impeded by addition of autophagy inhibitors chloroquine (CQ) or bafilomycin A1 (Baf A1), or knockdown of the autophagy gene, Bcl-2-interacting protein 1 (

Gagat M, Krajewski A, Grzanka D, Grzanka A
Potential role of cyclin F mRNA expression in the survival of skin melanoma patients: Comprehensive analysis of the pathways altered due to cyclin F upregulation.
Oncol Rep. 2018; 40(1):123-144 [PubMed] Article available free on PMC after 01/11/2019 Related Publications
Cyclin F is a part of the Skp, Cullin, F-box containing ligase complex. The activity of cyclin F includes cell cycle control, centrosome duplication and response to DNA damage. The cyclin F expression pattern is very similar to cyclin A, but cyclin F is an orphan cyclin without its cyclin-dependent kinase partner. There is little evidence concerning the role of cyclin F in cancer. In the present study, for the first time, we present analysis from The Cancer Genome Atlas (TCGA) data in the context of expression of cyclin F mRNA in melanoma patients. Our original in silico analysis, not published elsewhere before, revealed that high expression of cyclin F in melanoma patients is associated with worse overall survival. Cyclin F and ribonucleotide reductase family member 2 (RRM2) compose a functional axis responsible for nucleotide metabolism. Impairment in this pathway may contribute to increased DNA damage repair and drug resistance. Additionally, we analyzed the expression of RRM2 mRNA and discovered that high expression of RRM2 is associated with worse overall survival. To shed more light on cyclin F overexpression in melanoma, we analyzed all protein data available in the TCGA melanoma dataset. It was found that in patients with upregulated cyclin F mRNA, we noted increased activity of pathways related to cell cycle and DNA damage repair. These data will support further in vitro and in vivo studies on the involvement of cyclin F in skin cutaneous melanoma.

Li J, Pang J, Liu Y, et al.
Suppression of RRM2 inhibits cell proliferation, causes cell cycle arrest and promotes the apoptosis of human neuroblastoma cells and in human neuroblastoma RRM2 is suppressed following chemotherapy.
Oncol Rep. 2018; 40(1):355-360 [PubMed] Related Publications
Ribonucleotide reductase regulatory subunit M2 (RRM2) is a rate‑limiting enzyme for DNA synthesis and repair. RRM2 has vital roles in controlling the progression of cancer. In the present study, we investigated the RRM2 level in neuroblastoma tissues, analyzed its relationship with clinicopathological characteristics of neuroblastoma patients, and explored the effect of RRM2 on the biological functions of neuroblastoma cells. RRM2 levels in 67 pairs of neuroblastoma and matched adjacent non‑cancerous tissues were detected by qRT‑PCR, and its association with patient clinicopathological features was assessed. Using RRM2 siRNA, the role of RRM2 in cell viability was detected by CCK‑8 assay, and the effects on cell cycle distribution and cell apoptosis were detected by flow cytometry. Hoechst 33342 staining was also performed. For RRM2 protein detection in cells and tissues, western blot analyses were employed. Our results revealed that RRM2 expression was significant higher in neuroblastoma tissues than that noted in adjacent non‑cancerous tissues at both the mRNA and protein levels. The increased RRM2 level was significantly associated with clinical stage. RRM2 levels were suppressed in stage III and IV tumors in the chemotherapy subgroup, compared with levels noted in tumors in the preoperative non‑chemotherapy subgroup. RRM2 siRNA significantly inhibited cell viability in the SH‑5Y5Y cells, induced cell arrest in the G0/G1 phase, and enhanced cell apoptosis. Taken together, overexpression of RRM2 is associated with the genesis and progression of neuroblastoma, and may be a potential chemotherapeutic target.

