NSD1

Gene Summary

Gene:NSD1; nuclear receptor binding SET domain protein 1
Aliases: STO, KMT3B, SOTOS, ARA267, SOTOS1
Location:5q35.3
Summary:This gene encodes a protein containing a SET domain, 2 LXXLL motifs, 3 nuclear translocation signals (NLSs), 4 plant homeodomain (PHD) finger regions, and a proline-rich region. The encoded protein enhances androgen receptor (AR) transactivation, and this enhancement can be increased further in the presence of other androgen receptor associated coregulators. This protein may act as a nucleus-localized, basic transcriptional factor and also as a bifunctional transcriptional regulator. Mutations of this gene have been associated with Sotos syndrome and Weaver syndrome. One version of childhood acute myeloid leukemia is the result of a cryptic translocation with the breakpoints occurring within nuclear receptor-binding Su-var, enhancer of zeste, and trithorax domain protein 1 on chromosome 5 and nucleoporin, 98-kd on chromosome 11. Multiple transcript variants encoding distinct isoforms have been identified for this gene. [provided by RefSeq, Sep 2018]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:histone-lysine N-methyltransferase, H3 lysine-36 and H4 lysine-20 specific
Source:NCBIAccessed: 01 September, 2019

Ontology:

What does this gene/protein do?
Show (22)
Pathways:What pathways are this gene/protein implicaed in?
Show (1)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 01 September 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Gene Expression Profiling
  • Genetic Predisposition
  • Gene Expression
  • Biomarkers, Tumor
  • Karyotyping
  • Nuclear Pore Complex Proteins
  • Signal Transduction
  • Urogenital Abnormalities
  • DNA Methylation
  • Zinc Fingers
  • Histone Methyltransferases
  • Sequence Alignment
  • Molecular Sequence Data
  • Adolescents
  • Breast Cancer
  • Skin Cancer
  • FISH
  • Amino Acid Sequence
  • Prostate Cancer
  • Oncogene Fusion Proteins
  • Squamous Cell Carcinoma of Head and Neck
  • Cancer Gene Expression Regulation
  • Myeloid Leukemia
  • Myelodysplastic Syndromes
  • Survival Rate
  • Base Sequence
  • Chromosome 11
  • Epigenetics
  • Infant
  • Ultrasonography
  • Single Nucleotide Polymorphism
  • DNA-Binding Proteins
  • Acute Myeloid Leukaemia
  • Intracellular Signaling Peptides and Proteins
  • Repressor Proteins
  • Histone-Lysine N-Methyltransferase
  • DNA Sequence Analysis
  • Nuclear Proteins
  • Leukaemia
  • Carrier Proteins
  • Mutation
  • Chromosome 5
  • Childhood Cancer
  • Histones
Tag cloud generated 01 September, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (6)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: NSD1 (cancer-related)

Zhang Y, Yan L, Yao W, et al.
Integrated Analysis of Genetic Abnormalities of the Histone Lysine Methyltransferases in Prostate Cancer.
Med Sci Monit. 2019; 25:193-239 [PubMed] Free Access to Full Article Related Publications
BACKGROUND The histone methyltransferase (HMT) family includes histone lysine methyltransferases (HKMTs) and histone/protein arginine methyltransferases (PRMTs). The role of HMT gene variants in prostate cancer remains unknown. Therefore, this study aimed to evaluate HMT gene variants in the pathogenesis and prognosis of human prostate cancer, using in vitro cell studies and bioinformatics analysis. MATERIAL AND METHODS Integrative bioinformatics analysis of the expression of 51 HMT genes in human prostate cancer was based on datasets from the Cancer Genome Atlas (TCGA). Correlation and regression analysis were used to identify critical HMTs in prostate cancer. Kaplan-Meier and the area under the receiver operating characteristics curve (AUROC) were performed to evaluate the function of the HMTs on prognosis. Gene expression and function of 22Rv1 human prostate carcinoma cells were studied. RESULTS The HMT genes identified to have a role in the pathogenesis of prostate cancer included the EZH2, SETD5, PRDM12, NSD1, SETD6, SMYD1, and the WHSC1L1 gene. The EZH2, SETD5, and SMYD1 genes were selected as a prognostic panel, with the SUV420H2 HMT gene. SETD2, NSD1, and ASH1L were identified as critical genes in the development of castration-resistant prostate cancer (CRPC), similar to mixed-lineage leukemia (MLL) complex family members. Knockdown of the SETD5 gene in 22Rv1 prostate carcinoma cells in vitro inhibited cancer cell growth and migration. CONCLUSIONS HMT gene variants may have a role in the pathogenesis of prostate cancer. Future studies may determine the role of HMT genes as prognostic biomarkers in patients with prostate cancer.

Mencarelli A, Prontera P, Mencarelli A, et al.
Expanding the Clinical Spectrum of Sotos Syndrome in a Patient with the New "c.[5867T>A]+[=]"; "p.[Leu1956Gln]+[=]"
Int J Mol Sci. 2018; 19(10) [PubMed] Free Access to Full Article Related Publications
Sotos syndrome is one of the most common overgrowth diseases and it predisposes patients to cancer, generally in childhood. The prevalence of this genetic disorder is 1:10,000⁻1:50,000, and it is characterized by wide allelic heterogeneity, with more than 100 different known mutations in the nuclear receptor-binding SET domain containing protein 1 (

Park S, Supek F, Lehner B
Systematic discovery of germline cancer predisposition genes through the identification of somatic second hits.
Nat Commun. 2018; 9(1):2601 [PubMed] Free Access to Full Article Related Publications
The genetic causes of cancer include both somatic mutations and inherited germline variants. Large-scale tumor sequencing has revolutionized the identification of somatic driver alterations but has had limited impact on the identification of cancer predisposition genes (CPGs). Here we present a statistical method, ALFRED, that tests Knudson's two-hit hypothesis to systematically identify CPGs from cancer genome data. Applied to ~10,000 tumor exomes the approach identifies known and putative CPGs - including the chromatin modifier NSD1 - that contribute to cancer through a combination of rare germline variants and somatic loss-of-heterozygosity (LOH). Rare germline variants in these genes contribute substantially to cancer risk, including to ~14% of ovarian carcinomas, ~7% of breast tumors, ~4% of uterine corpus endometrial carcinomas, and to a median of 2% of tumors across 17 cancer types.

