P2RX7

Gene Summary

Gene:P2RX7; purinergic receptor P2X 7
Aliases: P2X7
Location:12q24.31
Summary:The product of this gene belongs to the family of purinoceptors for ATP. This receptor functions as a ligand-gated ion channel and is responsible for ATP-dependent lysis of macrophages through the formation of membrane pores permeable to large molecules. Activation of this nuclear receptor by ATP in the cytoplasm may be a mechanism by which cellular activity can be coupled to changes in gene expression. Multiple alternatively spliced variants have been identified, most of which fit nonsense-mediated decay (NMD) criteria. [provided by RefSeq, Jul 2010]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:P2X purinoceptor 7
Source:NCBIAccessed: 31 August, 2019

Ontology:

What does this gene/protein do?
Show (87)
Pathways:What pathways are this gene/protein implicaed in?
Show (2)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 31 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 31 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (6)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: P2RX7 (cancer-related)

Zhang X, Miao R, Liu T, et al.
IDH1 as a frequently mutated gene has potential effect on exosomes releasement by epigenetically regulating P2RX7 in intrahepatic cholangiocarcinoma.
Biomed Pharmacother. 2019; 113:108774 [PubMed] Related Publications
Biliary tract cancers (BTCs) was heterogeneous and characterized by late diagnosis and fatal outcome. To identify new biomarkers for BTCs, we performed Robust Rank Aggreg (RRA) analysis and identified that IDH1 mutation was common in ICC, while IDH1

Ma J, Li W, Chai Q, et al.
Correlation of P2RX7 gene rs1718125 polymorphism with postoperative fentanyl analgesia in patients with lung cancer.
Medicine (Baltimore). 2019; 98(7):e14445 [PubMed] Free Access to Full Article Related Publications
The aim of this study was to investigate the association between purinergic receptor P2X7 (P2RX7) gene rs1718125 polymorphism and analgesic effect of fentanyl after surgery among patients with lung cancer in a Chinese Han population.A total of 238 patients with lung cancer who received resection were enrolled in our study. The genotype distributions of P2RX7 rs1718125 polymorphism were detected by polymerase chain reaction and direct sequencing. Postoperative analgesia was performed by patient-controlled intravenous analgesia, and the consumption of fentanyl was recorded. The postoperative pain was measured by visual analog scale (VAS). Differences in postoperative VAS score and postoperative fentanyl consumption for analgesia in different genotype groups were analyzed by analysis of variance assay.The frequencies of GG, GA, and AA genotypes were 46.22%, 44.96%, and 8.82%, respectively. After surgery, the postoperative VAS score of GA group was significantly high in the period of analepsia after general anesthesia and at 6 hours after surgery (P = .041 and P = .030, respectively), while AA group exhibited obviously high in the period of analepsia after general anesthesia (P < .001), at postoperative 6 hours (P = .006) and 24 hours (P = .016). Moreover, the patients carrying GA and AA genotypes needed more fentanyl to control pain within 48 hours after surgery (P < .05 for all).P2RX7 gene rs1718125 polymorphism is significantly associated with postoperative pain and fentanyl consumption in patients with lung cancer.

Choi JH, Ji YG, Ko JJ, et al.
Activating P2X7 Receptors Increases Proliferation of Human Pancreatic Cancer Cells via ERK1/2 and JNK.
Pancreas. 2018 May/Jun; 47(5):643-651 [PubMed] Related Publications
OBJECTIVES: The aim of this study was to investigate the effects of the activated P2X7 receptors on the proliferation and growth of human pancreatic cancer cells.
METHODS: Proliferation was measured by incorporating bromodeoxyuridine into pancreatic cancer cells, MIA PaCa-2 and HPAC. Expression of P2 receptors and signal molecules was examined using quantitative reverse transcription/polymerase chain reaction and/or Western blot. Proliferative effects of the P2X7 receptors in vivo were examined using a xenotransplant model of pancreatic cancer cell lines.
RESULTS: Incubating pancreatic cancer cells with adenosine triphosphate (ATP) and 2'(3')-O-(4-Benzoylbenzoyl)ATP resulted in a dose-dependent increase of cell proliferation. The P2 receptor antagonist, KN-62, and small interfering RNA against P2X7 receptors, significantly decreased the proliferative effects of ATP. The ATP-induced proliferation was mediated by protein kinase C, extracellular signal-regulated protein kinases 1 and 2 (ERK1/2), and c-Jun N-terminal kinase (JNK); specifically, ATP increased the phosphorylation of ERK1/2 and JNK. The expression of inducible nitric oxide synthase was decreased by P2X7 receptor activation. In a xenotransplant model, applying ATP significantly increased the growth of induced tumors.
CONCLUSIONS: The P2X7 receptor activation by extracellular nucleotides increased proliferation and growth of human pancreatic cancer cells via ERK1/2 and JNK. This supports the pathophysiological role of P2X7 receptors in pancreatic disease and recovery.

Ji Z, Xie Y, Guan Y, et al.
Involvement of P2X
Biomed Res Int. 2018; 2018:8591397 [PubMed] Free Access to Full Article Related Publications
Previous studies have demonstrated that activation of P2X

Martin S, Dudek-Peric AM, Garg AD, et al.
An autophagy-driven pathway of ATP secretion supports the aggressive phenotype of BRAF
Autophagy. 2017; 13(9):1512-1527 [PubMed] Free Access to Full Article Related Publications
The ingrained capacity of melanoma cells to rapidly evolve toward an aggressive phenotype is manifested by their increased ability to develop drug-resistance, evident in the case of vemurafenib, a therapeutic-agent targeting BRAF