Wang Y, Fang T, Huang L, et al.
Neutrophils infiltrating pancreatic ductal adenocarcinoma indicate higher malignancy and worse prognosis.
Biochem Biophys Res Commun. 2018; 501(1):313-319 [PubMed] Related Publications
CD177 is considered to represent neutrophils. We analyzed mRNA expression level of CD177 and clinical follow-up survey of PDAC to estimate overall survival (OS) from Gene Expression Omnibus (GEO) dataset (GSE21501, containing samples from 102 PDAC patients) by R2 platform (http://r2.amc.nl). We also analyzed correlated genes of CD177 by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis to predict the potential relationship between neutrophils and prognosis of PDAC. We then performed hematoxylin and eosin (H&E) staining and immunohistochemical staining of surgical specimens to verify infiltration of neutrophils in PDAC tissues. After analyzing mRNA expression data and clinical follow-up survey provided in the GEO dataset (GSE21501, containing samples from 102 PDAC patients) and clinicopathological data of 23 PDAC patients, we demonstrated that CD177 was correlated with poor prognosis. The univariate Kaplan-Meier survival analysis revealed that OS was inversely associated with increased expression of CD177 (P = 0.012). Expression of phosphodiesterase (PDE)4D was positively related to CD177 in gene correlation analysis (R = 0.413, P < 0.001) by R2 platform. H&E staining and immunohistochemistry of CD177 in 23 PDAC surgical samples showed accumulation of neutrophils in the stroma and blood vessels around the cancer cells. In addition, immunohistochemical staining showed that CD177 was highly expressed in the stroma and blood vessels around tumor tissues of PDAC, which was similar to H&E staining. Expression of CD177 can be used to represent infiltration of neutrophils, which may have potential prognostic value in PDAC.

Tsikalakis S, Chatziandreou I, Michalopoulos NV, et al.
Comprehensive expression analysis of TNF-related apoptosis-inducing ligand and its receptors in colorectal cancer: Correlation with MAPK alterations and clinicopathological associations.
Pathol Res Pract. 2018; 214(6):826-834 [PubMed] Related Publications
TNF-related, apoptosis-inducing ligand (TRAIL) apoptotic pathway constitutes a promising therapeutic target due to high selectivity and low toxicity of TRAIL targeting agents when administered in combination therapies. 106 colorectal cancers were examined for: relative mRNA expression of TRAIL pathway genes, decoy receptors TRAIL-R3 and TRAIL-R4 promoter methylation and the presence of KRAS, NRAS, BRAF mutations. Elevated mRNA levels were observed in 26%, 15%, 13%, 12% and 10% of the cases for TRAIL-R4, TRAIL-R3, TRAIL-R2, TRAIL-R1 and TRAIL genes respectively. Reduced mRNA levels were detected in 77%, 65%, 64%, 60% and 37% of the cases for TRAIL, TRAIL-R2, TRAIL-R3, TRAIL-R1 and TRAIL-R4 genes respectively. TRAIL-R3 and TRAIL-R4 promoter methylation was detected in 55% and 16% of the analysed samples respectively. TRAIL-R1, TRAIL-R2 elevated relative mRNA levels inversely correlated with tumor stage (p = .036, p = .048). Strong linear correlations of TRAIL receptors' mRNA levels were found: TRAIL-R1/TRAIL-R2 (R = 0.653, p < .001), TRAIL-R2/TRAIL-R3 (R = 0.573, p < .001). Finally, relative expression of TRAIL was correlated with KRAS, BRAF and NRAS mutation status, defining an inverse correlation between increased TRAIL expression and the absence of mutations in Mitogen-activated protein kinase (MAPK) pathway. In conclusion, simultaneous analysis of TRAIL pathway membrane components, pointed towards a significant deregulation of mRNA expression in colorectal tumours. Death receptor overexpression was an indicator of a less aggressive phenotype. The multiple expression patterns of TRAIL pathway components in colorectal tumours underscore the importance of patient selection in order to achieve maximum efficiency with TRAIL targeted therapy.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. RRM2, Cancer Genetics Web: http://www.cancer-genetics.org/RRM2.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 01 September, 2019     Cancer Genetics Web, Established 1999