Bui N, Huang JK, Bojorquez-Gomez A, et al.
Disruption of
Mol Cancer Ther. 2018; 17(7):1585-1594 [PubMed] Free Access to Full Article Related Publications
Human papillomavirus (HPV)-negative head and neck squamous cell carcinoma (HNSCC) represents a distinct classification of cancer with worse expected outcomes. Of the 11 genes recurrently mutated in HNSCC, we identify a singular and substantial survival advantage for mutations in the gene encoding Nuclear Set Domain Containing Protein 1 (

Stahl M, Maderer A, Lordick F, et al.
Perioperative chemotherapy with or without epidermal growth factor receptor blockade in unselected patients with locally advanced oesophagogastric adenocarcinoma: Randomized phase II study with advanced biomarker program of the German Cancer Society (AIO/CAO STO-0801).
Eur J Cancer. 2018; 93:119-126 [PubMed] Related Publications
BACKGROUND: Perioperative chemotherapy significantly improves survival in patients with locally advanced oesophagogastric cancer (EGC). However, as approximately 60% of patients will die from their disease, new therapeutic agents such as molecular-targeted drugs are needed.
PATIENTS AND METHODS: To evaluate the role of panitumumab with perioperative chemotherapy, previously untreated patients with locally advanced EGC received, in an open-label randomised phase II study (NEOPECX), standard epirubicin, cisplatin, capecitabine (ECX) chemotherapy with or without panitumumab. The primary end-point was the histological response rate after neoadjuvant therapy. The expression status and gene copy number of EGFR, HER2, and MET were determined by immunohistochemistry and fluorescence in situ hybridization (FISH). Plasma samples were collected before the first cycle of neoadjuvant chemotherapy.
RESULTS: Overall, 160 patients (80 versus 80) were eligible. The majority (82% versus 80%) showed lymph node involvement. Rate of R0-resection, percentage of patients with downstaging to ypT0-2 at pathohistological evaluation, and rate of major histological response was equal in both arms. Toxicity was increased by panitumumab with regard to thromboembolic events and skin toxicity. Patients with tumour EGFR, HER2 or MET expression had shorter progression-free and overall survival. FISH positivity for these markers was associated with shorter survival independent of therapy. High levels of soluble EGFR in particular predicted poor survival in the panitumumab arm.
CONCLUSION: The addition of panitumumab to ECX did not improve downstaging of locally advanced EGC. Low plasma levels of pathway-associated proteins such as sEGFR may identify a group of patients that benefit from EGFR-directed therapy. CLINICALTRIALS.GOV: NCT01234324.

Shimada A, Iijima-Yamashita Y, Tawa A, et al.
Risk-stratified therapy for children with FLT3-ITD-positive acute myeloid leukemia: results from the JPLSG AML-05 study.
Int J Hematol. 2018; 107(5):586-595 [PubMed] Related Publications
Acute myeloid leukemia harboring internal tandem duplication of FMS-like tyrosine kinase 3 (AML

Brennan K, Shin JH, Tay JK, et al.
NSD1 inactivation defines an immune cold, DNA hypomethylated subtype in squamous cell carcinoma.
Sci Rep. 2017; 7(1):17064 [PubMed] Free Access to Full Article Related Publications
Chromatin modifying enzymes are frequently mutated in cancer, resulting in widespread epigenetic deregulation. Recent reports indicate that inactivating mutations in the histone methyltransferase NSD1 define an intrinsic subtype of head and neck squamous cell carcinoma (HNSC) that features pronounced DNA hypomethylation. Here, we describe a similar hypomethylated subtype of lung squamous cell carcinoma (LUSC) that is enriched for both inactivating mutations and deletions in NSD1. The 'NSD1 subtypes' of HNSC and LUSC are highly correlated at the DNA methylation and gene expression levels, featuring ectopic expression of developmental transcription factors and genes that are also hypomethylated in Sotos syndrome, a congenital disorder caused by germline NSD1 mutations. Further, the NSD1 subtype of HNSC displays an 'immune cold' phenotype characterized by low infiltration of tumor-associated leukocytes, particularly macrophages and CD8

Peri S, Izumchenko E, Schubert AD, et al.
NSD1- and NSD2-damaging mutations define a subset of laryngeal tumors with favorable prognosis.
Nat Commun. 2017; 8(1):1772 [PubMed] Free Access to Full Article Related Publications
Squamous cell carcinomas of the head and neck (SCCHN) affect anatomical sites including the oral cavity, nasal cavity, pharynx, and larynx. Laryngeal cancers are characterized by high recurrence and poor overall survival, and currently lack robust molecular prognostic biomarkers for treatment stratification. Using an algorithm for integrative clustering that simultaneously assesses gene expression, somatic mutation, copy number variation, and methylation, we for the first time identify laryngeal cancer subtypes with distinct prognostic outcomes, and differing from the non-prognostic laryngeal subclasses reported by The Cancer Genome Atlas (TCGA). Although most common laryngeal gene mutations are found in both subclasses, better prognosis is strongly associated with damaging mutations of the methyltransferases NSD1 and NSD2, with findings confirmed in an independent validation cohort consisting of 63 laryngeal cancer patients. Intriguingly, NSD1/2 mutations are not prognostic for nonlaryngeal SCCHN. These results provide an immediately useful clinical metric for patient stratification and prognostication.