Zheng Y, Li X, Manor LC, et al.
An Integrative Computational Approach to Evaluate Genetic Markers for Chronic Lymphocytic Leukemia.
J Comput Biol. 2017; 24(9):942-952 [PubMed] Related Publications
Recent studies reported hundreds of genes linked to chronic lymphocytic leukemia (CLL). However, many of these candidate genes were lack of replication and results were not always consistent. Here, we proposed a computational workflow to curate and evaluate CLL-related genes. The method integrates large-scale literature knowledge data, gene expression data, and related pathways/network information for quantitative marker evaluation. Pathway Enrichment, Sub-Network Enrichment, and Gene-Gene Interaction analysis were conducted to study the pathogenic profile of the candidate genes, with four metrics proposed and validated for each gene. By using our approach, a scalable CLL genetic database was developed including CLL-related genes, pathways, diseases and information of supporting references. The CLL case/control classification supported the effectiveness of the four proposed metrics, which successfully identified nine well-studied CLL genes (i.e., TNF, BCL2, TP53, VEGFA, P2RX7, AKT1, SYK, IL4, and MDM2) and highlighted two newly reported CLL genes (i.e., PDGFRA and CSF1R). The computational biology approach and the CLL database developed in this study provide a valuable resource that may facilitate the understanding of the genetic profile of CLL.

Baldini C, Santini E, Rossi C, et al.
The P2X7 receptor-NLRP3 inflammasome complex predicts the development of non-Hodgkin's lymphoma in Sjogren's syndrome: a prospective, observational, single-centre study.
J Intern Med. 2017; 282(2):175-186 [PubMed] Related Publications
BACKGROUND: P2X7 receptor (P2X7R), trigger of acute inflammatory responses via the NLRP3 inflammasome, is hyperfunctioning in patients with Sjögren's syndrome (SS), where it stimulates IL-18 production. Some patients with SS develop a mucosa-associated lymphoid tissue non-Hodgkin's lymphoma (MALT-NHL).
OBJECTIVES: To prospectively evaluate the involvement and the putative prognostic role of this inflammatory pathway in the development of MALT-NHL.
METHODS: A total of 147 women with SS have been prospectively followed for a mean of 52 months, relating the expression and function of the P2X7R-inflammasome axis in salivary glands and circulating lymphomonocytes to the prognosis and the degree of the disease.
RESULTS: At baseline, gene expression of P2X7R and of the inflammasome components NLRP3, caspase-1 and IL-18 increased according to the presence of germinative centres and was higher in autoantibody-positive individuals and strongly higher in those developing a MALT-NHL over the follow-up. Glandular expression of IL-18 was threefold higher in MALT-NHL than in controls or in the other patients with SS. P2X7R did not colocalize with generic markers of inflammatory infiltrate, like CD20, being selectively expressed by epithelial cells. P2X4R, sharing functional characteristics with P2X7R, did not differ in SS and controls. The increased P2X7R gene and protein expression was tissue specific, no difference being observed in peripheral lymphomonocytes between SS with MALT-NHL and SS not developing MALT-NHL.
CONCLUSION: We propose the P2X7R-inflammasome axis as a novel potential pathway involved in both SS exocrinopathy and lymphomagenesis, reinforcing the hypothesis of a key role of IL-18, via its increased P2X7R-mediated production, in the pathogenesis of lymphoproliferative malignancies, and opening novel opportunities for the early diagnosis of lymphoproliferative complications and the development of potential targeted therapies.

Bae JY, Lee SW, Shin YH, et al.
P2X7 receptor and NLRP3 inflammasome activation in head and neck cancer.
Oncotarget. 2017; 8(30):48972-48982 [PubMed] Free Access to Full Article Related Publications
In this study, we investigated purinergic receptor P2X7 and NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome expressions, and their role in head and neck cancer. We found upregulation of purinergic receptor P2X7 and all NLRP3 inflammasome components in biopsied head and neck squamous cell carcinoma tissues. Similarly, the expression of purinergic receptor P2X7, apoptosis-associated speck-like protein containing CARD, and pro-form caspase 1 in A253 cells derived from epidermoid carcinoma were highly upregulated in comparison to normal Human Salivary Gland cell line. Active caspase-1 and its final product, active interleukin-1β, both increased in primed A253 cells stimulated with purinergic receptor P2X7 agonists, while this elevated NLRP3 inflammasome activity was suppressed by purinergic receptor P2X7 antagonists. However, we observed none of these effects in Human Salivary Gland cells. Inhibition of both NLRP3 inflammasome and purinergic receptor P2X7 led to the significant cell death of primed A253 cells, but had no effect on the viability of primed HSG cells or the primary cultured human fibroblast cells. Furthermore, inhibition of either purinergic receptor P2X7 or NLRP3 inflammasome decreased invasiveness of A253, and this effect became more evident when both purinergic receptor P2X7 and NLRP3 inflammasome were simultaneously blocked. Therefore, it is concluded that the purinergic receptor P2X7 and the activation of NLRP3 inflammasome play important roles in the survival and invasiveness of head and neck squamous cell carcinoma in humans.

Santos AA, Cappellari AR, de Marchi FO, et al.
Potential role of P2X7R in esophageal squamous cell carcinoma proliferation.
Purinergic Signal. 2017; 13(3):279-292 [PubMed] Free Access to Full Article Related Publications
Esophageal cancer is an aggressive tumor and is the sixth leading cause of cancer death worldwide. ATP is well known to regulate cancer progression in a variety of models by different mechanisms, including P2X7R activation. This study aimed to evaluate the role of P2X7R in esophageal squamous cell carcinoma (ESCC) proliferation. Our results show that treatment with high ATP concentrations induced a decrease in cell number, cell viability, number of polyclonal colonies, and reduced migration of ESCC. The treatment with the selective P2X7R antagonist A740003 or siRNA for P2X7 reverted this effect in the KYSE450 cell line. In addition, results showed that P2X7R is highly expressed, at mRNA and protein levels, in KYSE450 lineage. Additionally, KYSE450, KYSE30, and OE21 cells express P2X3R, P2X4R, P2X5R, P2X6R, and P2X7R genes. P2X1R is expressed by KYSE30 and KYSE450, and only KYSE450 expresses the P2X2R gene. Furthermore, esophageal cancer cell line KYSE450 presented higher expression of E-NTPDases 1 and 2 and of Ecto-5'-NT/CD73 when compared to normal cells. This cell line also exhibits ATPase, ADPase, and AMPase activity, although in different levels, and the co-treatment of apyrase was able to revert the antiproliferative effects of ATP. Moreover, results showed high immunostaining for P2X7R in biopsies of patients with esophageal carcinoma, indicating the involvement of this receptor in the growth of this type of cancer. The results suggest that P2X7R may be a potential pharmacological target to treat ESCC and can lead us to further investigate the effect of this receptor in cancer cell progression.