Gleber-Netto FO, Zhao M, Trivedi S, et al.
Distinct pattern of TP53 mutations in human immunodeficiency virus-related head and neck squamous cell carcinoma.
Cancer. 2018; 124(1):84-94 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Human immunodeficiency virus-infected individuals (HIVIIs) have a higher incidence of head and neck squamous cell carcinoma (HNSCC), and clinical and histopathological differences have been observed in their tumors in comparison with those of HNSCC patients without a human immunodeficiency virus (HIV) infection. The reasons for these differences are not clear, and molecular differences between HIV-related HNSCC and non-HIV-related HNSCC may exist. This study compared the mutational patterns of HIV-related HNSCC and non-HIV-related HNSCC.
METHODS: The DNA of 20 samples of HIV-related HNSCCs and 32 samples of non-HIV-related HNSCCs was sequenced. DNA libraries covering exons of 18 genes frequently mutated in HNSCC (AJUBA, CASP8, CCND1, CDKN2A, EGFR, FAT1, FBXW7, HLA-A, HRAS, KEAP1, NFE2L2, NOTCH1, NOTCH2, NSD1, PIK3CA, TGFBR2, TP53, and TP63) were prepared and sequenced on an Ion Personal Genome Machine sequencer. DNA sequencing data were analyzed with Ion Reporter software. The human papillomavirus (HPV) status of the tumor samples was assessed with in situ hybridization, the MassARRAY HPV multiplex polymerase chain reaction assay, and p16 immunostaining. Mutation calls were compared among the studied groups.
RESULTS: HIV-related HNSCC revealed a distinct pattern of mutations in comparison with non-HIV-related HNSCC. TP53 mutation frequencies were significantly lower in HIV-related HNSCC. Mutations in HIV+ patients tended to be TpC>T nucleotide changes for all mutated genes but especially for TP53.
CONCLUSIONS: HNSCC in HIVIIs presents a distinct pattern of genetic mutations, particularly in the TP53 gene. HIV-related HNSCC may have a distinct biology, and an effect of the HIV virus on the pathogenesis of these tumors should not be ruled out. Cancer 2018;124:84-94. © 2017 American Cancer Society.

Kivioja JL, Lopez Martí JM, Kumar A, et al.
Chimeric NUP98-NSD1 transcripts from the cryptic t(5;11)(q35.2;p15.4) in adult de novo acute myeloid leukemia.
Leuk Lymphoma. 2018; 59(3):725-732 [PubMed] Related Publications
The t(5;11)(q35;p15.4) is a clinically significant marker of poor prognosis in acute myeloid leukemia (AML), which is difficult to detect due to sub-telomeric localization of the breakpoints. To facilitate the detection of this rearrangement, we studied NUP98-NSD1 transcript variants in patients with the t(5;11) using paired-end RNA sequencing and standard molecular biology techniques. We discovered three NUP98-NSD1 transcripts with two fusion junctions (NUP98 exon 11-12/NSD1 exon 6), alternative 5' donor site in NUP98 exon 7, and NSD1 exon 7 skipping. Two of the transcripts were in-frame and occurred in all t(5;11) samples (N = 5). The exonic splicing events were present in all samples (N = 23) regardless of the NUP98-NSD1 suggesting that these novel splice events are unassociated with t(5;11). In conclusion, we provide evidence of two different NUP98-NSD1 fusion transcripts in adult AML, which result in functional proteins and represent suitable molecular entities for monitoring t(5;11) AML patients.

van 't Veer LJ, Yau C, Yu NY, et al.
Tamoxifen therapy benefit for patients with 70-gene signature high and low risk.
Breast Cancer Res Treat. 2017; 166(2):593-601 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Breast cancer molecular prognostic tools that predict recurrence risk have mainly been established on endocrine-treated patients and thus are not optimal for the evaluation of benefit from endocrine therapy. The Stockholm tamoxifen (STO-3) trial which randomized postmenopausal node-negative patients to 2-year tamoxifen (followed by an optional randomization for an additional 3-year tamoxifen vs nil), versus no adjuvant treatment, provides a unique opportunity to evaluate long-term 20-year benefit of endocrine therapy within prognostic risk classes of the 70-gene prognosis signature that was developed on adjuvantly untreated patients.
METHODS: We assessed by Kaplan-Meier analysis 20-year breast cancer-specific survival (BCSS) and 10-year distant metastasis-free survival (DMFS) for 538 estrogen receptor (ER)-positive, STO-3 trial patients with retrospectively ascertained 70-gene prognosis classification. Multivariable analysis of long-term (20 years) BCSS by STO-3 trial arm in the 70-gene high-risk and low-risk subgroups was performed using Cox proportional hazard modeling adjusting for classical patient and tumor characteristics.
RESULTS: Tamoxifen-treated, 70-gene low- and high-risk patients had 20-year BCSS of 90 and 83%, as compared to 80 and 65% for untreated patients, respectively (log-rank p < 0.0001). Notably, there is equivalent tamoxifen benefit in both high (HR 0.42 (0.21-0.86), p = 0.018) and low (HR 0.46 (0.25-0.85), p = 0.013) 70-gene risk categories even after adjusting for clinico-pathological factors for BCSS. Limited tamoxifen exposure as given in the STO-3 trial provides persistent benefit for 10-15 years after diagnosis in a time-varying analysis. 10-year DMFS was 93 and 85% for low- and high-risk tamoxifen-treated, versus 83 and 70% for low- and high-risk untreated patients, respectively (log-rank p < 0.0001).
CONCLUSIONS: Patients with ER-positive breast cancer, regardless of high or low 70-gene risk classification, receive significant survival benefit lasting over 10 years from adjuvant tamoxifen therapy, even when given for a relatively short duration.

Su X, Zhang J, Mouawad R, et al.
Cancer Res. 2017; 77(18):4835-4845 [PubMed] Free Access to Full Article Related Publications
Extensive dysregulation of chromatin-modifying genes in clear cell renal cell carcinoma (ccRCC) has been uncovered through next-generation sequencing. However, a scientific understanding of the cross-talk between epigenetic and genomic aberrations remains limited. Here we identify three ccRCC epigenetic clusters, including a clear cell CpG island methylator phenotype (C-CIMP) subgroup associated with promoter methylation of VEGF genes (

Yamato G, Yamaguchi H, Handa H, et al.
Clinical features and prognostic impact of PRDM16 expression in adult acute myeloid leukemia.
Genes Chromosomes Cancer. 2017; 56(11):800-809 [PubMed] Related Publications
High PRDM16 (also known as MEL1) expression is a representative marker of acute myeloid leukemia (AML) with NUP98-NSD1 and is a significant predictive marker for poor prognosis in pediatric AML. However, the clinical features of adult AML with PRDM16 expression remain unclear. PRDM16 is highly homologous to MDS1/EVI1, which is an alternatively spliced transcript of MECOM (also known as EVI1). We investigated PRDM16 expression in 151 AML patients, with 47 (31%) exhibiting high PRDM16 expression (PRDM16/ABL1 ratio ≥ 0.010). High PRDM16 expression significantly correlated with DNMT3A (43% vs. 15%, P < 0.001) and NPM1 (43% vs. 21%, P = 0.010) mutations and partial tandem duplication of KMT2A (22% vs. 1%, P < 0.001). Remarkably, high-PRDM16-expression patients were frequent in the noncomplete remission group (48% vs. 21%, P = 0.002). Overall survival (OS) was significantly worse in high-PRDM16-expression patients than in low-PRDM16-expression patients (5-year OS, 18% vs. 34%; P = 0.002). This trend was observed more clearly among patients aged <65 years (5-year OS, 21% vs. 50%; P = 0.001), particularly in FLT3-ITD-negative patients in the intermediate cytogenetic risk group (5-year OS, 25% vs. 59%; P = 0.009). These results suggest that high PRDM16 expression is a significant predictive marker for poor prognosis in adult AML patients, similar to pediatric AML patients.

Esserman LJ, Yau C, Thompson CK, et al.
Use of Molecular Tools to Identify Patients With Indolent Breast Cancers With Ultralow Risk Over 2 Decades.
JAMA Oncol. 2017; 3(11):1503-1510 [PubMed] Free Access to Full Article Related Publications
Importance: The frequency of cancers with indolent behavior has increased with screening. Better tools to identify indolent tumors are needed to avoid overtreatment.
Objective: To determine if a multigene classifier is associated with indolent behavior of invasive breast cancers in women followed for 2 decades.
Design, Setting, and Participants: This is a secondary analysis of a randomized clinical trial of tamoxifen vs no systemic therapy, with more than 20-year follow-up. An indolent threshold (ultralow risk) of the US Food and Drug Administration-cleared MammaPrint 70-gene expression score was established above which no breast cancer deaths occurred after 15 years in the absence of systemic therapy. Immunohistochemical markers (n = 727 women) and Agilent microarrays, for MammaPrint risk scoring (n = 652 women), were performed from formalin-fixed paraffin-embedded primary tumor blocks. Participants were postmenopausal women with clinically detected node-negative breast cancers treated with mastectomy or lumpectomy and radiation enrolled in the Stockholm tamoxifen (STO-3) trial, 1976 to 1990.
Exposures: After 2 years of tamoxifen vs no systemic therapy, regardless of hormone receptor status, patients without relapse who reconsented were further randomized to 3 additional years or none.
Main Outcomes and Measures: Breast cancer-specific survival assessed by Kaplan-Meier analyses and multivariate Cox proportional hazard modeling, adjusted for treatment, patient age, year of diagnosis, tumor size, grade, hormone receptors, and ERBB2/HER2 and Ki67 status.
Results: In this secondary analysis of node-negative postmenopausal women, conducted in the era before mammography screening, among the 652 women with MammaPrint scoring available (median age, 62.8 years of age), 377 (58%) and 275 (42%) were MammaPrint low and high risk, respectively, while 98 (15%) were ultralow risk. At 20 years, women with 70-gene high and low tumors but not ultralow tumors had a significantly higher risk of disease-specific death compared with ultralow-risk patients by Cox analysis (hazard ratios, 4.73 [95% CI, 1.38-16.22] and 4.54 [95% CI, 1.40-14.80], respectively). There were no deaths in the ultralow-risk tamoxifen-treated arm at 15 years, and these patients had a 20-year disease-specific survival rate of 97%, whereas for untreated patients the survival rate was 94%. Recursive partitioning identified ultralow risk as the most significant predictor of good outcome. In tumors "not ultralow risk," tumor size greater than 2 cm was the most predictive of outcome.
Conclusions and Relevance: The ultralow-risk threshold of the 70-gene MammaPrint assay can identify patients whose long-term systemic risk of death from breast cancer after surgery alone is exceedingly low.

Busse TM, Roth JJ, Wilmoth D, et al.
Copy number alterations determined by single nucleotide polymorphism array testing in the clinical laboratory are indicative of gene fusions in pediatric cancer patients.
Genes Chromosomes Cancer. 2017; 56(10):730-749 [PubMed] Related Publications
Gene fusions resulting from structural rearrangements are an established mechanism of tumorigenesis in pediatric cancer. In this clinical cohort, 1,350 single nucleotide polymorphism (SNP)-based chromosomal microarrays from 1,211 pediatric cancer patients were evaluated for copy number alterations (CNAs) associated with gene fusions. Karyotype or fluorescence in situ hybridization studies were performed in 42% of the patients. Ten percent of the bone marrow or solid tumor specimens had SNP array-associated CNAs suggestive of a gene fusion. Alterations involving ETV6, ABL1-NUP214, EBF1-PDGFRB, KMT2A(MLL), LMO2-RAG, MYH11-CBFB, NSD1-NUP98, PBX1, STIL-TAL1, ZNF384-TCF3, P2RY8-CRLF2, and RUNX1T1-RUNX1 fusions were detected in the bone marrow samples. The most common alteration among the low-grade gliomas was a 7q34 tandem duplication resulting in a KIAA1549-BRAF fusion. Additional fusions identified in the pediatric brain tumors included FAM131B-BRAF and RAF1-QKI. COL1A1-PDGFB, CRTC1-MAML2, EWSR1, HEY1, PAX3- and PAX7-FOXO1, and PLAG1 fusions were determined in a variety of solid tumors and a novel potential gene fusion, FGFR1-USP6, was detected in an aneurysmal bone cyst. The identification of these gene fusions was instrumental in tumor diagnosis. In contrast to hematologic and solid tumors in adults that are predominantly driven by mutations, the majority of hematologic and solid tumors in children are characterized by CNAs and gene fusions. Chromosomal microarray analysis is therefore a robust platform to identify diagnostic and prognostic markers in the clinical setting.