Salvestrini V, Orecchioni S, Talarico G, et al.
Extracellular ATP induces apoptosis through P2X7R activation in acute myeloid leukemia cells but not in normal hematopoietic stem cells.
Oncotarget. 2017; 8(4):5895-5908 [PubMed] Free Access to Full Article Related Publications
Recent studies have shown that high ATP levels exhibit direct cytotoxic effects on several cancer cells types. Among the receptors engaged by ATP, P2X7R is the most consistently expressed by tumors. P2X7R is an ATP-gated ion channel that could drive the opening of a non-selective pore, triggering cell-death signal. We previously demonstrated that acute myeloid leukemia (AML) cells express high level of P2X7R. Here, we show that P2X7R activation with high dose ATP induces AML blast cells apoptosis. Moreover, P2X7R is also expressed on leukemic stem/progenitor cells (LSCs) which are sensitive to ATP-mediated cytotoxicity. Conversely, this cytotoxic effect was not observed on normal hematopoietic stem/progenitor cells (HSCs). Notably, the antileukemic activity of ATP was also observed in presence of bone marrow stromal cells and its addition to the culture medium enhanced cytosine arabinoside cytotoxicity despite stroma-induced chemoresistance. Xenotransplant experiments confirmed ATP antineoplastic activity in vivo.Overall, our results demonstrate that P2X7R stimulation by ATP induced a therapeutic response in AML at the LSC level while the normal stem cell compartment was not affected. These results provide evidence that ATP would be promising for developing innovative therapy for AML.

Yang YC, Chang TY, Chen TC, et al.
Functional variant of the P2X7 receptor gene is associated with human papillomavirus-16 positive cervical squamous cell carcinoma.
Oncotarget. 2016; 7(50):82798-82803 [PubMed] Free Access to Full Article Related Publications
Human papillomavirus (HPV) infection and the fate of HPV infected cervical epithelial cells are strictly associated with cervical cancer development. P2X7 receptor has been implicated in both the regulation of immune responses and apoptosis of cervical cancer cells. The study aims to investigate if polymorphisms in the P2RX7 gene are associated with the risk of cervical cancer in Taiwanese women. P2RX7 253 T/C, 835 G/A, and 1513 A/C loss-of-function polymorphisms were genotyped in a hospital-based study of 507 women with cervical squamous cell carcinoma (CSCC) and 1619 age-matched healthy control women. The presence and genotypes of HPV in CSCC was determined. The frequency of 253 C/C genotype was found to increase significantly in patients with HPV-16 positive CSCC compared with controls (odds ratio = 10.2, 95% confidence interval 1.39-87.8, Pc = 0.03). No significant associations were found for other 2 polymorphisms. Analysis of haplotypes also revealed no significant differences among women with CSCC, those with HPV-16 positive CSCC and controls. In conclusion, inheritance of the C/C genotype at position 253 in the P2RX7 gene may contribute to the risk of HPV-16 associated CSCC in Taiwanese women.

Giannuzzo A, Saccomano M, Napp J, et al.
Targeting of the P2X7 receptor in pancreatic cancer and stellate cells.
Int J Cancer. 2016; 139(11):2540-52 [PubMed] Free Access to Full Article Related Publications
The ATP-gated receptor P2X7 (P2X7R) is involved in regulation of cell survival and has been of interest in cancer field. Pancreatic ductal adenocarcinoma (PDAC) is a deadly cancer and new markers and therapeutic targets are needed. PDAC is characterized by a complex tumour microenvironment, which includes cancer and pancreatic stellate cells (PSCs), and potentially high nucleotide/side turnover. Our aim was to determine P2X7R expression and function in human pancreatic cancer cells in vitro as well as to perform in vivo efficacy study applying P2X7R inhibitor in an orthotopic xenograft mouse model of PDAC. In the in vitro studies we show that human PDAC cells with luciferase gene (PancTu-1 Luc cells) express high levels of P2X7R protein. Allosteric P2X7R antagonist AZ10606120 inhibited cell proliferation in basal conditions, indicating that P2X7R was tonically active. Extracellular ATP and BzATP, to which the P2X7R is more sensitive, further affected cell survival and confirmed complex functionality of P2X7R. PancTu-1 Luc migration and invasion was reduced by AZ10606120, and it was stimulated by PSCs, but not by PSCs from P2X7(-/-) animals. PancTu-1 Luc cells were orthotopically transplanted into nude mice and tumour growth was followed noninvasively by bioluminescence imaging. AZ10606120-treated mice showed reduced bioluminescence compared to saline-treated mice. Immunohistochemical analysis confirmed P2X7R expression in cancer and PSC cells, and in metaplastic/neoplastic acinar and duct structures. PSCs number/activity and collagen deposition was reduced in AZ10606120-treated tumours.