Tatton-Brown K, Loveday C, Yost S, et al.
Mutations in Epigenetic Regulation Genes Are a Major Cause of Overgrowth with Intellectual Disability.
Am J Hum Genet. 2017; 100(5):725-736 [PubMed] Free Access to Full Article Related Publications
To explore the genetic architecture of human overgrowth syndromes and human growth control, we performed experimental and bioinformatic analyses of 710 individuals with overgrowth (height and/or head circumference ≥+2 SD) and intellectual disability (OGID). We identified a causal mutation in 1 of 14 genes in 50% (353/710). This includes HIST1H1E, encoding histone H1.4, which has not been associated with a developmental disorder previously. The pathogenic HIST1H1E mutations are predicted to result in a product that is less effective in neutralizing negatively charged linker DNA because it has a reduced net charge, and in DNA binding and protein-protein interactions because key residues are truncated. Functional network analyses demonstrated that epigenetic regulation is a prominent biological process dysregulated in individuals with OGID. Mutations in six epigenetic regulation genes-NSD1, EZH2, DNMT3A, CHD8, HIST1H1E, and EED-accounted for 44% of individuals (311/710). There was significant overlap between the 14 genes involved in OGID and 611 genes in regions identified in GWASs to be associated with height (p = 6.84 × 10

Bennett RL, Swaroop A, Troche C, Licht JD
The Role of Nuclear Receptor-Binding SET Domain Family Histone Lysine Methyltransferases in Cancer.
Cold Spring Harb Perspect Med. 2017; 7(6) [PubMed] Free Access to Full Article Related Publications
The nuclear receptor-binding SET Domain (NSD) family of histone H3 lysine 36 methyltransferases is comprised of NSD1, NSD2 (MMSET/WHSC1), and NSD3 (WHSC1L1). These enzymes recognize and catalyze methylation of histone lysine marks to regulate chromatin integrity and gene expression. The growing number of reports demonstrating that alterations or translocations of these genes fundamentally affect cell growth and differentiation leading to developmental defects illustrates the importance of this family. In addition, overexpression, gain of function somatic mutations, and translocations of NSDs are associated with human cancer and can trigger cellular transformation in model systems. Here we review the functions of NSD family members and the accumulating evidence that these proteins play key roles in tumorigenesis. Because epigenetic therapy is an important emerging anticancer strategy, understanding the function of NSD family members may lead to the development of novel therapies.

Papillon-Cavanagh S, Lu C, Gayden T, et al.
Impaired H3K36 methylation defines a subset of head and neck squamous cell carcinomas.
Nat Genet. 2017; 49(2):180-185 [PubMed] Free Access to Full Article Related Publications
Human papillomavirus (HPV)-negative head and neck squamous cell carcinomas (HNSCCs) are deadly and common cancers. Recent genomic studies implicate multiple genetic pathways, including cell signaling, cell cycle and immune evasion, in their development. Here we analyze public data sets and uncover a previously unappreciated role of epigenome deregulation in the genesis of 13% of HPV-negative HNSCCs. Specifically, we identify novel recurrent mutations encoding p.Lys36Met (K36M) alterations in multiple H3 histone genes. histones. We further validate the presence of these alterations in multiple independent HNSCC data sets and show that, along with previously described NSD1 mutations, they correspond to a specific DNA methylation cluster. The K36M substitution and NSD1 defects converge on altering methylation of histone H3 at K36 (H3K36), subsequently blocking cellular differentiation and promoting oncogenesis. Our data further indicate limited redundancy for NSD family members in HPV-negative HNSCCs and suggest a potential role for impaired H3K36 methylation in their development. Further investigation of drugs targeting chromatin regulators is warranted in HPV-negative HNSCCs driven by aberrant H3K36 methylation.

Han J, Jun Y, Kim SH, et al.
Rapid emergence and mechanisms of resistance by U87 glioblastoma cells to doxorubicin in an in vitro tumor microfluidic ecology.
Proc Natl Acad Sci U S A. 2016; 113(50):14283-14288 [PubMed] Free Access to Full Article Related Publications
In vitro prediction of the probable rapid emergence of resistance to a drug in tumors could act to winnow out potential candidates for further costly development. We have developed a microfluidic device consisting of ∼500 hexagonal microcompartments that provides a complex ecology with wide ranges of drug and nutrient gradients and local populations. This ecology of a fragmented metapopulation induced the drug resistance in stage IV U87 glioblastoma cells to doxorubicin in 7 d. Exome and transcriptome sequencing of the resistant cells identified mutations and differentially expressed genes. Gene ontology and pathway analyses of the genes identified showed that they were functionally relevant to the established mechanisms of doxorubicin action. Specifically, we identified (i) a frame-shift insertion in the filamin-A gene, which regulates the influx and efflux of topoisomerase II poisons; (ii) the overexpression of aldo-keto reductase enzymes, which convert doxorubicin into doxorubicinol; and (iii) activation of NF-κB via alterations in the nucleotide-binding oligomerization domain (NOD)-like receptor signaling pathway from mutations in three genes (CARD6, NSD1, and NLRP13) and the overexpression of inflammatory cytokines. Functional experiments support the in silico analyses and, together, demonstrate the effects of these genetic changes. Our findings suggest that, given the rapid evolution of resistance and the focused response, this technology could act as a rapid screening modality for genetic aberrations leading to resistance to chemotherapy as well as counter selection of drugs unlikely to be successful ultimately.