Pan H, Ni H, Zhang L, et al.
P2RX7-V3 is a novel oncogene that promotes tumorigenesis in uveal melanoma.
Tumour Biol. 2016; 37(10):13533-13543 [PubMed] Related Publications
Uveal melanoma (UM) has a high mortality rate for primary intraocular tumors. Approximately half of UM patients present with untreatable and fatal metastases. Long non-coding RNAs (lncRNAs) have emerged as potent regulatory RNAs that play key roles in various cellular processes and tumorigenesis. However, to date, their roles in UM are not well-known. Here, we identified a transcriptional variant transcribed from the P2RX7 gene locus, named P2RX7-V3 (P2RX7 variant 3), which was expressed at a high level in UM cells. P2RX7-V3 silencing revealed that this variant acts as a necessary UM oncoRNA. Knockdown of P2RX7-V3 expression significantly suppressed tumor growth in vitro and in vivo. A genome-wide cDNA array revealed that a variety of genes were dysregulated following P2RX7-V3 silencing. These observations identified P2RX7-V3 that plays a crucial role in UM tumorigenesis and may serve as a useful biomarker in the diagnosis and prognosis treatment of UM in the future.

Amoroso F, Salaro E, Falzoni S, et al.
P2X7 targeting inhibits growth of human mesothelioma.
Oncotarget. 2016; 7(31):49664-49676 [PubMed] Free Access to Full Article Related Publications
Malignant pleural mesothelioma (MPM) is an aggressive tumor refractory to anti-blastic therapy. MPM cells show several genetic and biochemical defects, e.g. overexpression of oncogenes, downregulation of onco-suppressor genes, dysregulation of microRNA, or alteration of intracellular Ca2+ homeostasis and of apoptosis. No information is as yet available on purinergic signalling in this tumor. Signalling via the P2X7 (P2RX7 or P2X7R) purinergic receptor is attracting increasing attention as a pathway involved in cancer cell death or proliferation. In this report we show that the P2X7R is expressed by three MPM cell lines established from MPM patients but not by mesothelial cells from healthy subjects (healthy mesothelial cells, HMCs). MPM cell proliferation was inhibited by in vitro incubation in the presence of selective P2X7R antagonists, as well as by stimulation with the P2X7R agonist BzATP. Systemic administration of the selective P2X7R blocker AZ10606120 inhibited in vivo growth of MPM tumors whether implanted subcutaneously (s.c.) or intraperitoneally (i.p.). Our findings suggest that the P2X7R might be a novel target for the therapy of mesothelioma.

Duan S, Yu J, Han Z, et al.
Association Between P2RX7 Gene and Hepatocellular Carcinoma Susceptibility: A Case-Control Study in a Chinese Han Population.
Med Sci Monit. 2016; 22:1916-23 [PubMed] Free Access to Full Article Related Publications
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most common types of liver cancer. It is hypothesized that P2RX7 genetic polymorphisms have strong association with HCC susceptibility. Therefore, a case-control study was designed and performed to verify the association between P2RX7 gene polymorphisms and HCC susceptibility. MATERIAL AND METHODS A total of 646 subjects were recruited in our study, including 323 HCC patients and 323 healthy controls. Five gene polymorphisms, -762C>T (rs2393799), 946G>A (rs28360457), 1513A>C (rs3751143), 1068G>A (rs1718119), and 1096C>G (rs2230911), were selected. Odds ratio (ORs) and 95% confidence interval (CI) were used to quantify the association between P2RX7 gene polymorphisms and the susceptibility to HCC. All tests were performed using SPSS 20 and a 2-sided P value of less than 0.05 was considered to be statistically significant. RESULTS Our results suggest that allelic frequencies of these 5 SNPs all conformed to Hardy-Weinberg equilibrium (HWE). There was no significant difference in genotype and allele distributions of -762C>T and 1096C>G between the case group and the control group. However, an increased risk of HCC was associated with 946G>A (A vs. G: OR=1.48, 95%CI=1.09-2.01, P=0.013; GA+AA vs. GG: OR=1.46, 95%CI=1.03-2.07, P=0.033). A similar increased risk was associated with 1513A>C polymorphism (C vs. A: OR=1.37, 95%CI=1.05-1.79, P=0.021; AC+CC vs. AA: OR=1.40, 95%CI=1.01-1.93, P=0.041). On the other hand, a decreased risk of HCC was associated with gene polymorphism of 1068G>A (A vs. G: OR=0.68, 95%CI=0.51-0.91, P=0.010; GA+AA vs. GG: OR=0.68, 95%CI=0.49-0.96, P=0.027; AA vs. GG: OR=0.42, 95%CI=0.18-0.99, P=0.048). CONCLUSIONS Our results suggest that 3 of the 5 polymorphisms of P2RX7 described above (1513A>C, 946G>A, and 1068G>A) are significantly associated with HCC susceptibility in a Chinese Han population. Studies with larger sample sizes are recommended to confirm whether our results will be applicable to different ethnic populations in China.

Truvé K, Dickinson P, Xiong A, et al.
Utilizing the Dog Genome in the Search for Novel Candidate Genes Involved in Glioma Development-Genome Wide Association Mapping followed by Targeted Massive Parallel Sequencing Identifies a Strongly Associated Locus.
PLoS Genet. 2016; 12(5):e1006000 [PubMed] Free Access to Full Article Related Publications
Gliomas are the most common form of malignant primary brain tumors in humans and second most common in dogs, occurring with similar frequencies in both species. Dogs are valuable spontaneous models of human complex diseases including cancers and may provide insight into disease susceptibility and oncogenesis. Several brachycephalic breeds such as Boxer, Bulldog and Boston Terrier have an elevated risk of developing glioma, but others, including Pug and Pekingese, are not at higher risk. To identify glioma-associated genetic susceptibility factors, an across-breed genome-wide association study (GWAS) was performed on 39 dog glioma cases and 141 controls from 25 dog breeds, identifying a genome-wide significant locus on canine chromosome (CFA) 26 (p = 2.8 x 10-8). Targeted re-sequencing of the 3.4 Mb candidate region was performed, followed by genotyping of the 56 SNVs that best fit the association pattern between the re-sequenced cases and controls. We identified three candidate genes that were highly associated with glioma susceptibility: CAMKK2, P2RX7 and DENR. CAMKK2 showed reduced expression in both canine and human brain tumors, and a non-synonymous variant in P2RX7, previously demonstrated to have a 50% decrease in receptor function, was also associated with disease. Thus, one or more of these genes appear to affect glioma susceptibility.