Xu H, Valerio DG, Eisold ME, et al.
NUP98 Fusion Proteins Interact with the NSL and MLL1 Complexes to Drive Leukemogenesis.
Cancer Cell. 2016; 30(6):863-878 [PubMed] Free Access to Full Article Related Publications
The nucleoporin 98 gene (NUP98) is fused to a variety of partner genes in multiple hematopoietic malignancies. Here, we demonstrate that NUP98 fusion proteins, including NUP98-HOXA9 (NHA9), NUP98-HOXD13 (NHD13), NUP98-NSD1, NUP98-PHF23, and NUP98-TOP1 physically interact with mixed lineage leukemia 1 (MLL1) and the non-specific lethal (NSL) histone-modifying complexes. Chromatin immunoprecipitation sequencing illustrates that NHA9 and MLL1 co-localize on chromatin and are found associated with Hox gene promoter regions. Furthermore, MLL1 is required for the proliferation of NHA9 cells in vitro and in vivo. Inactivation of MLL1 leads to decreased expression of genes bound by NHA9 and MLL1 and reverses a gene expression signature found in NUP98-rearranged human leukemias. Our data reveal a molecular dependency on MLL1 function in NUP98-fusion-driven leukemogenesis.

Struski S, Lagarde S, Bories P, et al.
NUP98 is rearranged in 3.8% of pediatric AML forming a clinical and molecular homogenous group with a poor prognosis.
Leukemia. 2017; 31(3):565-572 [PubMed] Related Publications
Pediatric acute myeloid leukemia (AML) is a rare disease whose prognosis is highly variable according to factors such as chromosomal abnormalities. Recurrent genomic rearrangements are detected in half of pediatric AML by karyotype. NUcleoPorin 98 (NUP98) gene is rearranged with 31 different fusion partner genes. These rearrangements are frequently undetected by conventional cytogenetics, as the NUP98 gene is located at the end of the chromosome 11 short arm (11p15). By screening a series of 574 pediatric AML, we detected a NUP98 rearrangement in 22 cases (3.8%), a frequency similar to CBFB-MYH11 fusion gene (4.0%). The most frequent NUP98 fusion gene partner is NSD1. These cases are homogeneous regarding their biological and clinical characteristics, and associated with bad prognosis only improved by bone marrow transplantation. We detailed the biological characteristics of these AML by exome sequencing which demonstrated few recurrent mutations (FLT3 ITD, WT1, CEBPA, NBPF14, BCR and ODF1). The analysis of the clonal structure in these cases suggests that the mutation order in the NUP98-rearranged pediatric AML begins with the NUP98 rearrangement leading to epigenetic dysregulations then followed by mutations of critical hematopoietic transcription factors and finally, activation of the FLT3 signaling pathway.

Swierniak M, Pfeifer A, Stokowy T, et al.
Somatic mutation profiling of follicular thyroid cancer by next generation sequencing.
Mol Cell Endocrinol. 2016; 433:130-7 [PubMed] Related Publications
The molecular etiology of follicular thyroid tumors is largely unknown, rendering the diagnostics of these tumors challenging. The somatic alterations present in these tumors apart from RAS gene mutations and PAX8/PPARG translocations are not well described. To evaluate the profile of somatic alteration in follicular thyroid tumors, a total of 82 thyroid tissue samples derived from 48 patients were subjected to targeted Illumina HiSeq next generation sequencing of 372 cancer-related genes. New somatic alterations were identified in oncogenes (MDM2, FLI1), transcription factors and repressors (MITF, FLI1, ZNF331), epigenetic enzymes (KMT2A, NSD1, NCOA1, NCOA2), and protein kinases (JAK3, CHEK2, ALK). Single nucleotide and large structural variants were most and least frequently identified, respectively. A novel translocation in DERL/COX6C was detected. Many somatic alterations in non-coding gene regions with high penetrance were observed. Thus, follicular thyroid tumor somatic alterations exhibit complex patterns. Most tumors contained distinct somatic alterations, suggesting previously unreported heterogeneity.

Joshi M, Vasekar M, Grivas P, et al.
Relationship of smoking status to genomic profile, chemotherapy response and clinical outcome in patients with advanced urothelial carcinoma.
Oncotarget. 2016; 7(32):52442-52449 [PubMed] Free Access to Full Article Related Publications
Smoking has been linked to urothelial carcinoma (UC), but the implications on genomic profile and therapeutic response are poorly understood. To determine how smoking history impacts genomic profile and chemotherapy response, clinicopathologic data was collected for patients with metastatic UC (mUC) across 3 academic medical centers and comprehensive genomic profiling (CGP) was performed through a CLIA-certified lab. Unsupervised hierarchical clustering based on smoking status was used to categorize the frequency of genomic alterations (GAs) amongst current smokers (CS), ex-smokers (ES) and non-smokers (NS), and survival was compared in these subsets. Fisher's exact test identified significant associations between GAs and smoking status. Amongst 83 patients, 23%, 55% and 22% were CS, ES, and NS, respectively, and 95% of patients had stage IV disease. With a median follow up of 14.4 months, the median overall survival (OS) was significantly higher in NS and ES (combined) as compared to CS (51.6 vs 15.6 months; P = 0.04). Of 315 cancer-related genes and 31 genes often related to rearrangement tested, heatmaps show some variations amongst the subsets. GAs in NSD1 were more frequent in CS as compared to other groups (P < 0.001). CS status negatively impacts OS in patients with mUC and is associated with genomic alterations that could have therapeutic implications.