Gómez-Villafuertes R, García-Huerta P, Díaz-Hernández JI, Miras-Portugal MT
PI3K/Akt signaling pathway triggers P2X7 receptor expression as a pro-survival factor of neuroblastoma cells under limiting growth conditions.
Sci Rep. 2015; 5:18417 [PubMed] Free Access to Full Article Related Publications
The expression of purinergic P2X7 receptor (P2X7R) in neuroblastoma cells is associated to accelerated growth rate, angiogenesis, metastasis and poor prognosis. Noticeably, P2X7R allows the survival of neuroblastoma cells under restrictive conditions, including serum and glucose deprivation. Previously we identified specificity protein 1 (Sp1) as the main factor involved in the transcriptional regulation of P2rx7 gene, reporting that serum withdrawal triggers the expression of P2X7R in Neuro-2a (N2a) neuroblastoma cell line. Here we demonstrate that PI3K/Akt pathway is crucial for the upregulation of P2X7R expression in serum-deprived neuroblastoma cells, circumstance that facilitates cell proliferation in the absence of trophic support. The effect exerted by PI3K/Akt is independent of both mTOR and GSK3, but requires the activation of EGF receptor (EGFR). Nuclear levels of Sp1 are strongly reduced by inhibition of PI3K/Akt pathway, and blockade of Sp1-dependent transcription with mithramycin A prevents upregulation of P2rx7 gene expression following serum withdrawal. Furthermore, atypical PKCζ plays a key role in the regulation of P2X7R expression by preventing phosphorylation and, consequently, activation of Akt. Altogether, these data indicate that activation of EGFR enhanced the expression of P2X7R in neuroblastoma cells lacking trophic support, being PI3K/Akt/PKCζ signaling pathway and Sp1 mediating this pro-survival outcome.

Song S, Jacobson KN, McDermott KM, et al.
ATP promotes cell survival via regulation of cytosolic [Ca2+] and Bcl-2/Bax ratio in lung cancer cells.
Am J Physiol Cell Physiol. 2016; 310(2):C99-114 [PubMed] Free Access to Full Article Related Publications
Adenosine triphosphate (ATP) is a ubiquitous extracellular messenger elevated in the tumor microenvironment. ATP regulates cell functions by acting on purinergic receptors (P2X and P2Y) and activating a series of intracellular signaling pathways. We examined ATP-induced Ca(2+) signaling and its effects on antiapoptotic (Bcl-2) and proapoptotic (Bax) proteins in normal human airway epithelial cells and lung cancer cells. Lung cancer cells exhibited two phases (transient and plateau phases) of increase in cytosolic [Ca(2+)] ([Ca(2+)]cyt) caused by ATP, while only the transient phase was observed in normal cells. Removal of extracellular Ca(2+) eliminated the plateau phase increase of [Ca(2+)]cyt in lung cancer cells, indicating that the plateau phase of [Ca(2+)]cyt increase is due to Ca(2+) influx. The distribution of P2X (P2X1-7) and P2Y (P2Y1, P2Y2, P2Y4, P2Y6, P2Y11) receptors was different between lung cancer cells and normal cells. Proapoptotic P2X7 was nearly undetectable in lung cancer cells, which may explain why lung cancer cells showed decreased cytotoxicity when treated with high concentration of ATP. The Bcl-2/Bax ratio was increased in lung cancer cells following treatment with ATP; however, the antiapoptotic protein Bcl-2 demonstrated more sensitivity to ATP than proapoptotic protein Bax. Decreasing extracellular Ca(2+) or chelating intracellular Ca(2+) with BAPTA-AM significantly inhibited ATP-induced increase in Bcl-2/Bax ratio, indicating that a rise in [Ca(2+)]cyt through Ca(2+) influx is the critical mediator for ATP-mediated increase in Bcl-2/Bax ratio. Therefore, despite high ATP levels in the tumor microenvironment, which would induce cell apoptosis in normal cells, the decreased P2X7 and elevated Bcl-2/Bax ratio in lung cancer cells may enable tumor cells to survive. Increasing the Bcl-2/Bax ratio by exposure to high extracellular ATP may, therefore, be an important selective pressure promoting transformation and cancer progression.

Azimi I, Beilby H, Davis FM, et al.
Altered purinergic receptor-Ca²⁺ signaling associated with hypoxia-induced epithelial-mesenchymal transition in breast cancer cells.
Mol Oncol. 2016; 10(1):166-78 [PubMed] Free Access to Full Article Related Publications
Hypoxia is a feature of the microenvironment of many cancers and can trigger epithelial-mesenchymal transition (EMT), a process by which cells acquire a more invasive phenotype with enriched survival. A remodeling of adenosine 5'-triphosphate (ATP)-induced Ca(2+) signaling via purinergic receptors is associated with epidermal growth factor (EGF)-induced EMT in MDA-MB-468 breast cancer cells. Here, we assessed ATP-mediated Ca(2+) signaling in a model of hypoxia-induced EMT in MDA-MB-468 cells. Like EGF, hypoxia treatment (1% O2) was also associated with a significant reduction in the sensitivity of MDA-MB-468 cells to ATP (EC50 of 0.5 μM for normoxic cells versus EC50 of 5.8 μM for hypoxic cells). Assessment of mRNA levels of a panel of P2X and P2Y purinergic receptors following hypoxia revealed a change in levels of a suite of purinergic receptors. P2X4, P2X5, P2X7, P2Y1 and P2Y11 mRNAs decreased with hypoxia, whereas P2Y6 mRNA increased. Up-regulation of P2Y6 was a common feature of both growth factor- and hypoxia-induced models of EMT. P2Y6 levels were also significantly increased in basal-like breast tumors compared to other subtypes and breast cancer patients with higher P2Y6 levels showed reduced overall survival rates. P2Y6 siRNA-mediated silencing and the P2Y6 pharmacological inhibitor MRS2578 reduced hypoxia-induced vimentin protein expression in MDA-MB-468 cells. P2Y6 inhibition also reduced the migration of mesenchymal-like MDA-MB-231 breast cancer cells. The up-regulation of P2Y6 appears to be a common feature of the mesenchymal phenotype of breast cancer cells and inhibition of this receptor may represent a novel therapeutic target in breast cancer metastasis.

Vacchelli E, Semeraro M, Enot DP, et al.
Negative prognostic impact of regulatory T cell infiltration in surgically resected esophageal cancer post-radiochemotherapy.
Oncotarget. 2015; 6(25):20840-50 [PubMed] Free Access to Full Article Related Publications
Ever accumulating evidence indicates that the long-term effects of radiotherapy and chemotherapy largely depend on the induction (or restoration) of an anticancer immune response. Here, we investigated this paradigm in the context of esophageal carcinomas treated by neo-adjuvant radiochemotherapy, in a cohort encompassing 196 patients. We found that the density of the FOXP3+ regulatory T cell (Treg) infiltrate present in the residual tumor (or its scar) correlated with the pathological response (the less Tregs the more pronounced was the histological response) and predicted cancer-specific survival. In contrast, there was no significant clinical impact of the frequency of CD8+ cytotoxic T cells. At difference with breast or colorectal cancer, a loss-of-function allele of toll like receptor 4 (TLR4) improved cancer-specific survival of patients with esophageal cancer. While a loss-of-function allele of purinergic receptor P2X, ligand-gated ion channel, 7 (P2RX7) failed to affect cancer-specific survival, its presence did correlate with an increase in Treg infiltration. Altogether, these results corroborate the notion that the immunosurveillance seals the fate of patients with esophageal carcinomas treated with conventional radiochemotherapy.

Gehring MP, Kipper F, Nicoletti NF, et al.
P2X7 receptor as predictor gene for glioma radiosensitivity and median survival.
Int J Biochem Cell Biol. 2015; 68:92-100 [PubMed] Related Publications
Glioblastoma multiforme (GBM) is considered the most lethal intracranial tumor and the median survival time is approximately 14 months. Although some glioma cells present radioresistance, radiotherapy has been the mainstay of therapy for patients with malignant glioma. The activation of P2X7 receptor (P2X7R) is responsible for ATP-induced death in various cell types. In this study, we analyzed the importance of ATP-P2X7R pathway in the radiotherapy response P2X7R silenced cell lines, in vivo and human tumor samples. Both glioma cell lines used in this study present a functional P2X7R and the P2X7R silencing reduced P2X7R pore activity by ethidium bromide uptake. Gamma radiation (2Gy) treatment reduced cell number in a P2X7R-dependent way, since both P2X7R antagonist and P2X7R silencing blocked the cell cytotoxicity caused by irradiation after 24h. The activation of P2X7R is time-dependent, as EtBr uptake significantly increased after 24h of irradiation. The radiotherapy plus ATP incubation significantly increased annexin V incorporation, compared with radiotherapy alone, suggesting that ATP acts synergistically with radiotherapy. Of note, GL261 P2X7R silenced-bearing mice failed in respond to radiotherapy (8Gy) and GL261 WT-bearing mice, that constitutively express P2X7R, presented a significant reduction in tumor volume after radiotherapy, showing in vivo that functional P2X7R expression is essential for an efficient radiotherapy response in gliomas. We also showed that a high P2X7R expression is a good prognostic factor for glioma radiosensitivity and survival probability in humans. Our data revealed the relevance of P2X7R expression in glioma cells to a successful radiotherapy response, and shed new light on this receptor as a useful predictor of the sensitivity of cancer patients to radiotherapy and median survival.

Xia J, Yu X, Tang L, et al.
P2X7 receptor stimulates breast cancer cell invasion and migration via the AKT pathway.
Oncol Rep. 2015; 34(1):103-10 [PubMed] Related Publications
Purinergic signaling has been implicated in the regulation of many cellular processes. A high concentration of ATP has been observed in the tumor microenvironment, suggesting a possible role of extracellular ATP in tumor progression. The P2X7 receptor, which belongs to the ligand-gated ion channel receptor family, is involved in tumor development and metastasis. In the present study, we found that extracellular ATP stimulated the invasion and migration of human T47D breast cancer cells, in a dose-dependent manner. BzATP (ATP analogue), but not ADP, also promoted invasion and migration. We further found that the P2X7 receptor was highly expressed in the T47D cells. After knockdown of the P2X7 receptor, ATP-stimulated invasion and migration were markedly inhibited. Moreover, activation of the P2X7 receptor by ATP downregulated the protein level of E-cadherin and upregulated the production of MMP-13. In addition, ATP time-dependently induced the activation of AKT via the P2X7 receptor, and the AKT pathway was required for the ATP-mediated invasion and migration. Taken together, our results revealed that activation of the P2X7 receptor by ATP promotes breast cancer cell invasion and migration, possibly via activation of the AKT pathway and regulation of E-cadherin and MMP-13 expression. Therefore, the P2X7 receptor may be a useful therapeutic target for the treatment of breast cancer.