Lai J, Zhou Z, Tang XJ, et al.
A Tumor-Specific Neo-Antigen Caused by a Frameshift Mutation in BAP1 Is a Potential Personalized Biomarker in Malignant Peritoneal Mesothelioma.
Int J Mol Sci. 2016; 17(5) [PubMed] Free Access to Full Article Related Publications
Malignant peritoneal mesothelioma (MPM) is an aggressive rare malignancy associated with asbestos exposure. A better understanding of the molecular pathogenesis of MPM will help develop a targeted therapy strategy. Oncogene targeted depth sequencing was performed on a tumor sample and paired peripheral blood DNA from a patient with malignant mesothelioma of the peritoneum. Four somatic base-substitutions in NOTCH2, NSD1, PDE4DIP, and ATP10B and 1 insert frameshift mutation in BAP1 were validated by the Sanger method at the transcriptional level. A 13-amino acids neo-peptide of the truncated Bap1 protein, which was produced as a result of this novel frameshift mutation, was predicted to be presented by this patient's HLA-B protein. The polyclonal antibody of the synthesized 13-mer neo-peptide was produced in rabbits. Western blotting results showed a good antibody-neoantigen specificity, and Immunohistochemistry (IHC) staining with the antibody of the neo-peptide clearly differentiated neoplastic cells from normal cells. A search of the Catalogue of Somatic Mutations in Cancer (COSMIC) database also revealed that 53.2% of mutations in BAP1 were frameshift indels with neo-peptide formation. An identified tumor-specific neo-antigen could be the potential molecular biomarker for personalized diagnosis to precisely subtype rare malignancies such as MPM.

Cani AK, Soliman M, Hovelson DH, et al.
Comprehensive genomic profiling of orbital and ocular adnexal lymphomas identifies frequent alterations in MYD88 and chromatin modifiers: new routes to targeted therapies.
Mod Pathol. 2016; 29(7):685-97 [PubMed] Free Access to Full Article Related Publications
Non-Hodgkin lymphoma of the orbit and ocular adnexa is the most common primary orbital malignancy. Treatments for low- (extra-nodal marginal zone and follicular lymphomas) and high-grade (diffuse large B-cell lymphoma) are associated with local and vision-threatening toxicities. High-grade lymphomas relapse frequently and exhibit poor survival rates. Despite advances in genomic profiling and precision medicine, orbital and ocular adnexal lymphomas remain poorly characterized molecularly. We performed targeted next-generation sequencing (NGS) profiling of 38 formalin-fixed, paraffin-embedded orbital and ocular adnexal lymphomas obtained from a single-center using a panel targeting near-term, clinically relevant genes. Potentially actionable mutations and copy number alterations were prioritized based on gain- and loss-of-function analyses, and catalogued, approved, and investigational therapies. Of 36 informative samples, including marginal zone lymphomas (n=20), follicular lymphomas (n=9), and diffuse large B-cell lymphomas (n=7), 53% harbored a prioritized alteration (median=1, range 0-5/sample). MYD88 was the most frequently altered gene in our cohort, with potentially clinically relevant hotspot gain-of-function mutations identified in 71% of diffuse large B-cell lymphomas and 25% of marginal zone lymphomas. Prioritized alterations in epigenetic modulators were common and included gain-of-function EZH2 and loss-of-function ARID1A mutations (14% of diffuse large B-cell lymphomas and 22% of follicular lymphomas contained alterations in each of these two genes). Single prioritized alterations were also identified in the histone methyltransferases KMT2B (follicular lymphoma) and KMT3B (diffuse large B-cell lymphoma). Loss-of-function mutations and copy number alterations in the tumor suppressors TP53 (diffuse large B-cell and follicular lymphoma), CDKN2A (diffuse large B-cell and marginal zone lymphoma), PTEN (diffuse large B-cell lymphoma), ATM (diffuse large B-cell lymphoma), and NF1 (diffuse large B-cell lymphoma), and gain-of-function mutations in the oncogenes HRAS (follicular lymphoma) and NRAS (diffuse large B-cell lymphoma) were also observed. Together, our study demonstrates that NGS can be used to profile routine formalin-fixed, paraffin-embedded orbital and ocular adnexal lymphomas for identification of somatic-driving alterations and nomination of potential therapeutic strategies.

Shiba N, Ohki K, Kobayashi T, et al.
High PRDM16 expression identifies a prognostic subgroup of pediatric acute myeloid leukaemia correlated to FLT3-ITD, KMT2A-PTD, and NUP98-NSD1: the results of the Japanese Paediatric Leukaemia/Lymphoma Study Group AML-05 trial.
Br J Haematol. 2016; 172(4):581-91 [PubMed] Related Publications
Recent reports described the NUP98-NSD1 fusion as an adverse prognostic marker for acute myeloid leukaemia (AML) and PRDM16 (also known as MEL1) as the representative overexpressed gene in patients harbouring NUP98-NSD1 fusion. PRDM16 gene expression levels were measured via real-time polymerase chain reaction in 369 paediatric patients with de novo AML, of whom 84 (23%) exhibited PRDM16 overexpression (PRDM16/ABL1 ratio ≥0·010). The frequencies of patients with high or low PRDM16 expression differed widely with respect to each genetic alteration, as follows: t(8;21), 4% vs. 96%, P < 0·001; inv(16), 0% vs. 100%, P < 0·001; KMT2A (also termed MLL)- partial tandem duplication, 100% vs. 0%, P < 0·001; NUP98-NSD1, 100% vs. 0%, P < 0·001. The overall survival (OS) and event-free survival (EFS) among PRDM16-overexpressing patients were significantly worse than in patients with low PRDM16 expression (3-year OS: 51% vs. 81%, P < 0·001, 3-year EFS: 32% vs. 64%, P < 0·001) irrespective of other cytogenetic alterations except for NPM1. PRDM16 gene expression was particularly useful for stratifying FLT3-internal tandem duplication-positive AML patients (3-year OS: high = 30% vs. low = 70%, P < 0·001). PRDM16 overexpression was highly recurrent in de novo paediatric AML patients with high/intermediate-risk cytogenetic profiles and was independently associated with an adverse outcome.