Sainz B, Alcala S, Garcia E, et al.
Microenvironmental hCAP-18/LL-37 promotes pancreatic ductal adenocarcinoma by activating its cancer stem cell compartment.
Gut. 2015; 64(12):1921-35 [PubMed] Related Publications
OBJECTIVES: The tumour stroma/microenvironment not only provides structural support for tumour development, but more importantly it provides cues to cancer stem cells (CSCs) that regulate their self-renewal and metastatic potential. This is certainly true for pancreatic ductal adenocarcinomas (PDAC), where tumour-associated fibroblasts, pancreatic stellate cells and immune cells create an abundant paracrine niche for CSCs via microenvironment-secreted factors. Thus understanding the role that tumour stroma cells play in PDAC development and CSC biology is of utmost importance.
DESIGN: Microarray analyses, tumour microarray immunohistochemical assays, in vitro co-culture experiments, recombinant protein treatment approaches and in vivo intervention studies were performed to understand the role that the immunomodulatory cationic antimicrobial peptide 18/LL-37 (hCAP-18/LL-37) plays in PDAC biology.
RESULTS: We found that hCAP-18/LL-37 was strongly expressed in the stroma of advanced primary and secondary PDAC tumours and is secreted by immune cells of the stroma (eg, tumour-associated macrophages) in response to tumour growth factor-β1 and particularly CSC-secreted Nodal/ActivinA. Treatment of pancreatic CSCs with recombinant LL-37 increased pluripotency-associated gene expression, self-renewal, invasion and tumourigenicity via formyl peptide receptor 2 (FPR2)- and P2X purinoceptor 7 receptor (P2X7R)-dependent mechanisms, which could be reversed by inhibiting these receptors. Importantly, in a genetically engineered mouse model of K-Ras-driven pancreatic tumourigenesis, we also showed that tumour formation was inhibited by either reconstituting these mice with bone marrow from cathelicidin-related antimicrobial peptide (ie, murine homologue of hCAP-18/LL-37) knockout mice or by pharmacologically inhibiting FPR2 and P2X7R.
CONCLUSIONS: Thus, hCAP-18/LL-37 represents a previously unrecognised PDAC microenvironment factor that plays a critical role in pancreatic CSC-mediated tumourigenesis.

Liu H, Liu W, Liu Z, et al.
Prognostic value of purinergic P2X7 receptor expression in patients with hepatocellular carcinoma after curative resection.
Tumour Biol. 2015; 36(7):5039-49 [PubMed] Related Publications
The family of type 2 purinergic (P2) receptors, especially P2X7, is responsible for the direct tumor-killing functions of extracellular adenosine triphosphate (ATP), but the precise role of P2X7 in the progression of hepatocellular carcinoma (HCC) remains elusive. This study aims to evaluate prognostic value of P2X7 expression in HCC patients after surgical resection. Expression of P2X7 was assessed by immunohistochemistry in tissue microarrays containing paired tumor and peritumoral liver tissues from 273 patients with HCC who had undergone hepatectomy between 2006 and 2007. Prognostic value of P2X7 expression and clinical outcomes were evaluated. Peritumoral P2X7 expression was significantly higher than intratumoral P2X7 expression. No significant prognostic difference was observed for overall survival for intratumoral P2X7 density, whereas peritumoral P2X7 density indicates unfavorable overall survival in training set and BCLC stage 0-A subset. Besides, peritumoral P2X7 density, which correlated with tumor size, venous invasion, and BCLC stage, was identified as an independent poor prognosticator for overall survival and recurrence-free survival. The association was further validated in validation set. Peritumoral P2X7 is a potential unfavorable prognosticator for overall survival and recurrence free survival in HCC patients after surgical resection. Further external validation and functional analysis should be pursued to evaluate its potential prognostic value and therapeutic significance for HCC patients.

Agrawal A, Gartland A
P2X7 receptors: role in bone cell formation and function.
J Mol Endocrinol. 2015; 54(2):R75-88 [PubMed] Related Publications
The role of the P2X7 receptor (P2X7R) is being explored with intensive interest in the context of normal bone physiology, bone-related diseases and, to an extent, bone cancer. In this review, we cover the current understanding of P2X7R regulation of bone cell formation, function and survival. We will discuss how the P2X7R drives lineage commitment of undifferentiated bone cell progenitors, the vital role of P2X7R activation in bone mineralisation and its relatively unexplored role in osteocyte function. We also review how P2X7R activation is imperative for osteoclast formation and its role in bone resorption via orchestrating osteoclast apoptosis. Variations in the gene for the P2X7R (P2RX7) have implications for P2X7R-mediated processes and we review the relevance of these genetic variations in bone physiology. Finally, we highlight how targeting P2X7R may have therapeutic potential in bone disease and cancer.

Adinolfi E, Capece M, Franceschini A, et al.
Accelerated tumor progression in mice lacking the ATP receptor P2X7.
Cancer Res. 2015; 75(4):635-44 [PubMed] Related Publications
The ATP receptor P2X7 (P2X7R or P2RX7) has a key role in inflammation and immunity, but its possible roles in cancer are not firmly established. In the present study, we investigated the effect of host genetic deletion of P2X7R in the mouse on the growth of B16 melanoma or CT26 colon carcinoma cells. Tumor size and metastatic dissemination were assessed by in vivo calliper and luciferase luminescence emission measurements along with postmortem examination. In P2X7R-deficient mice, tumor growth and metastatic spreading were accelerated strongly, compared with wild-type (wt) mice. Intratumoral IL-1β and VEGF release were drastically reduced, and inflammatory cell infiltration was abrogated nearly completely. Similarly, tumor growth was also greatly accelerated in wt chimeric mice implanted with P2X7R-deficient bone marrow cells, defining hematopoietic cells as a sufficient site of P2X7R action. Finally, dendritic cells from P2X7R-deficient mice were unresponsive to stimulation with tumor cells, and chemotaxis of P2X7R-less cells was impaired. Overall, our results showed that host P2X7R expression was critical to support an antitumor immune response, and to restrict tumor growth and metastatic diffusion.

Qiu Y, Li WH, Zhang HQ, et al.
P2X7 mediates ATP-driven invasiveness in prostate cancer cells.
PLoS One. 2014; 9(12):e114371 [PubMed] Free Access to Full Article Related Publications
The ATP-gated P2X7 has been shown to play an important role in invasiveness and metastasis of some tumors. However, the possible links and underlying mechanisms between P2X7 and prostate cancer have not been elucidated. Here, we demonstrated that P2X7 was highly expressed in some prostate cancer cells. Down-regulation of P2X7 by siRNA significantly attenuated ATP- or BzATP-driven migration and invasion of prostate cancer cells in vitro, and inhibited tumor invasiveness and metastases in nude mice. In addition, silencing of P2X7 remarkably attenuated ATP- or BzATP- driven expression changes of EMT/invasion-related genes Snail, E-cadherin, Claudin-1, IL-8 and MMP-3, and weakened the phosphorylation of PI3K/AKT and ERK1/2 in vitro. Similar effects were observed in nude mice. These data indicate that P2X7 stimulates cell invasion and metastasis in prostate cancer cells via some EMT/invasion-related genes, as well as PI3K/AKT and ERK1/2 signaling pathways. P2X7 could be a promising therapeutic target for prostate cancer.

Roger S, Jelassi B, Couillin I, et al.
Understanding the roles of the P2X7 receptor in solid tumour progression and therapeutic perspectives.
Biochim Biophys Acta. 2015; 1848(10 Pt B):2584-602 [PubMed] Related Publications
P2X7 is an intriguing ionotropic receptor for which the activation by extracellular ATP induces rapid inward cationic currents and intracellular signalling pathways associated with numerous physiological processes such as the induction of the inflammatory cascade, the survival and proliferation of cells. In contrast, long-term stimulation of P2X7 is generally associated with membrane permeabilisation and cell death. Recently, P2X7 has attracted great attention in the cancer field, and particularly in the neoplastic transformation and the progression of solid tumours. A growing number of studies were published; however they often appeared contradictory in their results and conclusions. As such, the involvement of P2X7 in the oncogenic process remains unclear so far. The present review aims to discuss the current knowledge and hypotheses on the involvement of the P2X7 receptor in the development and progression of solid tumours, and highlight the different aspects that require further clarification in order to decipher whether P2X7 could be considered as a cancer biomarker or as a target for pharmacological intervention. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.

Giuliani AL, Colognesi D, Ricco T, et al.
Trophic activity of human P2X7 receptor isoforms A and B in osteosarcoma.
PLoS One. 2014; 9(9):e107224 [PubMed] Free Access to Full Article Related Publications
The P2X7 receptor (P2X7R) is attracting increasing attention for its involvement in cancer. Several recent studies have shown a crucial role of P2X7R in tumour cell growth, angiogenesis and invasiveness. In this study, we investigated the role of the two known human P2X7R functional splice variants, the full length P2X7RA and the truncated P2X7RB, in osteosarcoma cell growth. Immunohistochemical analysis of a tissue array of human osteosarcomas showed that forty-four, of a total fifty-four tumours (81.4%), stained positive for both P2X7RA and B, thirty-one (57.4%) were positive using an anti-P2X7RA antibody, whereas fifteen of the total number (27.7%) expressed only P2X7RB. P2X7RB positive tumours showed increased cell density, at the expense of extracellular matrix. The human osteosarcoma cell line Te85, which lacks endogenous P2X7R expression, was stably transfected with either P2X7RA, P2X7RB, or both. Receptor expression was a powerful stimulus for cell growth, the most efficient growth-promoting isoform being P2X7RB alone. Growth stimulation was matched by increased Ca(2+) mobilization and enhanced NFATc1 activity. Te85 P2X7RA+B cells presented pore formation as well as spontaneous extracellular ATP release. The ATP release was sustained in all clones by P2X7R agonist (BzATP) and reduced following P2X7R antagonist (A740003) application. BzATP also increased cell growth and activated NFATc1 levels. On the other hand cyclosporin A (CSA) affected both NFATc1 activation and cell growth, definitively linking P2X7R stimulation to NFATc1 and cell proliferation. All transfected clones also showed reduced RANK-L expression, and an overall decreased RANK-L/OPG ratio. Mineralization was increased in Te85 P2X7RA+B cells while it was significantly diminished in Te85 P2X7RB clones, in agreement with immunohistochemical results. In summary, our data show that the majority of human osteosarcomas express P2X7RA and B and suggest that expression of either isoform is differently coupled to cell growth or activity.

Boldrini L, Giordano M, Alì G, et al.
P2X7 protein expression and polymorphism in non-small cell lung cancer (NSCLC).
J Negat Results Biomed. 2014; 13:16 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: P2X7, a purinergic receptor, plays important roles in inflammatory diseases, but recently its expression has been found in several tumors, suggesting a potential role as a cancer cell biomarker. Moreover, the relative amount of P2X7 varies among human individuals due to numerous single nucleotide polymorphisms resulting in either a loss- or gain-of-function; the P2X7 gene is highly polymorphic, and polymorphisms in the promoter or coding region may modify its expression or function. A polymorphism in exon 13 of the P2X7 receptor gene at the +1513 position (Glu496Ala substitution, corresponding to SNP rs3751143) has been shown to eradicate the function of this receptor and has been correlated with histological variants and clinical parameters in thyroid cancer. Until now, no data regarding P2X7 expression and polymorphisms in lung cancer have been published; based on these premises, we decided to evaluate the impact of the P2X7 expression and polymorphisms in ninety-seven cases of non-small cell lung cancer (NSCLC).
RESULTS: No significant difference in the genotype frequency of the A1513C polymorphism was found between the two histological variants of NSCLC, adenocarcinoma and squamous cell carcinoma, and no statistically significant associations were observed between P2X7 protein expression and the main clinico-pathological characteristics of the NSCLC patients.
CONCLUSIONS: Based on our results, P2X7 expression and polymorphisms seem to have no potential impact in patients with non-small cell lung cancer; however, further studies will surely provide deeper insights regarding the role of this receptor at the clinical level in NSCLC.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. P2RX7, Cancer Genetics Web: http://www.cancer-genetics.org/P2RX7.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 31 August, 2019     Cancer Genetics Web, Established 1999