Lee ST, Wiemels JL
Genome-wide CpG island methylation and intergenic demethylation propensities vary among different tumor sites.
Nucleic Acids Res. 2016; 44(3):1105-17 [PubMed] Free Access to Full Article Related Publications
The epigenetic landscape of cancer includes both focal hypermethylation and broader hypomethylation in a genome-wide manner. By means of a comprehensive genomic analysis on 6637 tissues of 21 tumor types, we here show that the degrees of overall methylation in CpG island (CGI) and demethylation in intergenic regions, defined as 'backbone', largely vary among different tumors. Depending on tumor type, both CGI methylation and backbone demethylation are often associated with clinical, epidemiological and biological features such as age, sex, smoking history, anatomic location, histological type and grade, stage, molecular subtype and biological pathways. We found connections between CGI methylation and hypermutability, microsatellite instability, IDH1 mutation, 19p gain and polycomb features, and backbone demethylation with chromosomal instability, NSD1 and TP53 mutations, 5q and 19p loss and long repressive domains. These broad epigenetic patterns add a new dimension to our understanding of tumor biology and its clinical implications.

Garg M, Nagata Y, Kanojia D, et al.
Profiling of somatic mutations in acute myeloid leukemia with FLT3-ITD at diagnosis and relapse.
Blood. 2015; 126(22):2491-501 [PubMed] Free Access to Full Article Related Publications
Acute myeloid leukemia (AML) with an FLT3 internal tandem duplication (FLT3-ITD) mutation is an aggressive hematologic malignancy with a grave prognosis. To identify the mutational spectrum associated with relapse, whole-exome sequencing was performed on 13 matched diagnosis, relapse, and remission trios followed by targeted sequencing of 299 genes in 67 FLT3-ITD patients. The FLT3-ITD genome has an average of 13 mutations per sample, similar to other AML subtypes, which is a low mutation rate compared with that in solid tumors. Recurrent mutations occur in genes related to DNA methylation, chromatin, histone methylation, myeloid transcription factors, signaling, adhesion, cohesin complex, and the spliceosome. Their pattern of mutual exclusivity and cooperation among mutated genes suggests that these genes have a strong biological relationship. In addition, we identified mutations in previously unappreciated genes such as MLL3, NSD1, FAT1, FAT4, and IDH3B. Mutations in 9 genes were observed in the relapse-specific phase. DNMT3A mutations are the most stable mutations, and this DNMT3A-transformed clone can be present even in morphologic complete remissions. Of note, all AML matched trio samples shared at least 1 genomic alteration at diagnosis and relapse, suggesting common ancestral clones. Two types of clonal evolution occur at relapse: either the founder clone recurs or a subclone of the founder clone escapes from induction chemotherapy and expands at relapse by acquiring new mutations. Relapse-specific mutations displayed an increase in transversions. Functional assays demonstrated that both MLL3 and FAT1 exert tumor-suppressor activity in the FLT3-ITD subtype. An inhibitor of XPO1 synergized with standard AML induction chemotherapy to inhibit FLT3-ITD growth. This study clearly shows that FLT3-ITD AML requires additional driver genetic alterations in addition to FLT3-ITD alone.

Katoh M
Mutation spectra of histone methyltransferases with canonical SET domains and EZH2-targeted therapy.
Epigenomics. 2016; 8(2):285-305 [PubMed] Related Publications
Germline mutations in canonical SET-methyltransferases have been identified in autism and intellectual disability syndromes and gain-of-function somatic alterations in EZH2, MLL3, NSD1, WHSC1 (NSD2) and WHSC1L1 (NSD3) in cancer. EZH2 interacts with AR, ERα, β-catenin, FOXP3, NF-κB, PRC2, REST and SNAI2, resulting in context-dependent transcriptional activation and repression. Pharmacological EZH2 inhibitors are currently in clinical trials for the treatment of B-cell lymphomas and solid tumors. EZH2 inhibitors might also be applicable in the treatment of SWI/SNF-mutant cancers, reflecting the reciprocal expression of and functional overlap between EZH2 and SMARCA4. Because of the risks for autoimmune diseases, cognitive impairment, cardiomyopathy and myelodysplastic syndrome, EZH2 inhibitors should be utilized for cancer treatment in patients receiving long-term surveillance but not for cancer chemoprevention.

Whang YM, Park SI, Trenary IA, et al.
LKB1 deficiency enhances sensitivity to energetic stress induced by erlotinib treatment in non-small-cell lung cancer (NSCLC) cells.
Oncogene. 2016; 35(7):856-66 [PubMed] Free Access to Full Article Related Publications
The tumor suppressor serine/threonine kinase 11 (STK11 or LKB1) is mutated in 20-30% of patients with non-small-cell lung cancer (NSCLC). Loss of LKB1-adenosine monophosphate-activated protein kinase (AMPK) signaling confers sensitivity to metabolic inhibition or stress-induced mitochondrial insults. We tested the hypothesis that loss of LKB1 sensitizes NSCLC cells to energetic stress induced by treatment with erlotinib. LKB1-deficient cells exhibited enhanced sensitivity to erlotinib in vitro and in vivo that was associated with alterations in energy metabolism and mitochondrial dysfunction. Loss of LKB1 expression altered the cellular response to erlotinib treatment, resulting in impaired ATP homeostasis and an increase in reactive oxygen species. Furthermore, erlotinib selectively blocked mammalian target of rapamycin signaling, inhibited cell growth and activated apoptosis in LKB1-deficient cells. Erlotinib treatment also induced AMPK activation despite loss of LKB1 expression, which was partially reduced by the application of a calcium/calmodulin-dependent protein kinase kinase 2 inhibitor (STO-609) or calcium chelator (BAPTA-AM). These findings may have significant implications for the design of novel NSCLC treatments that target dysregulated metabolic and signaling pathways in LKB1-deficient tumors.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. NSD1, Cancer Genetics Web: http://www.cancer-genetics.org/NSD1.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 01 September, 2019     Cancer Genetics Web, Established 1999